
PCIS-DASK/X ver3.21

Data Acquisition Software Development Kit

for PC Compatibles
User’s Guide

@Copyright 1997-2001 ADLink Technology Inc.
All Rights Reserved.

Manual Rev 3.21: July 30, 2001

The information in this document is subject to change without
prior notice in order to improve reliability, design and function
and does not represent a commitment on the part of the
manufacturer.

In no event will the manufacturer be liable for direct, indirect,
special, incidental, or consequential damages aris ing out of
the use or inability to use the product or documentation, even
if advised of the possibility of such damages.

This document contains proprietary information protected by
copyright. All rights are reserved. No part of this manual may
be reproduced by any mechanical, electronic, or other means
in any form without prior written permission of the
manufacturer.

Trademarks
IBM PC is a registered trademark of International Business
Machines Corporation. Intel is a registered trademark of Intel
Corporation. Other product names mentioned herein are used
for identification purposes only and may be trademarks and/or
registered trademarks of their respective companies.

Contents •• i

CONTENTS

HOW TO USE THIS MANUALIV

INTRODUCTION TO PCIS-DASK............................. 1
1.1 ABOUT THE PCIS-DASK SOFTWARE...1

1.2 PCIS-DASK HARDWARE SUPPORT ...2

1.3 PCIS-DASK LANGUAGE SUPPORT ...3

THE FUNDAMENTALS OF BUILDING
APPLICATIONS WITH PCIS-DASK.......................... 4

2.1 CREATING A PCIS-DASK APPLICATION USING C/C++.................4

PCIS-DASK UTILITIES... 5
3.1 NUDAQ CONFIGURATION UTILITY (DASK_CONF).........................5

3.2 PCIS-DASK MODULE INSTALLATION SCRIPT..............................8

3.3 PCIS-DASK UN-INSTALLATION SCRIPT9

3.4 PCIS-DASK DATA FILE CONVERTER UTILITY (DAQCVT) 10

PCIS-DASK OVERVIEW..12
4.1 GENERAL CONFIGURATION FUNCTION GROUP 13

4.2 ACTUAL SAMPLING RATE FUNCTION GROUP 13

4.3 ANALOG INPUT FUNCTION GROUP.. 13
4.3.1 Analog Input Configuration Functions...13
4.3.2 One-Shot Analog Input Functions...15

4.3.3 Continuous Analog Input Functions...15

4.3.4 Asynchronous Analog Input Monitoring Functions17

4.4 ANALOG OUTPUT FUNCTION GROUP .. 17
4.4.1 Analog output Configuration Functions ..17
4.4.2 One-Shot Analog Output Functions ...18

4.5 DIGITAL INPUT FUNCTION GROUP... 19

ii •• Contents

4.5.1 Digital Input Configuration Functions ..19
4.5.2 One-Shot Digital Input Functions ..19

4.5.3 Continuous Digital Input Functions ..20

4.5.4 Asynchronous Digital Input Monitoring Functions20

4.6 DIGITAL OUTPUT FUNCTION GROUP ... 21
4.6.1 Digital Output Configuration Functions...21
4.6.2 One-Shot Digital Output Functions...22

4.6.3 Continuous Digital Output Functions...22

4.6.4 Asynchronous Digital Output Monitoring Functions23

4.7 TIMER/COUNTER FUNCTION GROUP ... 23
4.7.1 Timer/Counter Functions ...23
4.7.2 The General-Purpose Timer/Counter Functions23

GCTR_CLEAR CLEARS THE GENERAL-PURPOSE TIMER/COUNTER

CONTROL REGISTER AND COUNTER REGISTER. 24

4.8 DIO FUNCTION GROUP... 24
4.8.1 Digital Input/Output Configuration Functions..............................24

4.8.2 Dual-Interrupt System Setting Functions24

PCIS-DASK APPLICATION HINTS25
5.1 ANALOG INPUT PROGRAMMING HINTS 26

5.1.1 One-Shot Analog input programming Scheme27
5.1.2 Synchronous Continuous Analog input programming Scheme

28

5.1.3 Non-Trigger Non-double-buffered Asynchronous Continuous
Analog input programming Scheme...30

5.1.4 Non-Trigger Double-buffered Asynchronous Continuous

Analog input programming Scheme...32
5.1.5 Trigger Mode Non-double-buffered Asynchronous Continuous

Analog input programming Scheme...35

5.1.6 Trigger Mode Double-buffered Asynchronous Continuous
Analog input programming Scheme...38

5.2 ANALOG OUTPUT PROGRAMMING HINTS................................... 41

Contents •• iii

5.3 DIGITAL INPUT PROGRAMMING HINTS....................................... 42
5.3.1 One-Shot Digital input programming Scheme.............................44

5.3.2 Synchronous Continuous Digital input programming Scheme
45

5.3.3 Non-double-buffered Asynchronous Continuous Digital input

programming Scheme..46
5.3.4 Double-buffered Asynchronous Continuous Digital input

programming Scheme..48

5.4 DIGITAL OUTPUT PROGRAMMING HINTS.................................... 51
5.4.1 One-Shot Digital output programming Scheme..........................53

5.4.2 Synchronous Continuous Digital output programming Scheme
54

5.4.3 Asynchronous Continuous Digital output programming

Scheme...55
5.4.4 Pattern Generation Digital output programming Scheme........57

5.5 INTERRUPT ASYNCHRONOUS NOTIFICATION PROGRAMMING HINTS58

CONTINUOUS DATA TRANSFER IN PCIS-DASK 60
6.1 CONTINUOUS DATA TRANSFER MECHANISM 60

6.2 DOUBLE-BUFFERED AI/DI OPERATION 61
6.2.1 Double Buffer Mode Principle...61

Single-Buffered Versus Double-Buffered Data Transfer..........................62

6.3 TRIGGER MODE DATA ACQUISITION FOR ANALOG INPUT 64

iv •• How to use this manual

How to Use This Manual
This manual is to help you use the PCIS-DASK software driver
for NuDAQ PCI-bus data acquisition cards. The manual
describes how to install and use the software library to meet your
requirements and help you program your own software
applications. It is organized as follows:

l Chapter 1, "Introduction to PCIS-DASK" describes the
hardware and language support of PCIS-DASK.

l Chapter 2,"The Fundamentals of Building Linux Applications
with PCIS-DASK" describes the fundamentals of creating
applications under Linux environment.

l Chapter 3, "PCIS-DASK Utilities" describes the utilities
PCIS-DASK provides.

l Chapter 4, "PCIS-DASK Overview" describes the classes of
functions in PCIS-DASK and briefly describes each function.

l Chapter 5, "PCIS-DASK Application Hints" provides the
programming schemes showing the function flow of that
PCIS-DASK performs analog I/O and digital I/O.

l Chapter 6, "Continuous Data Transfer in PCIS-DASK"
describes the mechanism and techniques that PCIS-DASK
uses for continuous data transfer.

Introduction to PCIS-DASK •• 1

1

Introduction to PCIS-DASK

1.1 About the PCIS-DASK Software
PCIS-DASK is a software driver for NuDAQ PCI-bus data
acquisition cards. It is a high performance data acquisition driver
for developing custom applications under Linux environment.

Using PCIS-DASK also lets you take advantage of the power
and features of Linux for your data acquisition applications.
These include running multiple applications and using extended
memory.

2 •• Introduction to PCIS-DASK

1.2 PCIS-DASK Hardware Support
ADLink will periodically upgrade PCIS-DASK for new NuDAQ
PCI-bus data acquisition cards and NuIPC CompactPCI cards.
Please refer to Release Notes for the cards that the current
PCIS-DASK actually supports. The following cards are those that
PCIS-DASK supports currently:

• PCI-6208A : 8-channel 16-bit current output card

• PCI-6208V/16V : 8/16-channel 16-bit voltage output card

• PCI-6308A : Isolated 8-channel voltage and current output
card

• PCI-6308V : Isolated 8-channel voltage output card

• PCI-7200/cPCI-7200 : high-speed 32-bit digital I/O card with
bus mastering DMA transfer capability

• PCI-7230/cPCI-7230 : 32-channel isolated digital I/O card

• PCI-7233/PCI-7233H : Isolated 32 channels DI card with COS
detection

• PCI-7234 : 32-channel isolated digital output card

• PCI-7248/cPCI-7248 : 48-bit digital I/O card

• cPCI-7249R : 3U CompactPCI 48 parallel digital I/O card

• PCI-7250 : 8 relay output and 8 isolated input card

• cPCI-7252 : 8 relay output and 16 isolated input card

• PCI-7296 : 96-bit digital I/O card

• PCI-7300A/cPCI-7300A : 40 Mbytes/sec Ultra-high speed 32
channels digital I/O card with bus
mastering DMA transfer supporting
scatter gather technology

• PCI-7396 : High driving capability 96 channels DIO card

• PCI-7432/cPCI-7432 : 32 isolated channels DI & 32 isolated
channels DO card

Introduction to PCIS-DASK •• 3

• PCI-7433/cPCI-7433 : 64 isolated channels DI card

• PCI-7434/cPCI-7434 : 64 isolated channels DO card

• cPCI-7432R : Isolation 32 Digital Inputs & 32 Digital Outputs
with Rear I/O

• cPCI-7433R : Isolation 64 Digital Inputs Module with Rear I/O

• cPCI-7434R : Isolation 64 Digital Outputs Module with Rear I/O

• PCI-8554 : 16-CH Timer/Counter & DIO card

• PCI-9111 : advanced multi-function card

• PCI-9112/cPCI-9112 : advanced multi-function card with bus
mastering DMA transfer capability

• PCI-9113 : 32 isolated channels A/D card

• PCI-9114 : 32-channel high gain multi-function card

• cPCI-9116: 64-channel advanced multi-function card with bus
mastering DMA transfer capability

• PCI-9118 : 333KHz high speed multi-function card with bus
mastering DMA transfer capability

• PCI-9812/10 : 20MHz Ultra-high speed A/D card with bus
mastering DMA transfer capability

• cPCI-9812/10 : 20MHz Ultra-high speed A/D card with bus
mastering DMA transfer capability

1.3 PCIS-DASK Language Support
PCIS-DASK is provided as a shared library for Linux. It can work
with any 32-bit compiler, such as gcc, etc.

4 •• The Fundamentals of Building PCIS-DASK/X Applications

2

The Fundamentals of
Building Applications with
PCIS-DASK

2.1 Creating a PCIS-DASK Application Using C/C++
To create a data acquisition application using
PCIS-DASK and C/C++, follow these steps:

step 1. Edit the source files.

Include the header file dask.h in the C/C++
source files that call PCIS-DASK functions.
dask.h contains all the function declarations and
constants that you can use to develop your data
acquisition application. Incorporate the following
statement in your code to include the header file.

 #include “dask.h”

step 3. Build your application.

Using the appropriated C/C++ compiler (gcc or
cc) to compile the program. You should also use
the -lpci_dask option to link libpci_dask.so library.

ex. gcc -o testai testai.c –lpci_dask.

PCIS-DASK Utilities •• 5

3

PCIS-DASK Utilities
This chapter introduces the tools that accompanied with the
PCIS-DASK package.

3.1 NuDAQ Configuration utility (dask_conf)

dask_conf is used for the users to configure PCIS-DASK
drivers, remove configured drivers, and set/modify the allocated
buffer sizes of AI, AO, DI and DO. The default location of this
utility is pci-dask_xxx/util (where ‘xxx’ in pci-dask_xxx: is the
version number) directory.

[dask_util in Linux]

The dask_util main screen is shown as following. If any PCIS-
DASK driver has been configured, it will be shown on the
Configured Driver list.

6 •• PCIS-DASK Utilities

To configure one of the PCIS-DASK drivers, type the number
corresponding to the Card Type and a Driver Configuration
screen appears.

In this screen, users can input the number of cards and buffer
size for continuous operation. To be platform-independent, the
buffer size is set by the memory-page. The PAGE_SIZE in Intel
platform is four kilo-byte. The “Memory Pages” of AI, AO, DI, DO
represent the number of pages of contiguous Initially Allocated
memory for continuous analog input, analog output, digital input
and digital output respectively. Device driver will allocate these
sizes of memory from the memory management module.
After the device configuration of the driver you select is finished,
type “Y” to confirm the input data and return to the dask_conf
main screen. The driver you just configured will be shown on the
configured driver list as the following figure:

PCIS-DASK Utilities •• 7

To modify the configuration, including the number of cards and
the buffer size, you just select the driver and assign the settings
again. Similarly, if the number of cards is set to zero, the
configuration for the selected driver will be removed.

When the configuration is finished, the configuration information
of the devices will be saved into pci-dask_xxx/drivers/
pcidask.conf.
The content of "pcidask.conf" is similar to the following:

8 •• PCIS-DASK Utilities

3.2 PCIS-DASK Module Installation Script
Because of the PCI-bus architecture, the PCI devices can be
detected automatically. All the user has to do is inserting the
device modules and making the nodes for the devices.

A list of commands are needed, such as “insmod p9111”, “grep
‘p9111’ /proc/devices”, “mknod /dev/PCI9111W0 c 254 0” and
“mknod /dev/PCI9111W1 c 254 1”.

You can do these manually, or use the installation script we
provide. The installation script is located in pci-dask_xxx/drivers.

By the configuration file, pcidask.conf , the installation script
inserts the device modules configured before and the memory
management module if required. Then the script makes device
nodes according to the number of cards. To make installation,
execute the script as follows:

 <InstallDir>/pci-dask_xxx/drivers/dask_inst.pl

By default, the installation script will read the configuration file in
the current directory. However, you could assign work directory
for PCIS-DASK/X to installation script from the command
argument. For example, if the pci-dask/x had been installed in
/usr/local/pdask, you could install the driver with the following
command:
 dask_inst.pl /usr/local/pdask

The installation script will read the related configuration file by its
argument and insert the modules needed by the configured
devices. This may be useful if the installation needs to be
executed by init after system starts up.

For example, if you install the PCIS-DASK/X in the /usr/pdask
directory and the modules are needed to be inserted by system
automatically. You could add the following command in
/etc/inittab, then the init process will insert the modules
automatically.

PCIS-DASK Utilities •• 9

ad:2345:wait:/usr/pdask/drivers/dask_inst.pl /usr/pdask "Insert
ADLink modules"

Because the current modules are designed based on Uni-
Processor kernel, these modules cannot work fine in SMP kernel.
The installation script will check the kernel version through the
/proc/sys/kernel/version file. For SMP kernel, the version-
checking procedure will display the additional error/warning
messages and stop the installation.

3.3 PCIS-DASK Un-installation Script
The dask_remove.pl is written to remove PCIS-DASK installed in
linux. The default location of this script is pci-dask_xxx/util
directory.

To remove PCIS-DASK for linux, execute the un-installation
script as follows:

 <InstallDir>/pci-dask_xxx/util/dask_remove.pl

Then the script will remove the device nodes made in /dev and
the library copied into /usr/lib .

10 •• PCIS-DASK Utilities

3.4 PCIS-DASK Data File Converter utility (DAQCvt)
The data files, generated by the PCIS-DASK functions
performing continuous data acquisition followed by storing the
data to disk, is written in binary format. Since a binary file can’t
be read by the normal text editor and can’t be used to analyze
the accessed data by Excel, PCIS-DASK provides a convenient
tool DAQCvt to convert the binary file to the file format read
easily. The default location of this utility is <InstallDir>\util
directory. Excuting DAQCvt with the “--help” argument, the
DAQCvt shows the help information as the following figure:

[Option for data format conversion]
DAQCvt provides three options for data format conversion.

-st : Scaled data to text file
The data in hexadecimal format is scaled to engineering
unit (voltage, ample, …etc) according to the card type,
data width and data range and then written to disk in text
file format. This type is available for the data accessed
from continuous AI operation only.

-sb : Scaled data to binary file (float)
The data in hexadecimal is scaled to engineering unit

PCIS-DASK Utilities •• 11

(voltage, ample, …etc) according to the card type, data
width and data range and then written to disk in binary
file format. This type is available for the data accessed
from continuous AI operation only.

-bt : Binary codes to text file
The data in hexadecimal format or converted to a
decimal value is written to disk in text file format. If the
original data includes channel information, the raw value
will be handled to get the real data value. This type is
available for the data accessed form continuous AI and
DI operations.

The default option for data format conversion is –st.

[Option for separator in text file]
The data separator in converted text file is selectable among
space, Tab and comma according to the option for separator.
-sep0 : add space as separator
-sep1 : add Tab as separator
-sep2 : add comma as separator
The default option for data format conversion is -sep0.

[Option for Title/Head in text file]

If you want to ignore title/head which includes the card type
information at the beginning of file, add the –nohead option.

After adding input filename, output filename and the options in
command line, DAQCvt will perform the file conversion and save
the data into the output file.The example of data conversion with
Scaled data to text file option is shown as the following figure.

12 •• PCIS-DASK Overview

4

PCIS-DASK Overview
This chapter describes the classes of functions in PCIS-DASK
and briefly describes each function.

PCIS-DASK functions are grouped to the following classes:
• General Configuration Function Group

• Analog Input Function Group
 - Analog Input Configuration functions
 - One-Shot Analog Input functions
 - Continuous Analog Input functions
 - Asynchronous Analog Input Monitoring functions
• Analog Output Function Group

• Digital Input Function Group
 - Digital Input Configuration functions
 - One-Shot Digital Input functions
 - Continuous Digital Input functions
 - Asynchronous Digital Input Monitoring functions
• Digital Output Function Group
 - Digital Output Configuration functions
 - One-Shot Digital Output functions
 - Continuous Digital Output functions
 - Asynchronous Digital Output Monitoring functions
• Timer/Counter Function Group

• DIO Function Group
 - Digital Input/Output Configuration function
 - Dual-Interrupt System Setting function

PCIS-DASK Overview •• 13

4.1 General Configuration Function Group
Use these functions to initializes and configures data acquisition
card.

Register_Card Initializes the hardware and software
states of a NuDAQ PCI-bus data
acquisition card. Register_Card must be
called before any other DASK library
functions can be called for that card.

Release_Card Tells DASK library that this registered card
is not used currently and can be released.
This would make room for new card to
register.

4.2 Actual Sampling Rate Function Group
GetActualRate Returns the actual sampling rate the

device will perform for the defined
sampling rate value.

4.3 Analog Input Function Group

4.3.1 Analog Input Configuration Functions

AI_9111_Config Informs PCIS-DASK library of the
trigger source and trigger mode
selected for the analog input operation
of PCI9111. You must call this function
before calling function to perform
continuous analog input operation of
PCI9111.

AI_9112_Config Informs PCIS-DASK library of the
trigger source selected for the analog
input operation of PCI9112. You must
call this function before calling function

14 •• PCIS-DASK Overview

to perform continuous analog input
operation of PCI9112.

AI_9113_Config Informs PCIS-DASK library of the
trigger source selected for the analog
input operation of PCI9113. You must
call this function before calling function
to perform continuous analog input
operation of PCI9113.

AI_9114_Config Informs PCIS-DASK library of the
trigger source selected for the analog
input operation of PCI9114. You must
call this function before calling function
to perform continuous analog input
operation of PCI9114.

AI_9116_Config Informs PCIS-DASK library of the
trigger source, trigger mode, input
mode, and conversion mode selected
for the analog input operation of
PCI9116. You must call this function
before calling function to perform
continuous analog input operation of
PCI9116.

AI_9118_Config Informs PCIS-DASK library of the
trigger source, trigger mode, input
mode, and conversion mode selected
for the analog input operation of
PCI9118. You must call this function
before calling function to perform
continuous analog input operation of
PCI9118.

AI_9812_Config Informs PCIS-DASK library of the
trigger source, trigger mode, and
trigger properties selected for the
analog input operation of PCI9812.
You must call this function before

PCIS-DASK Overview •• 15

calling function to perform continuous
analog input operation of PCI9812.

AI_InitialMemoryAllocated
Gets the actual size of analog input
memory that is available in the device
driver.

4.3.2 One-Shot Analog Input Functions

AI_ReadChannel Performs a software triggered A/D
conversion (analog input) on an analog
input channel and returns the value
converted (unscaled).

AI_VreadChannel Performs a software triggered A/D
conversion (analog input) on an analog
input channel and returns the value
scaled to a voltage in units of volts.

AI_VoltScale Converts the result from an
AI_ReadChannel call to the actual input
voltage.

4.3.3 Continuous Analog Input Functions

AI_ContReadChannel Performs continuous A/D
conversions on the specified
analog input channel at a rate
as close to the rate you
specified.

AI_ContScanChannels Performs continuous A/D
conversions on the specified
continuous analog input
channels at a rate as close to
the rate you specified. This
function is only available for
those cards that support auto-
scan functionality.

16 •• PCIS-DASK Overview

AI_ContReadMultiChannels Performs continuous A/D
conversions on the specified
analog input channels at a rate
as close to the rate you
specified. This function is only
available for those cards that
support auto-scan functionality.

AI_ContReadChannelToFile Performs continuous A/D
conversions on the specified
analog input channel at a rate
as close to the rate you
specified and saves the
acquired data in a disk file.

AI_ContScanChannelsToFile Performs continuous A/D
conversions on the specified
continuous analog input
channels at a rate as close to
the rate you specified and
saves the acquired data in a
disk file. This function is only
available for those cards that
support auto-scan functionality.

AI_ContReadMultiChannelsToFile
Performs continuous A/D
conversions on the specified
analog input channels at a rate
as close to the rate you
specified and saves the
acquired data in a disk file.
This function is only available
for those cards that support
auto-scan functionality.

AI_ContVScale Converts the values of an array
of acquired data from an
continuous A/D conversion call
to the actual input voltages.

PCIS-DASK Overview •• 17

AI_ContStatus Checks the current status of
the continuous analog input
operation.

4.3.4 Asynchronous Analog Input Monitoring Functions

AI_AsyncCheck Checks the current status of
the asynchronous analog
input operation.

AI_AsyncClear Stops the asynchronous
analog input operation.

AI_AsyncDblBufferMode Enables or Disables double
buffer data acquisition mode.

AI_AsyncDblBufferHalfReady Checks whether the next half
buffer of data in circular buffer
is ready for transfer during an
asynchronous double-
buffered analog input
operation.

AI_AsyncDblBufferTransfer Copies half of the data of
circular buffer to user buffer.
You can execute this function
repeatedly to return
sequential half buffers of the
data.

4.4 Analog Output Function Group

4.4.1 Analog output Configuration Functions

AO_6208A_Config Informs PCIS-DASK library of the
current range selected for the analog
output operation of PCI6208A. You
must call this function before calling

18 •• PCIS-DASK Overview

function to perform current output
operation.

AO_6308A_Config Informs PCIS-DASK library of the
current range selected for the analog
output operation of PCI6308A. You
must call this function before calling
function to perform current output
operation.

AO_6308V_Config Informs PCIS-DASK library of the
polarity (unipolar or bipolar) that the
output channel is configured for the
analog output and the reference
voltage value selected for the analog
output channel(s) of PCI6308V. You
must call this function before calling
function to perform current output
operation.

AO_9111_Config Informs PCIS-DASK library of the
polarity (unipolar or bipolar) that the
output channel is configured for the
analog output of PCI9111. You must
call this function before calling function
to perform voltage output operation.

AO_9112_Config Informs PCIS-DASK library of the
reference voltage value selected for
the analog output channel(s) of
PCI9112. You must call this function
before calling function to perform
voltage output operation.

4.4.2 One-Shot Analog Output Functions

AO_WriteChannel Writes a binary value to the specified
analog output channel.

PCIS-DASK Overview •• 19

AO_VWriteChannel Accepts a voltage value, scales it to
the proper binary value and writes a
binary value to the specified analog
output channel.

AO_VoltScale Scales a voltage to a binary value.

4.5 Digital Input Function Group

4.5.1 Digital Input Configuration Functions

DI_7200_Config Informs PCIS-DASK library of the
trigger source and trigger properties
selected for the digital input operation
of PCI7200. You must call this
function before calling function to
perform continuous digital input
operation of PCI7200.

DI_7300A_Config/ DI_7300B_Config
Informs PCIS-DASK library of the
trigger source and trigger properties
selected for the digital input operation
of PCI7300A Rev.A or PCI7300A
Rev.B. You must call this function
before calling function to perform
continuous digital input operation of
PCI7300A Rev.A or PCI7300A Rev.B.

DI_InitialMemoryAllocated
Gets the actual size of digital input
DMA memory that is available in the
device driver.

4.5.2 One-Shot Digital Input Functions

DI_ReadLine Reads the digital logic state of the
specified digital line in the specified
port.

20 •• PCIS-DASK Overview

DI_ReadPort Reads digital data from the specified
digital input port.

4.5.3 Continuous Digital Input Functions

DI_ContReadPort Performs continuous digital
input on the specified digital
input port at a rate as close to
the rate you specified.

DI_ContReadPortToFile Performs continuous digital
input on the specified digital
input port at a rate as close to
the rate you specified and
saves the acquired data in a
disk file.

DI_ContStatus Checks the current status of
the continuous digital input
operation.

DI_ContMultiBufferSetup Set up the buffer for multi-
buffered continuous digital
input.

DI_ContMultiBufferStart Starts the multi-buffered
continuous digital input on the
specified digital input port at a
rate as close to the rate you
specified.

4.5.4 Asynchronous Digital Input Monitoring Functions

DI_AsyncCheck Checks the current status of
the asynchronous digital input
operation.

DI_AsyncClear Stops the asynchronous
digital input operation.

DI_AsyncDblBufferMode Enables or Disables double
buffer data acquisition mode.

PCIS-DASK Overview •• 21

DI_AsyncDblBufferHalfReady Checks whether the next half
buffer of data in circular buffer
is ready for transfer during an
asynchronous double-
buffered digital input
operation.

DI_AsyncDblBufferTransfer Copies half of the data of
circular buffer to user buffer.
You can execute this function
repeatedly to return
sequential half buffers of the
data.

DI_AsyncMultiBufferNextReady
 Checks whether the next

buffer of data in circular buffer
is ready for transfer during an
asynchronous multi-buffered
digital input operation.

4.6 Digital Output Function Group

4.6.1 Digital Output Configuration Functions

DO_7200_Config Informs PCIS-DASK library of the
trigger source and trigger properties
selected for the digital input operation
of PCI7200. You must call this
function before calling function to
perform continuous digital output
operation of PCI7200.

DO_7300A_Config/ DO_7300B_Config
Informs PCIS-DASK library of the
trigger source and trigger properties
selected for the digital input operation
of PCI7300A Rev.A or PCI7300A
Rev.B. You must call this function
before calling function to perform

22 •• PCIS-DASK Overview

continuous digital output operation of
PCI7300A Rev.A or PCI7300A Rev.B.

EDO_9111_Config Informs PCIS-DASK library of the
mode of EDO channels of PCI9111.

DO_InitialMemoryAllocated
Gets the actual size of digital output
DMA memory that is available in the
device driver.

4.6.2 One-Shot Digital Output Functions

DO_WriteLine Sets the specified digital output line in the
specified digital output port to the specified
state. This function is only available for
those cards that support digital output
read-back functionality.

DO_WritePort Writes digital data to the specified digital
output port.

DO_ReadLine Reads the specified digital output line in
the specified digital output port.

DO_ReadPort Reads digital data from the specified
digital output port.

DO_Write ExtTrigLine
Sets the digital output trigger line to the
specified state. This function is only
available for PCI-7200.

4.6.3 Continuous Digital Output Functions

DO_ContWritePort Performs continuous digital output on the
specified digital output port at a rate as
close to the rate you specified.

DO_ContStatus Checks the current status of the
continuous digital output operation.

PCIS-DASK Overview •• 23

DO_PGStart Performs pattern generation operation.

DO_PGStop Stops pattern generation operation.

4.6.4 Asynchronous Digital Output Monitoring Functions

DO_AsyncCheck Checks the current status of the
asynchronous digital output operation.

DO_AsyncClear Stops the asynchronous digital output
operation.

4.7 Timer/Counter Function Group

4.7.1 Timer/Counter Functions

CTR_Setup Configures the selected
counter to operate in the
specified mode.

CTR_Read Reads the current contents of
the selected counter.

CTR_Clear Sets the output of the selected
counter to the specified state.

CTR_8554_ClkSrc_Config Sets the counter clock source.

CTR_8554_CK1_Config Sets the source of CK1.

CTR_8554_Debounce_Config Sets the debounce clock.

4.7.2 The General-Purpose Timer/Counter Functions

GCTR_Setup Controls the general-purpose
counter to operate in the
specified mode.

24 •• PCIS-DASK Overview

GCTR_Read Reads the current counter
value of the general-purpose
counter.

GCTR_ClearClears the general-purpose timer/counter control register
and counter register.

4.8 DIO Function Group

4.8.1 Digital Input/Output Configuration Functions

DIO_PortConfig This function is only used by the
Digital I/O cards whose I/O port can
be set as input port or output port.
This function informs PCIS-DASK
library of the port direction selected
for the digital input/output operation.
You must call this function before
calling functions to perform digital
input/output operation.

4.8.2 Dual-Interrupt System Setting Functions

DIO_SetDualInterrupt Controls two interrupt sources of Dual
Interrupt system.

DIO_SetCOSInterrupt Sets the ports used for COS interrupt
detection.

PCIS-DASK Application Hints •• 25

 5

PCIS-DASK Application Hints
This chapter provides the programming schemes showing the
function flow of that PCIS-DASK performs analog I/O and digital
I/O.

The figure below shows the basic building blocks of a PCIS-
DASK application. However, except using Register_Card at the
beginning and Release_Card at the end, depending on the
specific devices and applications you have, the PCIS-DASK
functions comprising each building block vary.

The programming schemes for analog input/output and digital
input/output are described individually in the following sections.

 Regiser_Card

Configuration Function

AI/AO/DI//DO
Operation Function

 Release_Card

26 •• PCIS-DASK Application Hints

5.1 Analog Input Programming Hints
PCIS-DASK provides two kinds of analog input operation
nonbuffered single-point analog input readings and buffered
continuous analog input operation.

The nonbuffered single-point AI uses software polling method
to read data from the device. The programming scheme for this
kind of AI operation is described in section 5.1.1.

The buffered continuous analog input uses interrupt transfer
or DMA transfer method to transfer data from device to user’s
buffer. The maximum number of count in one transfer depends
on the size of initially allocated memory for analog input in the
driver. The driver allocates the memory at the moment the device
module is inserted. We recommend the applications use
AI_InitialMemoryAllocated function to get the size of initially
allocated memory before performing continuous AI operation.

The buffered continuous analog input includes:

- synchronous continuous AI

- non-triggered non-double-buffered asynchronous continuous AI

- non-triggered double-buffered asynchronous continuous AI

- triggered non-double-buffered asynchronous continuous AI

- triggered double-buffered asynchronous continuous AI

They are described in section 5.1.2 to 5.1.6 section respectively.
About the special consideration and performance issues for the
buffered continuous analog input, please refer to the Continuous
Data Transfer in PCIS-DASK chapter for the details.

PCIS-DASK Application Hints •• 27

5.1.1 One-Shot Analog input programming Scheme

This section described the function flow typical of nonbuffered
single-point analog input readings. While performing one-shot AI
operation, most of the cards (except PCI-9118 series cards) don’t
need to include AI configuration step at the beginning of your
application.

[Example Code Fragment]

card = Register_Card(PCI_9118, card_number);
…

// only PCI-9118 is need
AI_9118_Config(card,Input_Signal|Input_Mode,0,0,0);
AI_ReadChannel(card, channelNo, range, &analog_input[i]);

…
Release_Card(card);

AI_9118_Config
(only needed by PCI-
9118 series cards)

Voltage reading ? YesNo

AI_VReadChannelAI_ReadChannel

Another reading ?Yes

No

28 •• PCIS-DASK Application Hints

5.1.2 Synchronous Continuous Analog input programming
Scheme

This section described the function flow typical of synchronous
analog input operation. While performing continuous AI
operation, the AI configuration function has to be called at the
beginning of your application. In addition, for synchronous AI, the
SyncMode argument in continuous AI functions has to be set as
SYNCH_OP.

 [Example Code Fragment]

card = Register_Card(PCI_9111DG, card_number);
…

AI_xxxx_Config
(xxxx means the card
type, e.g.
AI_9111_Config)

Yes

Scale to voltage? No

AI_ContVScale

Sample multiple
continuous chans?

NoYes

AI_ContReadChannel/
AI_ContReadChannelToFile

AI_ContScanChannels/
AI_ContScanChannelsToFile

With SyncMode

=SYNCH_OP

With SyncMode

=SYNCH_OP

PCIS-DASK Application Hints •• 29

AI_9111_Config(card,TRIG_INT_PACER, 0, 1024);
AI_ContScanChannels (card, channel, range, ai_buf, data_size,
(F64)sample_rate, SYNCH_OP); or
AI_ContReadChannel(card, channel, range, ai_buf, data_size,
(F64)sample_rate, SYNCH_OP)

…
Release_Card(card);

30 •• PCIS-DASK Application Hints

5.1.3 Non-Trigger Non-double-buffered Asynchronous
Continuous Analog input programming Scheme

This section described the function flow typical of non-trigger,
non-double-buffered asynchronous analog input operation. While
performing continuous AI operation, the AI configuration function
has to be called at the beginning of your application. In addition,
for asynchronous AI, the SyncMode argument in continuous AI
functions has to be set as ASYNCH_OP.

AI_xxxx_Config
(xxxx means the card type,
e.g. AI_9111_Config)

No

AI_AsyncCheck

Operation complete?

Yes

AI_AsyncClear

Sample multiple
continuous chans?

NoYes

AI_ContReadChannel /
AI_ContReadChannel ToFile

AI_ContScanChannels/
AI_ContScanChannelsToFile

With SyncMode
=ASYNCH_OP

With SyncMode
=ASYNCH_OP

[Example Code Fragment]

PCIS-DASK Application Hints •• 31

card = Register_Card(PCI_9111DG, card_number);
…

AI_9111_Config(card,TRIG_INT_PACER, 0, 1024);
AI_AsyncDblBufferMode (card, 0); //non-double-buffered AI
AI_ContScanChannels (card, channel, range, ai_buf, data_size,
(F64)sample_rate, ASYNCH_OP); or
AI_ContReadChannel(card, channel, range, ai_buf, data_size,
(F64)sample_rate, ASYNCH_OP)
do {
 AI_AsyncCheck(card, &bStopped, &count);

 } while (!bStopped);

AI_AsyncClear(card, &count);
 …

Release_Card(card);

32 •• PCIS-DASK Application Hints

5.1.4 Non-Trigger Double-buffered Asynchronous
Continuous Analog input programming Scheme

This section described the function flow typical of non-trigger,
double-buffered asynchronous analog input operation. While
performing continuous AI operation, the AI configuration function
has to be called at the beginning of your application. For
asynchronous AI, The SyncMode argument in continuous AI
functions has to be set as ASYNCH_OP. In addition, double-
buffered AI operation is enabled by setting Enable argument of
AI_AsyncDblBufferMode function to 1. To learn more about
double buffer mode, please refer to section 5.2 Double-Buffered
AI/DI Operation for the details.

PCIS-DASK Application Hints •• 33

AI_xxxx_Config
(xxxx means the card type,
e.g. AI_9111_Config)

AI_AsyncDblBufferHalfReady

Next half buffer
ready for transfer?

Yes

No

AI_AsyncDblBufferTransfer

Want to stop
the operation?

AI_AsyncClear

Yes

No

With Enable=TRUE

AI_AsyncDblBufferMode

AI_ContReadChannel /
AI_ContReadChannel ToFile

AI_ContScanChannels/
AI_ContScanChannelsToFile

Sample multiple
continuous chans?

NoYes

With SyncMode
=ASYNCH_OP

With SyncMode
=ASYNCH_OP

34 •• PCIS-DASK Application Hints

[Example Code Fragment]

card = Register_Card(PCI_9111DG, card_number);
…

AI_9111_Config(card,TRIG_INT_PACER, 0, 1024);
AI_AsyncDblBufferMode (card, 1); // Double-buffered AI
AI_ContScanChannels (card, channel, range, ai_buf, data_size,
(F64)sample_rate, ASYNCH_OP); or
AI_ContReadChannel(card, channel, range, ai_buf, data_size,
(F64)sample_rate, ASYNCH_OP)
do {
 do {
 AI_AsyncDblBufferHalfReady(card, &HalfReady, &fstop);
 } while (!HalfReady);

 AI_AsyncDblBufferTransfer(card, ai_buf);
 …
} while (!clear_op);

AI_AsyncClear(card, &count);
…
Release_Card(card);

PCIS-DASK Application Hints •• 35

5.1.5 Trigger Mode Non-double-buffered Asynchronous
Continuous Analog input programming Scheme

This section described the function flow typical of trigger mode
double-buffered asynchronous analog input operation. A trigger
is an event that occurs based on a specified set of conditions. An
interrupt mode or DMA-mode Analog input operation can use a
trigger to determinate when acquisition stop. The trigger mode
data acquisition programming is almost the same as the non-
trigger mode asynchronous analog input programming. Using
PCIS-DASK to perform trigger mode data acquisition, the
SyncMode of continuous AI should be set as ASYNCH_OP.

36 •• PCIS-DASK Application Hints

AI_xxxx_Config / With Trigger mode enebled
(xxxx means the card type, e.g.
AI_9111_Config)

AI_AsyncCheck

Operation complete?

Yes

AI_AsyncClear

AI_AsyncDblBufferMode

AI_ContReadChannel /
AI_ContReadChannel ToFile

AI_ContScanChannels/
AI_ContScanChannelsToFile

Sample multiple
continuous
chans?

NoYes

With SyncMode
=ASYNCH_OP

With SyncMode
=ASYNCH_OP

With Enable=TRUE

No

[Example Code Fragment]

card = Register_Card(PCI_9111DG, card_number);
…

AI_9111_Config(card,TRIG_INT_PACER, 0, postCount)
AI_AsyncDblBufferMode (card, 0); //non-double-buffered AI
AI_ContScanChannels (card, channel, range, ai_buf, data_size,
(F64)sample_rate, ASYNCH_OP); or

PCIS-DASK Application Hints •• 37

AI_ContReadChannel(card, channel, range, ai_buf, data_size,
(F64)sample_rate, ASYNCH_OP)
do {
 AI_AsyncCheck(card, &bStopped, &count);

 } while (!bStopped);

AI_AsyncClear(card, &count);
 …

Release_Card(card);

38 •• PCIS-DASK Application Hints

5.1.6 Trigger Mode Double-buffered Asynchronous
Continuous Analog input programming Scheme

This section described the function flow typical of trigger mode
double-buffered asynchronous analog input operation. A trigger
is an event that occurs based on a specified set of conditions. An
interrupt mode or DMA-mode Analog input operation can use a
trigger to determinate when acquisition stop. The trigger mode
data acquisition programming is almost the same as the non-
trigger mode asynchronous analog input programming. Using
PCIS-DASK to perform trigger mode data acquisition, the
SyncMode of continuous AI should be set as ASYNCH_OP. In
addition, double-buffered AI operation is enabled by setting
Enable argument of AI_AsyncDblBufferMode function to 1. To
learn more about double buffer mode, please refer to section 5.2
Double-Buffered AI/DI Operation for the details.

PCIS-DASK Application Hints •• 39

AI_xxxx_Config / With Trigger mode enebled
(xxxx means the card type, e.g.
AI_9111_Config)

AI_AsyncDblBufferMode

With Enable=TRUE

With SyncMode
=ASYNCH_OP

AI_AsyncDblBufferHalfReady

Next Buffer ready
for transfer? /
Operation Complete?

Yes

No

AI_AsyncDblBufferTransfer

Want to stop
the operation ?

AI_AsyncClear

Yes

No

AI_ContReadChannel /
AI_ContReadChannel ToFile

AI_ContScanChannels/
AI_ContScanChannelsToFile

Sample multiple
continuous chans?

NoYes
With SyncMode
=ASYNCH_OP

[Example Code Fragment]

40 •• PCIS-DASK Application Hints

card = Register_Card(PCI_9111,DG card_number);
…

AI_9111_Config(card, TRIG_INT_PACER, 0, postCount)
AI_AsyncDblBufferMode (card, 1); Double-buffered AI
AI_ContScanChannels (card, channel, range, ai_buf, data_size,
(F64)sample_rate, ASYNCH_OP); or
AI_ContReadChannel(card, channel, range, ai_buf, data_size,
(F64)sample_rate, ASYNCH_OP)
do {
 do {
 AI_AsyncDblBufferHalfReady(card, &HalfReady, &fstop);
 } while (!HalfReady && !fstop);

 AI_AsyncDblBufferTransfer(card, ai_buf);
 …
} while (!clear_op && !fstop);

AI_AsyncClear(card, &count);
AI_AsyncDblBufferTransfer(card, ai_buf);
…
Release_Card(card);

PCIS-DASK Application Hints •• 41

5.2 Analog Output Programming Hints
This section described the function flow typical of single-point
analog output conversion. While performing the following
operation, the AO configuration function has to be called at the
beginning of your application:

a. Use PCI-6208A, PCI-6308A to perform current output
b. Use the analog output function that can convert a voltage

value to a binary value and then write it to device, the AO
configuration function has to be called at the beginning of your
application.

[Example Code Fragment]

card = Register_Card(PCI_6208A, card_number);
…

AO_6208A_Config(card, P6208_CURRENT_4_20MA);
AO_WriteChannel(card, chan, out_value);

…
Release_Card(card);

AO_6208A_Config /
AO_9111_Config

Output voltage? YesNo

AO_VWriteChannelAO_WriteChannel

Another outputting?Yes

No

42 •• PCIS-DASK Application Hints

5.3 Digital Input Programming Hints
PCIS-DASK provides two kinds of digital input operation
nonbuffered single-point digital input operation and buffered
continuous digital input operation.
The nonbuffered single-point DI uses software polling method
to read data from the device. The programming scheme for this
kind of DI operation is described in section 5.3.1.
The buffered continuous DI uses DMA transfer method to
transfer data from device to user’s buffer. The maximum number
of count in one transfer depends on the size you configure for the
device. At the loading time, the driver allocates the memory from
our private memory module witch manager the reserved memory
space.
The buffered continuous analog input includes synchronous
continuous DI, non-double-buffered asynchronous continuous DI
and double-buffered asynchronous continuous DI. They are
described in section 5.3.2 to 5.3.4 section respectively. About the
special consideration and performance issues for the buffered
continuous digital input, please refer to the Continuous Data
Transfer in PCIS-DASK chapter for the details.

For some data acquisition card that supports scatter-gather
technology(PCI-7300A_RevA, PCI-7300A_Rev.B), the DMA
operation can use the memory space allocated in user’s process.
This mechanism improves the performance by eliminating the
time of memory duplication.
By the design of DMA, DMA master controller transfers data only
by the physical memory. If some pages are swapped out by
MMU, the DMA controller will transfer the wrong data because
the data indicated by the virtual address is not resident in system
memory space. To ensure the virtual memory is resident in
system memory space, the process must lock the memory space
before starting DMA operation.
The relative functions of memory locking/unlocking are included
in the PCIS-DASK library. The memory space allocated in your
process will be locked before passing the virtual address to the
device drivers, and be unlocked after the data acquisition is
completed. However, Linux does not give the permission of
mlock/munlock to everyone. Only the processes with root

PCIS-DASK Application Hints •• 43

privilege can lock/unlock the memory. If you have no right
permission, a –EPERM error will be returned

44 •• PCIS-DASK Application Hints

5.3.1 One-Shot Digital input programming Scheme

This section described the function flow typical of non-buffered
single-point digital input readings. While performing one-shot DI
operation, the devices whose I/O port can be set as input or out
put port (PCI-7248 and PCI7296) need to include port
configuration function at the beginning of your application.

[Example Code Fragment]

card = Register_Card(PCI_7248, card_number);
//port configured
DIO_PortConfig(card ,Channel_P1A, INPUT_PORT);
DIO_PortConfig(card, Channel_P1B, INPUT_PORT);
DIO_PortConfig(card, Channel_P1CL, INPUT_PORT);
DIO_PortConfig(card, Channel_P1CH, INPUT_PORT);
//DI operation
DI_ReadPort(card, Channel_P1A, &inputA);
…
Release_Card(card);

DIO_PortConfig
(Only needed by PCI-
7248, PCI-7249 and PCI-
7296 cards)

Input data form Line?
YesNo

DI_ReadLineDI_ReadPort

Another reading ?Yes

No

Port configured as
input port

PCIS-DASK Application Hints •• 45

5.3.2 Synchronous Continuous Digital input programming
Scheme

This section described the function flow typical of synchronous
digital input operation. While performing continuous DI operation,
the DI configuration function has to be called at the beginning of
your application. In addition, for synchronous DI, the SyncMode
argument in continuous DI functions has to be set as
SYNCH_OP.

DI_xxxx_Config
(xxxx means the card type,
e.g. DI_7200_Config)

DI_ContReadPort /
DI_ContReadPort ToFile

With SyncMode=SYNCH_OP

[Example Code Fragment]

card = Register_Card(PCI_7200, card_number);
…

DI_7200_Config(card,TRIG_INT_PACER, DI_NOWAITING,
DI_TRIG_FALLING, IREQ_FALLING);
DI_AsyncDblBufferMode (card, 0); //non-double-buffered mode
DI_ContReadPort(card, 0, pMem, data_size, (F64)sample_rate,
SYNCH_OP)

…
Release_Card(card);

46 •• PCIS-DASK Application Hints

5.3.3 Non-double-buffered Asynchronous Continuous
Digital input programming Scheme

This section described the function flow typical of non-double-
buffered asynchronous digital input operation. While performing
continuous DI operation, the DI configuration function has to be
called at the beginning of your application. In addition, for
asynchronous DI operation, the SyncMode argument in
continuous DI functions has to be set as ASYNCH_OP.

DI_xxxx_Config
(xxxx means the card type,
e.g. DI_7200_Config)

DI_ContReadPort /
DI_ContReadPort ToFile

DI_AsyncCheck

Operation complete?

Yes

No

With SyncMode=ASYNCH_OP

DI_AsyncClear

[Example Code Fragment]

card = Register_Card(PCI_7200, card_number);
…

PCIS-DASK Application Hints •• 47

DI_7200_Config(card,TRIG_INT_PACER, DI_NOWAITING,
DI_TRIG_FALLING, IREQ_FALLING);
DI_AsyncDblBufferMode (card, 0); // non-double-buffered mode
DI_ContReadPort(card, 0, pMem, data_size, (F64)sample_rate,
ASYNCH_OP)
do {
 DI_AsyncCheck(card, &bStopped, &count);

 } while (!bStopped);

DI_AsyncClear(card, &count);
 …

Release_Card(card);

48 •• PCIS-DASK Application Hints

 5.3.4 Double-buffered Asynchronous Continuous Digital
input programming Scheme

This section described the function flow typical of double-buffered
asynchronous digital input operation. While performing
continuous DI operation, the DI configuration function has to be
called at the beginning of your application. For asynchronous DI,
the SyncMode argument in continuous DI functions has to be set
as ASYNCH_OP. In addition, double-buffered AI operation is
enabled by setting Enable argument of DI_AsyncDblBufferMode
function to 1. To learn more about double buffer mode, please
refer to the Double-Buffered AI/DI operation section for the
details.

PCIS-DASK Application Hints •• 49

DI_xxxx_Config
(xxxx means the card type,
e.g. DI_7200_Config)

DI_ContReadPort/
DI_ContReadPortToFile

DI_AsyncDblBufferHalfReady

Next half buffer
ready for transfer?

Yes

No

With SyncMode=ASYNCH_OP

DIAsyncDblBufferMode

DI_AsyncDblBufferTransfer

Want to stop
the operation?

DI_AsyncClear

Yes

No

With Enable=TRUE

[Example Code Fragment]

card = Register_Card(PCI_7200, card_number);

50 •• PCIS-DASK Application Hints

…
DI_7200_Config(card,TRIG_INT_PACER, DI_NOWAITING,
DI_TRIG_FALLING, IREQ_FALLING);
DI_AsyncDblBufferMode (card, 1); // Double-buffered mode
DI_ContReadPort(card, 0, pMem, data_size, (F64)sample_rate,
ASYNCH_OP)
do {
 do {
 DI_AsyncDblBufferHalfReady(card, &HalfReady);
 } while (!HalfReady);

 DI_AsyncDblBufferTransfer(card, pMem);

} while (!clear_op);

DI_AsyncClear(card, &count);
 …

Release_Card(card);

PCIS-DASK Application Hints •• 51

5.4 Digital Output Programming Hints
PCIS-DASK provides three kinds of digital output operation
nonbuffered single-point digital output operation, buffered
continuous digital output operation and pattern generation.
The nonbuffered single-point DO uses software polling method
to write data to the device. The programming scheme for this
kind of DO operation is described in section 5.4.1.
The buffered continuous DO uses DMA transfer method to
transfer data from user’s buffer to device. The maximum number
of count in one transfer depends on the size you configure for the
device. At the loading time, the driver allocates the memory from
our private memory module witch manager the reserved memory
space.
The buffered continuous digital output includes synchronous
continuous DO and asynchronous continuous DO. They are
described in section 5.4.2 and 5.4.3 section individually. About
the special consideration and performance issues for the
buffered continuous digital output, please refer to the Continuous
Data Transfer in PCIS-DASK chapter for the details.
The Pattern Generation DO outputs digital data pattern
repeatedly at a predetermined rate. The programming scheme
for this kind of DO operation is described in section 5.4.4.

For some data acquisition card that supports scatter-gather
technology(PCI-7300A_RevA, PCI-7300A_Rev.B), the DMA
operation can use the memory space allocated in user’s process.
This mechanism improves the performance by eliminating the
time of memory duplication.
By the design of DMA, DMA master controller transfers data only
by the physical memory. If some pages are swapped out by
MMU, the DMA controller will transfer the wrong data because
the data indicated by the virtual address is not resident in system
memory space. To ensure the virtual memory is resident in
system memory space, the process must lock the memory space
before starting DMA operation.
The relative functions of memory locking/unlocking are included
in the PCIS-DASK library. The memory space allocated in your
process will be locked before passing the virtual address to the
device drivers, and be unlocked after the data acquisition is

52 •• PCIS-DASK Application Hints

completed. However, Linux does not give the permission of
mlock/munlock to everyone. Only the processes with root
privilege can lock/unlock the memory. If you have no right
permission, a –EPERM error will be returned

PCIS-DASK Application Hints •• 53

5.4.1 One-Shot Digital output programming Scheme

This section described the function flow typical of non-buffered
single-point digital output operation. While performing one-shot
DO operation, the cards whose I/O port can be set as input or out
put port (PCI-7248, PCI7249 and PCI-7296) need to include port
configuration function at the beginning of your application.

[Example Code Fragment]

card = Register_Card(PCI_7248, card_number);
//port configured
DIO_PortConfig(card ,Channel_P1A, OUTPUT_PORT);
DIO_PortConfig(card, Channel_P1B, OUTPUT_PORT);
DIO_PortConfig(card, Channel_P1CL, OUTPUT_PORT);
DIO_PortConfig(card, Channel_P1CH, OUTPUT_PORT);
//DO operation
DO_WritePort(card, Channel_P1A, outA_value);
…
Release_Card(card);

DIO_PortConfig
(only needed by PCI-7248,
PCI-7249 and PCI-7296

Output data to Line? YesNo

DO_WriteLineDO_WritePort

Another outputting ?Yes

No

Port configured as
output port

54 •• PCIS-DASK Application Hints

5.4.2 Synchronous Continuous Digital output
programming Scheme

This section described the function flow typical of synchronous
digital output operation. While performing continuous DO
operation, the DO configuration function has to be called at the
beginning of your application. In addition, for synchronous DO
operation, the SyncMode argument in continuous DO functions
for synchronous mode has to be set as SYNCH_OP.

DO_xxxx_Config
(xxxx means the card type,
e.g. DO_7200_Config)

DO_Cont WritePort

With SyncMode=SYNCH_OP

[Example Code Fragment]

card = Register_Card(PCI_7200, card_number);
…

DO_7200_Config(card, TRIG_INT_PACER, OREQ_DISABLE,
OTRIG_LOW);
DO_AsyncDblBufferMode (card, 0); //non-double-buffered mode
DO_ContWritePort(card, 0, DoBuf, count, 1, (F64)sample_rate,
SYNCH_OP);

…
Release_Card(card);

PCIS-DASK Application Hints •• 55

5.4.3 Asynchronous Continuous Digital output
programming Scheme

This section described the function flow typical of asynchronous
digital output operation. While performing continuous DO
operation, the DO configuration function has to be called at the
beginning of your application. In addition, for asynchronous DO
operation, the SyncMode argument in continuous DO functions
for asynchronous mode has to be set as ASYNCH_OP.

DO_xxxx_Config
(xxxx means the card type,
e.g. DO_7200_Config)

DO_ContWritePort

 DO_AsyncCheck

Operation complete?

Yes

No

With SyncMode=ASYNCH_OP

DO_AsyncClear

[Example Code Fragment]

card = Register_Card(PCI_7200, card_number);
…

DO_7200_Config(card, TRIG_INT_PACER, OREQ_DISABLE,
OTRIG_LOW);

56 •• PCIS-DASK Application Hints

DO_ContWritePort(card, 0, DoBuf, count, 1, (F64)sample_rate,
ASYNCH_OP);
do {
 DO_AsyncCheck(card, &bStopped, &count);

 } while (!bStopped);

DO_AsyncClear(card, &count);
 …

Release_Card(card);

PCIS-DASK Application Hints •• 57

5.4.4 Pattern Generation Digital output programming
Scheme

This section described the function flow typical of pattern
generation for digital output. While performing pattern generation
of DO, the DO configuration function has to be called at the
beginning of your application.

DO_xxxx_Config
(xxxx means the card type,
e.g. DO_7300B_Config)

DO_PGStart

Complete pattern
generation

[Example Code Fragment]

card = Register_Card(PCI_7300A_RevB, card_number);
…

DO_7300B_Config (card, 16, TRIG_INT_PACER,
P7300_WAIT_NO, P7300_TERM_ON, 0, 0x40004000);
//start pattern generation
DO_PGStart (card, out_buf, 10000, 5000000);

…
//stop pattern generation
DO_PGStop (card);
Release_Card(card);

DO_PGStop

58 •• PCIS-DASK Application Hints

5.5 Interrupt Asynchronous Notification
Programming Hints
PCIS-DASK/X provides the asynchronous signaling method to
perform interrupt occurrence notification for NuDAQ DIO cards
that have dual interrupt system.
The interrupt notification is through user-defined signal handler.
When a user-specified interrupt event occurs, the user-defined
signal handler is called to carry out the appropriate task.
The time delay between the interrupt event and notification is
highly variable and depends largely on how loaded your system
is. In addition, if a callback function is called, succeeding events
will not be handled until your callback has returned. If the time
interval between interrupt events is smaller than the time taken
for callback function processing, the succeeding signals are put
in a definite size of signal queue. It might induce unexpected
result that the amount of the queued signals exceeds the signal
number limit (1024). The user application design has to avoid
such situation.

[Example Code Fragment]

card = Register_Card(PCI_7230, card_number);

//INT notification is through sig1_handler
DIO_SetDualInterrupt(card, INT1_EXT_SIGNAL,
INT2_EXT_SIGNAL, sig1_handler, sig2_handler);

…
//disable interrupt
DIO_SetDualInterrupt(card, INT1_EXT_SIGNAL,
INT2_EXT_SIGNAL, INT1_DISABLE, INT1_DISABLE);

//signal handler for INT1
void sig1_handler(int signo)
{
 …
}

PCIS-DASK Application Hints •• 59

//signal handler for INT2
void sig2_handler(int signo)
{
 …
}

60 •• Continuous Data Transfer in PCIS-DASK

6

Continuous Data Transfer in
PCIS-DASK
The continuous data transfer functions in PCIS-DASK input or
output blocks of data to or from a plug-in NuDAQ PCI device. For
input operations, PCIS-DASK must transfer the incoming data to
a buffer in the computer memory. For output operations, PCIS-
DASK must transfer outgoing data from a buffer in the computer
memory to the NuDAQ PCI device. This chapter describes the
mechanism and techniques that PCIS-DASK uses for continuous
data transfer and the considerations for selecting the continuous
data transfer mode (sync. or async., double buffered or not,
triggered or non-triggered mode).

6.1 Continuous Data Transfer Mechanism
PCIS-DASK uses two mechanisms to perform the continuous
data transfer. The first one, interrupt transfer, transfers data
through the interrupt mechanism. The second one is to use the
DMA controller chip to perform a hardware transfer of the data.
Whether PCIS-DASK uses interrupt or DMA depends on the
device. If the device support both of these two mechanisms,
PCIS-DASK decides on the data transfer method that typically
takes maximum advantage of available resources. For example,
PCI-9112 supports interrupt and DMA for data transfers. The
DMA data transfer is typically faster, so PCIS-DASK takes
advantage of it. PCI-9111 supports FIFO Half-Full and EOC
interrupt transfer modes. PCIS-DASK takes FIFO Half-Full
interrupt transfer mode, because the CPU is interrupted do data

Continuous Data Transfer in PCIS-DASK •• 61

transfer only when the FIFO becomes half-full.

6.2 Double-Buffered AI/DI Operation
PCIS-DASK uses double-buffering techniques in its driver
software for continuous input of large amounts of data.

6.2.1 Double Buffer Mode Principle

The data buffer for double-buffered continuous input operation is
a circular buffer logically. It is logically divided into two equal
halves. The double-buffered input begins when device starts
writing data into the first half of the circular buffer (Figure 6-1a).
After device begins writing to the second half of the circular
buffer, you can copy the data from the first half into the transfer
buffer (user buffer) (Figure 6-1b). You now can process the data
in the transfer buffer according to application needs. After the
board has filled the second half of the circular buffer, the board
returns to the first half buffer and overwrites the old data. You
now can copy the second half of the circular buffer to the transfer
buffer (Figure 6-1c). The data in the transfer buffer is again
available for process. The process can be repeated endlessly to
provide a continuous stream of data to your application (Figure 6-
1d).

62 •• Continuous Data Transfer in PCIS-DASK

Incoming DMA
input data Circular Buffer

Transfer Buffer

a b

c d

> > >

> > >> >

Empty Buffer Untransferred Data Transferred Data

> >

Figure 7-1

The PCIS-DASK double buffer mode functions were designed
according to the principle described above. If you use
AI_AsyncDblBufferMode/DI_AsyncDblBufferMode to
enable double buffer mode, the following continuous AI/DI
function will perform double-buffered continuous AI/DI. You can
call
AI_AsyncDblBufferHalfReady/DI_AsyncDblBufferHalf
Ready to check if data in the circular buffer is half full and ready
for copying to the transfer buffer. Then you can call
AI_AsyncDblBufferTransfer/DI_AsyncDblBufferTrans
fer to copy data from the ready half buffer to the transfer buffer.

Single-Buffered Versus Double-Buffered Data Transfer

Single-buffered data transfer is the most common method for
continuous data transfer. In single-buffered input operations, a
fixed number of samples are acquired at a specified rate and
transferred into user’s buffer. After the user’s buffer stores the

Continuous Data Transfer in PCIS-DASK •• 63

data, the application can analyze, display, or store the data to the
hard disk for later processing. Single-buffered operations are
relatively simple to implement and can usually take advantage of
the full hardware speed of the device. However, the major
disadvantage of single-buffered operation is that the maximum
amount of data that can be input at any one time is limited to the
amount of initially allocated memory allocated in driver and the
amount of free memory available in the computer.
In double-buffered operations, as mentioned above, the data
buffer is configured as a circular buffer. Therefore, unlike single-
buffered operations, double-buffered operations reuse the same
buffer and are able to input or output an infinite number of data
points without requiring an infinite amount of memory. However,
there exits the undesired result of data overwritten for double-
buffered data transfer. The device might overwrite data before
PCIS-DASK has copied it to the transfer buffer. Another data
overwritten problem occurs when an input device overwrites data
that PCIS-DASK is simultaneously copying to the transfer buffer.
Therefore, the data must be processed by the application at least
as fast as the rate at which the device is reading data. For most
of the applications, this requirement depends on the speed and
efficiency of the computer system and programming language.
Hence, double buffering might not be practical for high-speed
input applications.

64 •• Continuous Data Transfer in PCIS-DASK

6.3 Trigger Mode Data Acquisition for Analog Input
A trigger is an event that occurs based on a specified set of
conditions. An interrupt mode or DMA-mode analog input
operation can use a trigger to determinate when acquisition stops
or starts.
PCIS-DASK also provides two buffering methods for trigger
mode AI – double-buffering and single-buffering. However, the
single buffer in trigger mode AI is different from that in non-trigger
mode AI. It is a circular buffer just like that in double buffer mode
but the data stored in the buffer can be processed only when the
continuous data reading is completed. The buffer will be reused
until the data acquisition operation is completed. Therefore, to
protect the data you want to get from being overwritten, the size
of the single buffer should be the same as or larger than the
amount of data you wish to access. For example, if you want to
perform single-buffered middle-trigger AI with PCI-9111, and the
amount of data you want to collect before and after the trigger
event are 1000 and 3000 respectively, the size of single buffer is
at least 4000 in order to get all the data you want to collect.
Since the data are handled after the input operation is completed,
the desired data loss problem hardly occurs.
Since PCIS-DASK uses asynchronous AI to perform trigger
mode data acquisition, the SyncMode of continuous AI should be
set as ASYNCH_OP.

