
ACLS-DLL2 ver. 5.0

Software Driver for
Windows 3.11, Win-95/98, Win-NT/2000

Function Reference Manual

@Copyright 1996~2000 ADLink Technology Inc.
All Rights Reserved.

Manual Rev. 5.00: 12, May 2000

The information in this document is subject to change without prior notice in
order to improve reliability, design and function and does not represent a
commitment on the part of the manufacturer.
In no event will the manufacturer be liable for direct, indirect, special,
incidental, or consequential damages arising out of the use or inability to use
the product or documentation, even if advised of the possibility of such
damages.
This document contains proprietary information protected by copyright. All
rights are reserved. No part of this manual may be reproduced by any
mechanical, electronic, or other means in any form without prior written
permission of the manufacturer.

Trademarks
IBM PC is a registered trademark of International Business Machines
Corporation. Intel is a registered trademark of Intel Corporation. Other product
names mentioned herein are used for identification purposes only and may be
trademarks and/or registered trademarks of their respective companies.

Contents •• i

CONTENTS

CONTENTS...i

How to Use This Guide..ix

1 Using ACLS-DLL2 Functions11

1.11.1 The fundamentals of Building WindowsThe fundamentals of Building Windows
Application with ACLS-DLL2Application with ACLS-DLL2 ..11

1.1.1 Creating An Application Using Visual Basic and ACLS-
DLL2...11

1.1.2 Creating An Application Using Microsoft Visual C/C++
and ACLS-DLL2...14

1.21.2 ACLS-DLL2 Functions OverviewACLS-DLL2 Functions Overview15

1.31.3 Functions Naming ConventionFunctions Naming Convention ...15

1.41.4 Data TypesData Types ...16

2 Function Reference...17

2.12.1 6126 Software DLL Driver6126 Software DLL Driver ..17

2.1.1 W_6126_Initial..17
2.1.2 W_6126_Switch_Card_No..19
2.1.3 W_6126_DI..20
2.1.4 W_6126_DI _Channel..21
2.1.5 W_6126_DO..22
2.1.6 W_6126_DA..23
2.1.7 W_6126_INTOP_Start...24

ii •• Contents

2.1.8 W_6126_INTOP_Status ..24
2.1.9 W_6126_INTOP_Stop ...25
2.1.10 W_6126_INT_Enable..26
2.1.11 W_6126_INT_Disable...27
2.1.12 Set_INT_Op 27
2.1.13 Reset_INT_Op...30

2.22.2 6128 Software DLL Driver6128 Software DLL Driver ..31

2.2.1 W_6128_Initial..31
2.2.2 W_6128_Switch_Card_No..32
2.2.3 W_6128_DA..33

2.32.3 8111 Software DLL Driver8111 Software DLL Driver ..34

2.3.1 W_8111_Initial..34
2.3.2 W_8111_Switch_Card_No..35
2.3.3 W_8111_DI..36
2.3.4 W_8111_DI _Channel..37
2.3.5 W_8111_DO..38
2.3.6 W_8111_DA..39
2.3.7 W_8111_AD_Set_Channel...39
2.3.8 W_8111_AD_Set_Gain ...40
2.3.9 W_8111_AD_Set_Mode..41
2.3.10 W_8111_AD_Soft_Trig...42
2.3.11 W_8111_AD_Aquire...43
2.3.12 W_8111_CLR_IRQ..44
2.3.13 W_8111_AD_INT_Start..45
2.3.14 W_8111_AD_INT_Status ...47
2.3.15 W_8111_AD_INT_Stop ..47
2.3.16 W_8111_AD_ContINT_Start ...48
2.3.17 W_8111_AD_SCANINT_Start ..50
2.3.18 W_8111_AD_DblBufferHalfReady51
2.3.19 W_8111_AD_DblBufferTransfer..52
2.3.20 W_8111_AD_Timer...53

Contents •• iii

2.42.4 8112 Software DLL Driver8112 Software DLL Driver ..55

2.4.1 W_8112_Initial..55
2.4.2 W_8112_Switch_Card_No..56
2.4.3 W_8112_DI..57
2.4.4 W_8112_DI _Channel..58
2.4.5 W_8112_DO..59
2.4.6 W_8112_DA..60
2.4.7 W_8112_AD_Input_Mode..62
2.4.8 W_8112_AD_Set_Channel...63
2.4.9 W_8112_AD_Set_Range...64
2.4.10 W_8112_AD_Set_Mode..66
2.4.11 W_8112_AD_Soft_Trig...67
2.4.12 W_8112_AD_Aquire...68
2.4.13 W_8112_CLR_IRQ..69
2.4.14 W_8112_AD_DMA_Start...70
2.4.15 W_8112_AD_ContDMA_Start ..71
2.4.16 W_8112_AD_DMA_Status ..73
2.4.17 W_8112_AD_DMA_Stop ...74
2.4.18 W_8112_AD_INT_Start..75
2.4.19 W_8112_AD_INT_Status ...77
2.4.20 W_8112_AD_INT_Stop ..78
2.4.21 W_8112_AD_ContINT_Start ...79
2.4.22 W_8112_AD_SCANINT_Start ..81
2.4.23 W_8112_AD_DblBufferHalfReady82
2.4.24 W_8112_AD_DblBufferTransfer..83
2.4.25 W_8112_AD_Timer...83
2.4.26 W_8112_Timer_Start ...84
2.4.27 W_8112_Timer_Read ..85
2.4.28 W_8112_Timer_Stop ...86
2.4.29 W_8112_DMA_InitialMemoryAllocated...........................87

2.52.5 8112PG Software DLL Driver8112PG Software DLL Driver ...88

iv •• Contents

2.5.1 W_812_Initial..88
2.5.2 W_812_Switch_Card_No..89
2.5.3 W_812_DI..90
2.5.4 W_812_DI _Channel..91
2.5.5 W_812_DO ..92
2.5.6 W_812_DA ..93
2.5.7 W_812_AD_Set_Channel...94
2.5.8 W_812_AD_Set_Gain...94
2.5.9 W_812_AD_Set_Mode..96
2.5.10 W_812_AD_Soft_Trig...97
2.5.11 W_812_AD_Aquire..98
2.5.12 W_812_CLR_IRQ..99
2.5.13 W_812_AD_DMA_Start ...99
2.5.14 W_812_AD_ContDMA_Start ... 101
2.5.15 W_812_AD_DMA_Status.. 103
2.5.16 W_812_AD_DMA_Stop .. 104
2.5.17 W_812_AD_INT_Start ... 105
2.5.18 W_812_AD_INT_Status... 107
2.5.19 W_812_AD_INT_Stop ... 108
2.5.20 W_812_AD_ContINT_Start .. 109
2.5.21 W_812_AD_SCANINT_Start ... 111
2.5.22 W_812_AD_DblBufferHalfReady 112
2.5.23 W_812_AD_DblBufferTransfer.. 113
2.5.24 W_812_AD_Timer .. 114
2.5.25 W_812_Timer_Start .. 115
2.5.26 W_812_Timer_Read... 116
2.5.27 W_812_Timer_Stop .. 116
2.5.28 W_812_DMA_InitialMemoryAllocated.......................... 117

2.62.6 8113 / 8113A Software DLL Driver8113 / 8113A Software DLL Driver119

2.6.1 W_8113_Initial / W_8113A_ Initial................................. 119
2.6.2 W_8113_ActCard_Set / W_8113A_ActCard_Set 120

Contents •• v

2.6.3 W_8113_Channel_Select/Deselect/Clear/ChannelNo_Get
W_8113A_Channel_Select/Deselect/Clear/ChannelNo_G
et.. 121

2.6.4 W_8113_Gain_Select / W_8113A_Gain_Select............ 123
2.6.5 W_8113_AD_Aquire / W_8113A_AD_Aquire............. 125
2.6.6 W_8113_MAD_Aquire / W_8113A_MAD_Aquire..... 126
2.6.7 W_8113_Get_MAD_Data / W_8113A_Get_MAD_Data

127

2.72.7 8216 Software DLL Driver8216 Software DLL Driver ..128

2.7.1 W_8216_Initial... 128
2.7.2 W_8216_Switch_Card_No... 129
2.7.3 W_8216_DI... 130
2.7.4 W_8216_DI _Channel... 131
2.7.5 W_8216_DO... 132
2.7.6 W_8216_DA... 133
2.7.7 W_8216_AD_Input_Mode... 134
2.7.8 W_8216_AD_Set_Channel.. 134
2.7.9 W_8216_AD_Set_Range.. 135
2.7.10 W_8216_AD_Set_Mode... 136
2.7.11 W_8216_AD_Soft_Trig.. 137
2.7.12 W_8216_AD_Aquire.. 138
2.7.13 W_8216_CLR_IRQ... 139
2.7.14 W_8216_AD_DMA_Start.. 140
2.7.15 W_8216_AD_ContDMA_Start ... 142
2.7.16 W_8216_AD_DMA_Status ... 144
2.7.17 W_8216_AD_DMA_Stop .. 144
2.7.18 W_8216_AD_INT_Start... 146
2.7.19 W_8216_AD_INT_Status .. 148
2.7.20 W_8216_AD_INT_Stop ... 149
2.7.21 W_8216_AD_ContINT_Start .. 150
2.7.22 W_8216_AD_SCANINT_Start ... 152
2.7.23 W_8216_AD_DblBufferHalfReady 153

vi •• Contents

2.7.24 W_8216_AD_DblBufferTransfer..................................... 154
2.7.25 W_8216_AD_Timer.. 155
2.7.26 W_8216_Timer_Start .. 156
2.7.27 W_8216_Timer_Read ... 156
2.7.28 W_8216_Timer_Stop .. 157
2.7.29 W_8216_DMA_InitialMemoryAllocated........................ 158

2.82.8 8316/12 Software DLL Driver8316/12 Software DLL Driver ..160

2.8.1 W_8316_Initial... 160
2.8.2 W_8316_Switch_Card_No... 161
2.8.3 W_8316_DI... 162
2.7.4 W_8316_DI _Channel... 163
2.8.5 W_8316_DO... 164
2.8.6 W_8316_DA_Set_Mode... 164
2.8.7 W_8316_DA... 166
2.8.8 W_8316_AD_Set_Mode... 167
2.8.9 W_8316_AD_Set_Channel.. 168
2.8.10 W_8316_AD_Set_Range.. 169
2.8.11 W_8316_AD_Set_Autoscan.. 170
2.8.12 W_8316_AD_Set_FIFO ... 171
2.8.13 W_8316_AD_Set_INT_Source... 172
2.8.14 W_8316_AD_Soft_Trig.. 173
2.8.15 W_8316_Read_FIFO.. 174
2.8.16 W_8316_AD_Aquire.. 176
2.8.17 W_8316_CLR_IRQ... 177
2.8.18 W_8316_AD_DMA_Start.. 178
2.8.19 W_8316_AD_ContDMA_Start ... 180
2.8.20 W_8316_AD_DMA_Status ... 182
2.8.21 W_8316_AD_DMA_Stop .. 183
2.8.22 W_8316_AD_INT_Start... 184
2.8.23 W_8316_AD_INT_Status .. 187
2.8.24 W_8316_AD_INT_Stop ... 187

Contents •• vii

2.8.25 W_8316_AD_ContINT_Start .. 188
2.8.26 W_8316_AD_DblBufferHalfReady 191
2.8.27 W_8316_AD_DblBufferTransfer..................................... 192
2.8.28 W_8316_AD_Timer.. 192
2.8.29 W_8316_Timer_Start .. 193
2.8.30 W_8316_Timer_Read ... 194
2.8.31 W_8316_Timer_Stop .. 195
2.8.32 W_8316_DMA_InitialMemoryAllocated........................ 196

Appendix A Status Codes 197

How to Use This Guide •• ix

How to Use This Guide

This manual is designed to help you use the ACLS-DLL2
software driver for NuDAQ multi-function cards ACL-6126, ACL-
6128, ACL-8216, ACL-8316, ACL-8111, ACL-8113, ACL-8113A
and ACL-8112 series. The manual describes how to install and
use the library to meet your requirements and help you program
your own software application. It is divided into four chapters:

• Chapter 1, "Using ACLS-DLL2 Functions” gives the important
information about how to apply the function descriptions in
this manual to your programming language and environment.

• Chapter 2, " Function Description” gives the detailed
description of each function call ACL-DLL2 provided.

• Appendix A, “Status Code” lists the status codes returned by
ACLS-DLL2 functions, as well as their meaning.

Using ACLS-DLL2 Functions •• 11

1

Using ACLS-DLL2 Functions

ACLS-DLL2 is the Microsoft Windows drivers for NuDAQ ISA-
bus multi-function cards ACL-6126, ACL-6128, ACL-8111, ACL-
8113, ACL-8113A, ACL-8112DG/HG, ACL-8112PG, ACL-8216
and ACL-8316/12. They are high performance data acquisition
drivers for developing custom applications under Windows 3.1,
Windows 95/98, Win-NT 4.0 and Win-2000. These drivers are
DLLs (Dynamic-Link Library) for using under Windows. They
can work with any Windows programming language that allows
calls to a DLL, such as Microsoft C/C++, Microsoft Visual Basic.

1.1 The fundamentals of Building Windows
Application with ACLS-DLL2

1.1.1 Creating An Application Using Visual Basic and ACLS-DLL2

To create a data acquisition application using ACLS-DLL2 and
Visual Basic, follow these steps after entering Visual Basic:

step 1. Open the project in which you want to use ACLS-DLL2.
This can be a new or existing project

Open a new project by selecting the New Project command
from the File menu. If it is an existing project, open it by
selecting the Open Project command from the File menu.
Then the Open Project dialog box appears.

12 •• Using ACLS-Dll2 Fucntions

Changed directory to the place the project file located.
Double-click the project file name in the File Name list to load
the project.

step 2. Add file DLL2.BAS into the project if this file is not
included in the project. This file contains all the
procedure declarations and constants that you can use
to develop your data acquisition application.

From the File menu, select the Add File command. The Add
File window appears, displaying a list of files in the current
directory.

Using ACLS-DLL2 Functions •• 13

Select DLL2.BAS from the Files list by double clicking on it. If
you can't find this file in the list, make sure the list is
displaying files from the correct directory. By default,
DLL2.BAS is installed in C:\ACL-DLL2\INCLUDE.

step 3. Design the interface for the application.

To design the interface, you place the desired elements, such
as command button, list box, text box, etc., on the Visual
Basic form. These are standard controls from the Visual
Basic Toolbox. To place a control on a form, you just move
pointer to Toolbox, select the desired control and draw it on
the form. Or you can double-click the control icon in the
Toolbox to place it on the form.

step 4. Set properties for the controls.

To view the property list, click the desired control and then
choose the Properties command from the View menu or press

F4, or you can also click the Properties button on the
toolbar.

step 5. Write the event code.

14 •• Using ACLS-Dll2 Fucntions

The event code defines the action you want to perform when
an event occurs. To write the event code, double-click the
desired control or form to view the code module and then add
code you want. You can call the functions that declared in the
file DLL2.BAS to perform data acquisition operations.

step 6. Run your application.

To run the application, choose Start from the Run menu, or

click the Start icon on the toolbar (you can also press
F5).

step 7. Distribute your application.

Once you have finished a project, you can save the
application as an executable (.EXE) file by using the Make
EXE File command on the File menu. And once you have
saved your application as an executable file, you've ready to
distribute it. When you distribute your application, remember
also to include the ACLS-DLL2’s DLL and driver files. These
files should be copied to their appropriate directory as section
2.1.3 described.

1.1.2 Creating An Application Using Microsoft Visual C/C++ and
ACLS-DLL2

To create a data acquisition application using ACLS-DLL2 and
Microsoft Visual C/C++, follow these steps after entering Visual
C/C++:

step 1. Open the project in which you want to use ACLS-DLL2.
This can be a new or existing project

step 2. Include header file DLL2.H in the C/C++ source files that
call ACLS-DLL2 functions. DLL2.H contains all the
function declarations and constants that you can use to
develop your data acquisition application. Incorporate
the following statement in your code to include the
header file.

Using ACLS-DLL2 Functions •• 15

 #include “DLL2.H”

step 3. Build your application.

Setting the appropriate compile and link options, then build
your application by selecting the Build command from Build
menu (Visual C/C++ 4.0) or Project menu (Visual C/C++
1.52). Remember to link appropriate ACLS-DLL2’s import
libraries.

1.2 ACLS-DLL2 Functions Overview
Each NuDAQ multi-function card has its own DLL driver. How to
use these DLL to build your own application has been described
in section 1.1. The function calls in these DLLs use intuitive
names that reflect the operations they perform. For example,
W_8111_AD_Set_Channel sets the A/D reading channel.

The functionality of these function calls can be classified to the
following capabilities,

1. Initialization : setup the hardware base I/O address
2. A/D conversion : performs analog to digital conversion
3. D/A conversion : performs digital to analog conversion
4. Digital I/O : input or output digital signals
5. Timer/Counter : Timer/Counter operation

1.3 Functions Naming Convention
The functions of ACL-DLL2 use full-names to represent the real
meaning of the functions. The naming convention rules are:

W_{hardware_model}_{action_name}. e.g. W_8111_Initial ().

16 •• Using ACLS-Dll2 Fucntions

1.4 Data Types

We defined some data types in DLL2.H. These data types are
used by ACLS-DLL2 library. We suggest you to use these data
types in your application programs. The following table shows
the data type names and their ranges.

Type Name Description Range
U8 8-bit ASCII character 0 to 255
I16 16-bit signed integer -32768 to 32767
U16 16-bit unsigned

integer
0 to 65535

I32 32-bit signed integer -2147483648 to
2147483647

U32 32-bit unsigned
integer

0 to 4294967295

F32 32-bit single-precision
floating-point

-3.402823E38 to
3.402823E38

F64 64-bit double-
precision floating-
point

-1.797683134862315E308
to
1.797683134862315E309

Boolean Boolean logic value TRUE, FALSE

Function Reference•• 17

2

Function Reference

This chapter contains a detailed explanation of each ACLS-DLL1
function. The functions are arranged by Hardware products.

2.1 6126 Software DLL Driver
In this section, the ACL-6126's (ACL-726‘s) software DLL drivers
are described. The function names of Windows 3.11, Window
95/98, Windows NT/2000 versions are the same. So, users do
not need to learn the difference between them. The application’s
portability between these three systems can be very high.

Note : All functions of the ACL-6126 can be applied to the ACL-726
directly. That is, users can use the 6126.DLL for both ACL-6126
and ACL-726 data acquisition cards.

2.1.1 W_6126_Initial

@ Description

An ACL-6126 card is initialized according to the card number,
its corresponding base address, and IRQ level. If the ACL-6126
card will not perform interrupt operation, the argument irq is

18 •• Function Reference

useless. Every NuDAQ ACL-6126 card has to be initialized by
this function before calling other functions.

@ Syntax

Microsoft C/C++

int W_6126_Initial(int card_number, int base_address, int
irq)

Visual Basic

Windows 3.11 Version:

W_6126_Initial (ByVal card_number As Integer, ByVal
base_address As Integer, ByVal Irq As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_6126_Initial (ByVal card_number As Long, ByVal
base_address As Long, ByVal Irq As Long) As Long

@ Argument

card_number : The card number to be initialized. If all the
ACL-6126 cards only perform software
polling, eight cards can be initialized and the
valid card numbers are CARD_1, CARD_2,
…, CARD_8. However, if the ACL-6126 cards
are operated in Windows NT system and will
perform interrupt operation, only two cards
can be initialized and the card number must
be CARD_1 or CARD_2.

base_address : the I/O port base address of the card.
Irq : the IRQ channel number used to transfer D/A

data for this card. If the ACL-6126 card will
not perform interrupt operation, this argument
is useless.

Function Reference•• 19

Note: Since Windows NT arrange resources to devices at system
startup time, under Windows NT environment, parameter irq is
useless. You can not change IRQ level at run time. Please use
DLL2 Driver Registry Utility to set IRQ level before running
application. Please refer to section 1.6 “ACLS-DLL2 Device
Driver Handling in Win-NT/2000”.

@ Return Code

ERR_NoError
ERR_InvalidBoardNumber
ERR_BaseAddressError

2.1.2 W_6126_Switch_Card_No

@ Description

This function is used on multi-cards system. After the ACL-
6126 cards are initialized by W_6126_Initial function, you can
use this function to select which one you want to operate.

@ Syntax

Microsoft C/C++

int W_6126_Switch_Card_No (int card_number)

Visual Basic

Windows 3.11 Version:

W_6126_Switch_Card_No (ByVal card_number As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_6126_Switch_Card_No (ByVal card_number As Long)
As Long

@ Argument

20 •• Function Reference

card_number :The card number of the card that is set to be
active. If all the ACL-6126 cards only perform
software polling, the valid card numbers are
CARD_1, CARD_2, …, CARD_8. However, if
the ACL-6126 cards are operated in Windows
NT system and perform interrupt operation, the
card number must be CARD_1 or CARD_2.

@ Return Code

ERR_NoError
ERR_InvalidBoardNumber

2.1.3 W_6126_DI

@ Description

This function is used to read data from digital input port. There
are 16-bit digital inputs on the ACL-6126. The bit 0 to bit 7 are
defined as low byte and the bit 8 to bit 15 are defined as high
byte.

@ Syntax

Microsoft C/C++

int W_6126_DI (int port_number, unsigned char *di_data)

Visual Basic

Windows 3.11 Version:

W_6126_DI (ByVal port_number As Integer, di_data As
Byte) As Integer

Win-95/98, Win-NT/2000 Version:

W_6126_DI (ByVal port_number As Long, di_data As
Byte) As Long

@ Argument

port_number : To indicate which port is read, DI_LOW_BYTE

Function Reference•• 21

or DI_HIGH_BYTE.
DI_LOW_BYTE : bit 0 ~ bit 7,
DI_HIGH_BYTE : bit8 ~ bit15

di_data : return value from digital port.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_PortError

2.1.4 W_6126_DI _Channel

@ Description

This function is used to read data from digital input channels
(bit). There are 16 digital input channels on the ACL-6126.
When performs this function, the digital input port is read and
the value of the corresponding channel is returned.

* channel means each bit of digital input ports.

@ Syntax

Microsoft C/C++

int W_6126_DI_Channel (int di_ch_no, unsigned int
*di_data)

Visual Basic

Windows 3.11 Version:

W_6126_DI_Channel (ByVal di_ch_no As Integer, di_data
As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_6126_DI_Channel (ByVal di_ch_no As Long, di_data
As Long) As Long

@ Argument

22 •• Function Reference

di_ch_no : the DI channel number, the value has to be set
between 0 and 15.

di_data : return value, either 0 or 1.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidDIChannel

2.1.5 W_6126_DO

@ Description

This function is used to write data to digital output ports. There
are 16 digital outputs on the ACL-6126, they are divided to two
ports, DO_LOW_BYTE and DO_HIGH_BYTE. The channel 0 to
channel 7 are defined as DO_LOW_BYTE port and the channel
8 to channel 15 are defined as DO_HIGH_BYTE port.

@ Syntax

Microsoft C/C++

int W_6126_DO (int port_number, unsigned char do_data)

Visual Basic

Windows 3.11 Version:

W_6126_DO (ByVal port_number As Integer, ByVal
do_data As Byte) As Integer

Win-95/98, Win-NT/2000 Version:

W_6126_DO (ByVal port_number As Long, ByVal do_data
As Byte) As Long

@ Argument

port_number : DO_LOW_BYTE or DO_HIGH_BYTE
do_data : the value written to digital output port

@ Return Code

Function Reference•• 23

ERR_NoError
ERR_BoardNoInit
ERR_PortError

2.1.6 W_6126_DA

@ Description

This function is used to write data to D/A converters. There are
six Digital-to-Analog conversion channels on the ACL-6126.
The resolution of each channel is 12-bit, i.e. the range is from 0
to 4095.

@ Syntax

Microsoft C/C++

int W_6126_DA (int da_ch_no, unsigned int da_data)

Visual Basic

Windows 3.11 Version:

W_6126_DA (ByVal da_ch_no As Integer, ByVal da_data
As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_6126_DA (ByVal da_ch_no As Long, ByVal da_data
Long) As Long

@ Argument

da_ch_no : the DA channel number, the valid data is :

0 D/A CH1
1 D/A CH2
2 D/A CH3
3 D/A CH4
4 D/A CH5
5 D/A CH6

da_data : D/A converted value, if the value is greater than
4095, the higher 4-bits are negligent.

24 •• Function Reference

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidDAChannel

2.1.7 W_6126_INTOP_Start

@ Description

The function will perform D/A conversion N times with interrupt
data transfer by using external trigger. It will take place in the
background which will not be stopped until the Nth conversion
has been completed or your program execute
W_6126_INTOP_Stop() function to stop the process. After
calling this function, it is necessary to check the status of the
operation by using the function W_6126_INTOP_Status(). The
function performs D/A conversion on the D/A channels that
Set_INT_Op() specified.

@ Syntax

Microsoft C/C++
int W_6126_INTOP_Start (int count)

Visual Basic

Windows 3.11 Version:

W_6126_INT_Start (ByVal count As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_6126_INTOP_Start (ByVal count As Long) As Long

@ Argument

count : the numbers of D/A conversion

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.1.8 W_6126_INTOP_Status

Function Reference•• 25

@ Description

Since the W_6126_INTOP_Start() function is executed in
background, you can issue the function
W_6126_INTOP_Status() to check the status of interrupt
operation.

@ Syntax

Microsoft C/C++

int W_6126_INTOP_Status (int *status , int *count)

Visual Basic

Windows 3.11 Version:

W_6126_INT_Status (status As Integer, count As Integer)
As Integer

Win-95/98, Win-NT/2000 Version:

W_6126_INTOP_Status (status As Long, count As Long)
As Long

@ Argument

status : status of the INT data transfer
DA_INT_STOP : D/A INT is completed
DA_INT_RUN : D/A INT is not completed

count : current conversion count number.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_ADINTNotSet

2.1.9 W_6126_INTOP_Stop

@ Description

This function is used to stop the interrupt data transfer function.
The number of the data transferred is stored in count.

26 •• Function Reference

@ Syntax

Microsoft C/C++

int W_6126_INTOP_Stop (int *count)

Visual Basic

Windows 3.11 Version:

W_6126_INT_Stop (count As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_6126_INTOP_Stop (count As Long) As Long

@ Argument

count : the number of D/A data which has been
transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_ADINTNotSet

2.1.10 W_6126_INT_Enable

@ Description
This function is only available in Window 95 driver, Windows
NT and Windows 2000 driver. The function is used to initialize
and start up the interrupt operation. After calling this function,
every time an interrupt request signal is generated, a software
event is signaled. So that in your program, your can use wait
operation to wait for the event. When the event is signaled, it
means an interrupt is generated. Please refer to the sample
program 6126int.c.

Note : The W_6126_INT_Enable and W_6126_INT_Disable is a
pair of functions. That is, as the W_6126_INT_Enable is
called, the W_6126_INT_Disable has to follow up behind it.
Otherwise, the interrupt signal generation will not stop.

Function Reference•• 27

@ Syntax
Microsoft C/C++ (Win-95/98, Win-NT & Win-2000)

int W_6126_INT_Enable(HANDLE *hIntEvent)

Visual Basic (Win-95/98, Win-NT & Win-2000)
W_6126_INT_Enable (hIntEvent As Long) As Long

@ Argument
hIntEvent : the handle of the event for interrupt signals.

@ Return Code
ERR_NoError

 ERR_INTNotSet

2.1.11 W_6126_INT_Disable

@ Description
This function is only available in Window 95 driver, Windows
NT and Win-2000 driver. This function is used to stop the
interrupt signal generation.

Note : This function has to be called after the W_6126_INT_Enable is
called.

@ Syntax
Microsoft C/C++ (Win-95/98, Win-NT & Win-2000)

int W_6126_INT_Disable()

Visual Basic (Win-95/98, Win-NT & Win-2000)
 W_6126_INT_Disable () As Long

@ Argument
None

@ Return Code
ERR_NoError
ERR_BoardNoInit
ERR_INTNotSet

2.1.12 Set_INT_Op

28 •• Function Reference

@ Description

This function is used to specify the D/A channel and data buffer
that will be used for D/A conversion with interrupt data transfer.
There are six D/A channels on ACL-6126. Each channel can
be set for D/A interrupt data transfer. You can set as many
channels as you need. For example, you may set D/A
channels 0, 2, and 5 for D/A interrupt data transfer by calling
Set_INT_Op() three times --- Set_INT_Op(0, buf1),
Set_INT_Op(2, buf2), Set_INT_Op(5, buf3). (buf1, buf2, and
buf3 are data buffer address) After setting the D/A channel and
its buffer, you can call W_6126_INTOP_Start() to start D/A
interrupt data transfer.

@ Syntax

Microsoft C/C++

int Set_INT_Op (int da_ch, unsigned int *da_buffer)

Visual Basic

Windows 3.11 Version:

Set_INT_Op (ByVal da_ch As Integer, da_buffer As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

Set_INT_Op (ByVal da_ch As Long, da_buffer As Long)
As Long

@ Argument

da_ch : the D/A channel number, the value has to be
set between 0 and 5.

da_buffer : the start address of the memory buffer to store the
D/A data, the buffer size must be large than the
number of D/A conversion.

Note : While calling this function in Visual Basic program, please pass
the first element of the buffer array as the da_buffer argument.
For example, if the name of array is buf, pass buf(0) as argument
if index number of buf begins from 0.

Function Reference•• 29

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidDAChannel

@ Example

Microsoft C/C++

int da_buf0[1024], da_buf1[1024], da_buf2[1024];
.
.
.

Set_INT_Op(0, da_buf0);
Set_INT_Op(1, da_buf1);
Set_INT_Op(4, da_buf2);
W_6126_INTOP_Start(1000); /* 1000 times of D/A interrupt

data transfer on channel 0, 1,
and 4 */

.

.

.

30 •• Function Reference

2.1.13 Reset_INT_Op

@ Description

This function is used to reset the D/A channel and buffer
settings of D/A interrupt data transfer. (set by calling
Set_INT_Op())

@ Syntax

Microsoft C/C++

int Reset_INT_Op()

Visual Basic

Windows 3.11 Version:

Reset_INT_Op() As Integer
Win-95/98, Win-NT/2000 Version:

Reset_INT_Op() As Long

@ Return Code

ERR_NoError

Function Reference•• 31

2.2 6128 Software DLL Driver
In this section, the ACL-6128's (ACL-728‘s) software DLL drivers
are described. The function names of Windows 3.11, Window
95/98, Windows NT/2000 versions are the same. So, users do
not need to learn the difference between them. The application’s
portability between these three systems can be very high.

Note : All functions of the ACL-6128 can be applied to the ACL-728
directly. That is, users can use the 6128.DLL for both ACL-6128
and ACL-728 DAS cards.

2.2.1 W_6128_Initial

@ Description

An ACL-6128 card is initialized according to the card number
and its corresponding base address. Every ACL-6128 card has
to be initialized by this function before calling other functions.

@ Syntax

Microsoft C/C++

int W_6128_Initial (int card_number, int base_address)

Visual Basic

Windows 3.11 Version:

W_6128_Initial (ByVal card_number As Integer, ByVal
base_address As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_6128_Initial (ByVal card_number As Long, ByVal
base_address As Long) As Long

@ Argument

card_number : The card number to be initialized, totally 8
cards can be initialized, the card number must
be within the range of 0 and 7.

32 •• Function Reference

base_address : the I/O port base address of the card.

@ Return Code

ERR_NoError
ERR_InvalidBoardNumber
ERR_BaseAddressError

2.2.2 W_6128_Switch_Card_No

@ Description

This function is used on multi-cards system. After the ACL-
6128 cards are initialized by W_6128_Initial() function, you can
use this function to select which one you want to operate.

@ Syntax

Microsoft C/C++

int W_6128_Switch_Card_No (int card_number)

Visual Basic

Windows 3.11 Version:

W_6128_Switch_Card_No (ByVal card_number As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_6128_Switch_Card_No (ByVal card_number As Long)
As Long

@ Argument

card_number :The card number of the card that is set to be
active. The valid value ranges within 0 and 7.

@ Return Code

ERR_NoError
ERR_InvalidBoardNumber

Function Reference•• 33

2.2.3 W_6128_DA

@ Description

This function is used to write data to D/A converters. There are
two Digital-to-Analog conversion channels on the ACL-6128.
The resolution of each channel is 12-bit, i.e. the range is from 0
to 4095.

@ Syntax

Microsoft C/C++

int W_6128_DA (int da_ch_no, unsigned int da_data)

Visual Basic

Windows 3.11 Version:

W_6128_DA (ByVal da_ch_no As Integer, ByVal da_data
As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_6128_DA (ByVal da_ch_no As Long, ByVal da_data As
Long) As Long

@ Argument

da_ch_no : the D/A channel number, , the valid data is

0 Channel CH1
1 Channel CH2

da_data : D/A converted value, if the value is greater
than 4095, the higher 4-bits are negligent.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidDAChannel

34 •• Function Reference

2.3 8111 Software DLL Driver
In this section, the ACL-8111's (ACL-711B‘s) software DLL
drivers are described. The function names of Windows 3.11,
Window 95/98, Windows NT/2000 versions are the same. So,
users do not need to learn the difference between them. The
application’s portability between these three systems can be very
high.

Note : All functions of the ACL-8111 can be applied to the ACL-711B
directly. That is, users can use the 8111.DLL for both ACL-8111
and ACL-711B data acquisition cards.

2.3.1 W_8111_Initial

@ Description

An ACL-8111 card is initialized according to the card number
and its corresponding base address. Each ACL-8111 multi-
function data acquisition card has to be initialized by this
function before calling other functions.

@ Syntax

Microsoft C/C++

int W_8111_Initial (int card_number, int base_address)

Visual Basic

Windows 3.11 Version:

W_8111_Initial (ByVal card_number As Integer, ByVal
base_address As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8111_Initial (ByVal card_number As Long, ByVal
base_address As Long) As Long

Function Reference•• 35

@ Argument

card_number : The card number to be initialized. If all the
ACL-8111 cards only perform software
polling, eight cards can be initialized and the
valid card numbers are CARD_1, CARD_2,
…, CARD_8. However, if the ACL-8111 cards
are operated in Windows NT system and will
perform interrupt operation, only two cards
can be initialized and the card number must
be CARD_1 or CARD_2.

base_address : the I/O port base address of the card.

@ Return Code

ERR_NoError
ERR_InvalidBoardNumber
ERR_BaseAddressError

2.3.2 W_8111_Switch_Card_No

@ Description

After the ACL-8111 cards are initialized by above function, you
can use this function to select which one you want to operate.

@ Syntax

Microsoft C/C++

int W_8111_Switch_Card_No (int card_number)

Visual Basic

Windows 3.11 Version:

W_8111_Switch_Card_No (ByVal card_number As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8111_Switch_Card_No (ByVal card_number As Long)
As Long

@ Argument

36 •• Function Reference

card_number : The card number of the card that is set to be
active. If all the ACL-8111 cards only perform
software polling, eight cards can be initialized
and the valid card numbers are CARD_1,
CARD_2, …, CARD_8. However, if the ACL-
8111 cards are operated in Windows NT
system and will perform interrupt operation, the
card number must be CARD_1 or CARD_2.

@ Return Code

ERR_NoError
ERR_InvalidBoardNumber

2.3.3 W_8111_DI

@ Description

This function is used to read data from digital input port. There
are 16-bit digital inputs on the ACL-8111. The bit 0 to bit 7 are
defined as low byte and the bit 8 to bit 15 are defined as high
byte.

@ Syntax

Microsoft C/C++

int W_8111_DI (int port_number, unsigned char *di_data)

Visual Basic

Windows 3.11 Version:

W_8111_DI (ByVal port_number As Integer, di_data As
Byte) As Integer

Win-95/98, Win-NT/2000 Version:

W_8111_DI (ByVal port_number As Long, di_data As
Byte) As Long

@ Argument

port_number : To indicate which port to read, DI_LOW_BYTE
or DI_HIGH_BYTE.

Function Reference•• 37

DI_LOW_BYTE : bit 0 ~ bit 7,
DI_HIGH_BYTE : bit8 ~ bit15

di_data : return value from digital port.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_PortError

2.3.4 W_8111_DI _Channel

@ Description

This function is used to read data from digital input channels
(bit). There are 16 digital input channels on the ACL-8111.
When performs this function, the digital input port is read and
the value of the corresponding channel is returned.

* channel means each bit of digital input ports.

@ Syntax

Microsoft C/C++

int W_8111_DI_Channel (int di_ch_no, unsigned int
*di_data)

Visual Basic

Windows 3.11 Version:

W_8111_DI_Channel (ByVal di_ch_no As Integer, di_data
As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8111_DI_Channel (ByVal di_ch_no As Long, di_data
As Long) As Long

@ Argument

di_ch_no : the DI channel number, the value has to be set
from 0 to 15.

di_data : return value, either 0 or 1.

38 •• Function Reference

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidDIChannel

2.3.5 W_8111_DO

@ Description

This function is used to write data to digital output ports. There
are 16 digital outputs on the ACL-8111, they are divided to two
ports, DO_LOW_BYTE and DO_HIGH_BYTE. The channel 0 to
channel 7 are defined as DO_LOW_BYTE port and the channel
8 to channel 15 are defined as the DO_HIGH_BYTE port.

@ Syntax

Microsoft C/C++

int W_8111_DO (int port_number, unsigned char do_data)

Visual Basic

Windows 3.11 Version:

W_8111_DO (ByVal port_number As Integer, ByVal
do_data As Byte) As Integer

Win-95/98, Win-NT/2000 Version:

W_8111_DO (ByVal port_number As Long, ByVal do_data
As Byte) As Long

@ Argument

port_number : DO_LOW_BYTE or DO_HIGH_BYTE
do_data : value will be written to digital output port

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_PortError

Function Reference•• 39

2.3.6 W_8111_DA

@ Description

This function is used to write data to D/A converters. There is
one Digital-to-Analog conversion channel on the ACL-8111.
The resolution of the channel is 12-bit, i.e. the range is from 0
to 4095.

@ Syntax

Microsoft C/C++

int W_8111_DA (unsigned int da_data)

Visual Basic

Windows 3.11 Version:

W_8111_DA (ByVal da_data As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_8111_DA (ByVal da_data As Long) As Long

@ Argument

da_data : D/A converted value, if the value is greater than
4095, the higher 4 bits are negligent.

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.3.7 W_8111_AD_Set_Channel

@ Description

This function is used to set A/D channel by means of writing
data to A/D channel multiplexer register. There are 8 single-
ended A/D channels in ACL-8111, so the channel number
should be set between 0 to 7 only. The initial state is channel 0
which is the default setting by the ACL-8111 hardware
configuration.

40 •• Function Reference

@ Syntax

Microsoft C/C++

int W_8111_AD_Set_Channel (int ad_ch_no)

Visual Basic

Windows 3.11 Version:

W_8111_AD_Set_Channel (ByVal ad_ch_no As Integer)
As Integer

Win-95/98, Win-NT/2000 Version:

W_8111_AD_Set_Channel (ByVal ad_ch_no As Long) As
Long

@ Argument

ad_ch_no : channel number to perform A/D conversion

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADChannel

2.3.8 W_8111_AD_Set_Gain

@ Description

This function is used to set the A/D gain by means of writing
data to the gain control register. The initial value of gain is '1'
which is the default setting by the ACL-8111 hardware. The
relationship between gain and input voltage ranges is specified
by following table:

Input Range (V) Gain Gain Code
±5 V X 1 AD_GAIN_1

±2.5 V X 2 AD_GAIN_2
±1.25 V X 4 AD_GAIN_4
±0.625 V X 8 AD_GAIN_8
±0.3125V X 16 AD_GAIN_16

Function Reference•• 41

@ Syntax

Microsoft C/C++

int W_8111_AD_Set_Gain (int ad_gain)

Visual Basic

Windows 3.11 Version:

W_8111_AD_Set_Gain (ByVal ad_gain As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8111_AD_Set_Gain (ByVal ad_gain As Long) As Long

@ Argument

ad_gain : the programmable gain of A/D conversion, the
possible value is:
AD_GAIN_1, AD_GAIN_2, AD_GAIN_4,
AD_GAIN_8, and AD_GAIN_16.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADGain

2.3.9 W_8111_AD_Set_Mode

@ Description

This function is used to set the A/D trigger and data transfer
mode by means of writing data to the mode control register.
The hardware initial state of the ACL-8111 is set as
A8111_AD_MODE_0, i.e. software (internal) trigger with
program polling data.

A/D Mode Description
A8111_AD_MODE_0 Software Trigger, Polling Transfer
A8111_AD_MODE_1 Software Trigger, Interrupt Transfer
A8111_AD_MODE_2 External Trigger, Polling Transfer
A8111_AD_MODE_3 External Trigger, Interrupt Transfer

42 •• Function Reference

A8111_AD_MODE_4 Timer Trigger, Polling Transfer
A8111_AD_MODE_5 Timer Trigger, Interrupt Transfer

@ Syntax

Microsoft C/C++

int W_8111_AD_Set_Mode (int irq_no, int ad_mode)

Visual Basic

Windows 3.11 Version:

W_8111_AD_Set_Mode (ByVal irq_no As Integer, ByVal
ad_mode As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8111_AD_Set_Mode (ByVal irq_no As Long, ByVal
ad_mode As Long) As Long

@ Argument

irq_no : interrupt IRQ level
ad_mode : A/D trigger and data transfer mode. The

possible values are: A8111_AD_MODE_0,
A8111_AD_MODE_1, A8111_AD_MODE_2,
A8111_AD_MODE_3, A8111_AD_MODE_4,
A8111_AD_MODE_5

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidMode

2.3.10 W_8111_AD_Soft_Trig

@ Description

This function is used to trigger the A/D conversion by software.
When the function is called, a trigger pulse will be generated
and the converted data will be stored in the address Base+4
and Base+5, and can be retrieved by function
W_8111_AD_Aquire().

Function Reference•• 43

@ Syntax

Microsoft C/C++

int W_8111_AD_Soft_Trig (void)

Visual Basic

Windows 3.11 Version:

W_8111_AD_Soft_Trig() As Integer
Win-95/98, Win-NT/2000 Version:

W_8111_AD_Soft_Trig() As Long

@ Argument

None

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.3.11 W_8111_AD_Aquire

@ Description

This function is used to poll the A/D conversion data. It will
trigger the A/D conversion, and read the 12-bit A/D data until
the data is ready ('data ready' bit becomes low).

@ Syntax

Microsoft C/C++

int W_8111_AD_Aquire (int *ad_data)

Visual Basic

Windows 3.11 Version:

W_8111_AD_Aquire (ad_data As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_8111_AD_Aquire (ad_data As Long) As Long

44 •• Function Reference

@ Argument

ad_data : 12 bits A/D converted value, the value should
be within 0 and 4095.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_AD_AquireTimeOut

2.3.12 W_8111_CLR_IRQ

@ Description

This function is used to clear interrupt request which is
requested by the ACL-8111. If you use interrupt to transfer A/D
converted data, you should use this function to clear interrupt
request status; otherwise new interrupt signal could not be
generated.

@ Syntax

Microsoft C/C++

int W_8111_CLR_IRQ (void)

Visual Basic

Windows 3.11 Version:

W_8111_CLR_IRQ() As Integer
Win-95/98, Win-NT/2000 Version:

W_8111_CLR_IRQ() As Long

@ Argument

None

@ Return Code

ERR_NoError
ERR_BoardNoInit

Function Reference•• 45

2.3.13 W_8111_AD_INT_Start

@ Description

The function will perform A/D conversion N times with interrupt
data transfer by using timer pacer (internal clock trigger). It will
take place in the background which will not be stopped until the
Nth conversion has been completed or your program execute
W_8111_AD_INT_Stop() function to stop the process. After
calling this function, it is necessary to check the status of the
operation by using the function W_8111_AD_INT_Status().
The function performs on single A/D channel with fixed gain.

@ Syntax

Microsoft C/C++

int W_8111_INT_Start (int ad_ch_no, int ad_gain,
int irq_ch_no, int count, unsigned short *ad_buffer,
unsigned int c1, unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_8111_AD_INT_Start (ByVal ad_ch_no As Integer,
ByVal ad_gain As Integer, ByVal irq_ch_no As
Integer, ByVal count As Integer, ad_buffer As
Integer, ByVal c1 As Integer, ByVal c2 As Integer)
As Integer

Win-95/98, Win-NT/2000 Version:

W_8111_AD_INT_Start (ByVal ad_ch_no As Long, ByVal
ad_gain As Long, ByVal irq_ch_no As Long, ByVal
count As Long, ad_buffer As Integer, ByVal c1 As
Long, ByVal c2 As Long) As Long

@ Argument

ad_ch_no : A/D channel number
ad_gain : A/D gain value, the possible values are:

AD_GAIN_1, AD_GAIN_2, AD_GAIN_4,
AD_GAIN_8, and AD_GAIN_16.

irq_ch_no : IRQ channel number used to transfer A/D data,
the possible value is defined in file DLL2.H

46 •• Function Reference

count : the number of A/D conversion
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must be
large than the number of A/D conversion.

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

Note : While calling this function in Visual Basic program, please pass
the first element of the buffer array as the argument of ad_buffer.
For example, if the name of array is buf, pass buf(0) as argument
if index number of buf begins from 0. Also with Windows 3.11
version, because the Integer type in Visual Basic is signed integer
(i.e., its range is from -32768 to 32767), if you want to specify c1
or c2 to number larger than 32767, please set it as the number
minus 65536. For example, if you want to set c1 as 40000, please
set it as (40000 - 65536) = -25536 instead.

@ Return Code

ERR_NoError
ERR_BoardNoInit, ERR_InvalidADChannel,
ERR_InvalidADGain, ERR_InvalidIRQChannel,
ERR_InvalidTimerValue

@ Example

Visual Basic

Dim ad_buf(1024) As Integer
Dim Channel As Integer, Gain As Integer, Irq As Integer
Dim ad_count As Integer, c1 As Integer, c2 As Integer
Dim Ret As Integer
 . . .
Ret = W_8111_AD_INT_Start(Channel, Gain, Irq, ad_count,
 ad_buf(0), c1, c2)
 . . .

Function Reference•• 47

2.3.14 W_8111_AD_INT_Status

@ Description

Since the W_8111_AD_INT_Start() function is executed in
background, you can issue the function
W_8111_AD_INT_Status() to check the status of interrupt
transfer operation.

@ Syntax

Microsoft C/C++

int W_8111_AD_INT_Status (int *status , int *count)

Visual Basic

Windows 3.11 Version:

W_8111_AD_INT_Status (status As Integer, count As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8111_AD_INT_Status (status As Long, count As Long)
As Long

@ Argument

status : status of the interrupt data transfer
AD_INT_STOP : A/D INT is completed
AD_INT_RUN : A/D INT is not completed

count : current conversion count number.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_ADINTNotSet

2.3.15 W_8111_AD_INT_Stop

@ Description

This function is used to stop the interrupt data transfer
operation. After calling this function, the internal A/D trigger is
disabled and the A/D timer is stopped. The number of the data
transferred is stored in count, no matter whether the AD
interrupt data transfer is stopped by this function or by
W_8111_AD_INT_Start() itself.

48 •• Function Reference

@ Syntax

Microsoft C/C++

int W_8111_AD_INT_Stop (int *count)

Visual Basic

Windows 3.11 Version:

W_8111_AD_INT_Stop (count As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_8111_AD_INT_Stop (count As Long) As Long

@ Argument

count : the number of A/D data which has been
transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_ADINTNotSet

2.3.16W_8111_AD_ContINT_Start

@ Description

The function will perform continuous A/D conversions with
interrupt data transfer by using timer pacer (internal clock
trigger). It will take place in the background which will not be
stopped until your program execute W_8111_AD_INT_Stop()
function to stop the process. After calling this function, it is
necessary to check the status of the operation by using the
function W_8111_AD_DblBufferHalfReady().

@ Syntax

Microsoft C/C++

int W_8111_ContINT_Start (int ad_ch_no, Boolean
autoscan, int ad_gain, int irq_ch_no, int count,

Function Reference•• 49

unsigned short *ad_buffer, unsigned int c1,
unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_8111_AD_ContINT_Start (ByVal ad_ch_no As Integer,
ByVal auto_scan As Integer, ByVal ad_gain As
Integer, ByVal irq_ch_no As Integer, ByVal count
As Integer, ad_buffer As Integer, ByVal c1 As
Integer, ByVal c2 As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8111_AD_ContINT_Start (ByVal ad_ch_no As Long,
ByVal auto_scan As Integer, ByVal ad_gain As
Long, ByVal irq_ch_no As Long, ByVal count As
Long, ad_buffer As Integer, ByVal c1 As Long,
ByVal c2 As Long) As Long

@ Argument

ad_ch_no : A/D channel number

If autoscan is enabled, the A/D channel scan sequence will be:
0, 1, 2, 3,…[ad_ch_no], 0, 1, …, [ad_ch_no], …
If autoscan is disabled, only the data from channel [ad_ch_no]
will be converted.

autoscan: FALSE: autoscan is disabled
 TRUE: autoscan is enabled
ad_gain : A/D gain value, the possible values are:

AD_GAIN_1, AD_GAIN_2, AD_GAIN_4,
AD_GAIN_8, and AD_GAIN_16.

irq_ch_no : IRQ channel number used to transfer A/D data,
the possible value is defined in file DLL2.H

count : the number of A/D conversion
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must be
large than the number of A/D conversion.

c1 : the 16-bit timer frequency divider of timer
channel #1

50 •• Function Reference

c2 : the 16-bit timer frequency divider of timer
channel #2

@ Return Code

ERR_NoError
ERR_BoardNoInit, ERR_InvalidADChannel,

 ERR_InvalidADGain, ERR_InvalidIRQChannel,
 ERR_InvalidTimerValue
 ERR_AD_INTNotSet

2.3.17W_8111_AD_SCANINT_Start

@ Description

This function is used to start automatic channel scan . If
autoscan mode is started and the end channel number is set as
n by argument ad_ch_no, the data will be converted
automatically from channel 0 to channel n.
For example, the channel is set as 4 and autoscan is started,
the A/D conversion sequence will be 0, 1, 2, 3, 4, 0, 1, 2, 3, 4,
0, 1, 2, 3, 4, 0, If the autoscan is finished, the converted
channel will be kept at the specified channel, i.e. channel 4.

@ Syntax

Microsoft C/C++

int W_8111_AD_SCANINT_Start(int ad_ch_no, int
ad_gain , int irq_no, int count , unsigned short
*ad_buffer , unsigned int c1 , unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_8111_AD_ SCANINT_Start (ByVal ad_ch_no As
Integer, ByVal ad_gain As Integer, ByVal irq_ch_no
As Integer, ByVal count As Integer, ad_buffer As
Integer, ByVal c1 As Integer, ByVal c2 As Integer)
As Integer

Win-95/98, Win-NT/2000 Version:

Function Reference•• 51

W_8111_AD_ SCANINT_Start (ByVal ad_ch_no As Long,
ByVal ad_gain As Long, ByVal irq_ch_no As Long,
ByVal count As Long, ad_buffer As Integer, ByVal
c1 As Long, ByVal c2 As Long) As Long

@ Argument

ad_ch_no : end A/D channel number for AutoScan
ad_gain : A/D gain value, the possible values are:

AD_GAIN_1, AD_GAIN_2, AD_GAIN_4,
AD_GAIN_8, and AD_GAIN_16.

irq_ch_no : IRQ channel number used to transfer A/D data,
the possible value is defined in file DLL2.H

count : the number of A/D conversion
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must be
large than the number of A/D conversion.

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADChannel
ERR_AD_InvalidGain
ERR_InvalidIRQChannel
ERR_InvalidTimerValue

2.3.18W_8111_AD_DblBufferHalfReady

@ Description

Checks whether the next half buffer of data in circular buffer is
ready for transfer during double-buffered analog input
operation.

@ Syntax

52 •• Function Reference

Microsoft C/C++

int W_8111_AD_DblBufferHalfReady (BOOLEAN
*bHalfReady)

Visual Basic

W_8111_AD_DblBufferHalfReady (bHalfReady As Long)
As Long

@ Argument

bHalfReady : Whether the next half buffer of data is
available.If HalfReady = TRUE, you can call
W_8111_AD_DblBufferTransfer() to copy
the data to your user buffer.

@ Return Code

ERR_NoError
 ERR_InvalidMode

2.3.19W_8111_AD_DblBufferTransfer

@ Description

Depending on the continuous AI function selected, half of the
data in circular buffer will be logged into the user buffer.You can
execute this function repeatedly to return sequential half buffers
of the data.

@ Syntax

Microsoft C/C++

int W_8111_AD_DblBufferTransfer (USHORT *pwBuffer)

Visual Basic

W _8111_AD_DblBufferTransfer (pwBuffer As Integer) As
Long

@ Argument

pwBuffer: The user buffer. An integer array to which the
data is to be copied.

Function Reference•• 53

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.3.20W_8111_AD_Timer

@ Description

This function is used to set up Timer #1 and Timer #2. The c1
and c2 arguments are used as frequency dividers for
generating constant A/D sampling rate dedicatedly. It is
possible to stop the pacer trigger by setting any one of the
dividers as 0. Because the A/D conversion rate is limited due to
the conversion time of the A/D converter, the highest sampling
rate of ACL-8111 can not exceed 30 KHz. The multiplication of
the dividers must be larger than 70.

@ Syntax

Microsoft C/C++

int W_8111_AD_Timer (unsigned int c1, unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_8111_AD_Timer (ByVal c1 As Integer, ByVal c2 As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8111_AD_Timer (ByVal c1 As Long, ByVal c2 As Long)
As Long

@ Argument

c1 : frequency divider of timer #1
c2 : frequency divider of timer #2,

Note : the A/D sampling rate is equal to : 2MHz / (c1*c2), when c1 = 0
or c2 = 0, the pacer trigger will be stopped.

54 •• Function Reference

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidTimerValue

Function Reference•• 55

2.4 8112 Software DLL Driver
In this section, the ACL-8112 Series' software DLL drivers are
described. This DLL library can support both ACL-8112DG and
ACL-8112HG. The function names of Windows 3.11, Window
95/98, Windows NT/2000 versions are the same. So, users do
not need to learn the difference between them. The application’s
portability between these three systems can be very high.

2.4.1 W_8112_Initial

@ Description

An ACL-8112DG/HG card is initialized according to the card
number and the corresponding base address. Each ACL-8112
multi-function data acquisition card has to be initialized by this
function before calling other functions.

Note: In this library, if you want to operate DMA or interrupt
operation, only two ACL-8112DG/HG/PG cards can be
initialized. The reason is only two DMA channels are supported
in the card.

@ Syntax

Microsoft C/C++

int W_8112_Initial (int card_number, int base_addresss)

Visual Basic

Windows 3.11 Version:

W_8112_Initial (ByVal card_number As Integer, ByVal
base_address As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8112_Initial (ByVal card_number As Long, ByVal
base_address As Long) As Long

@ Argument

card_number : The card number to be initialized. If all the
ACL-8112DG/HG cards only perform software

56 •• Function Reference

polling, eight cards can be initialized and the
valid card numbers are CARD_1, CARD_2,
…, CARD_8. However, if the ACL-
8111DG/HG cards are operated in Windows
NT system and will perform interrupt or DMA
data transfer, only two cards can be initialized
and the card number must be CARD_1 or
CARD_2.

base_address : the I/O port base address of the card.

@ Return Code

ERR_NoError
ERR_InvalidBoardNumber
ERR_BaseAddressError

2.4.2 W_8112_Switch_Card_No

@ Description

After initialized more than one ACL-8112 cards, this function is
used to select which card is used currently.

@ Syntax

Microsoft C/C++

int W_8112_Switch_Card_No (int card_number)

Visual Basic

Windows 3.11 Version:

W_8112_Switch_Card_No (ByVal card_number As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8112_Switch_Card_No (ByVal card_number As Long)
As Long

@ Argument

Function Reference•• 57

card_number : The card number of the card that is set to be
active. If all the ACL-8112DG/HG cards only
perform software polling, the valid card
numbers are CARD_1, CARD_2, …, CARD_8.
However, if the ACL-8112DG/HG cards are
operated in Windows NT system and will
perform interrupt or DMA data transfer, only
two cards can be initialized and the card
number must be CARD_1 or CARD_2.

@ Return Code

ERR_NoError
ERR_InvalidBoardNumber

2.4.3 W_8112_DI

@ Description

This function is used to read data from digital input port. There
are 16 digital inputs on the ACL-8112DG/HG. The bit 0 to bit 7
are defined as low byte and the bit 8 to bit 15 are defined as
high byte.

@ Syntax

Microsoft C/C++

int W_8112_DI (int port_number, unsigned char *di_data)

Visual Basic

Windows 3.11 Version:

W_8112_DI (ByVal port_number As Integer, di_data As
Byte) As Integer

Win-95/98, Win-NT/2000 Version:

W_8112_DI (ByVal port_number As Integer, di_data As
Byte) As Long

@ Argument

port_number : To indicate which port is read, DI_LOW_BYTE
or DI_HIGH_BYTE.

58 •• Function Reference

DI_LOW_BYTE : bit 0 ~ bit 7
DI_HIGH_BYTE : bit8 ~ bit15

di_data : return value from digital port.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_PortError

2.4.4 W_8112_DI _Channel

@ Description

This function is used to read data from digital input channels
(bit). There are 16 digital input channels on the ACL-
8112DG/HG. When performs this function, the digital input port
is read and the value of the corresponding channel is returned.

* channel means each bit of digital input ports.

@ Syntax

Microsoft C/C++

int _8112_DI_Channel (int di_ch_no, unsigned int
*di_data)

Visual Basic

Windows 3.11 Version:

W_8112_DI_Channel (ByVal di_ch_no As Integer, di_data
As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8112_DI_Channel (ByVal di_ch_no As Long, di_data
As Long) As Long

@ Argument

di_ch_no : the DI channel number, the value has to be set
between 0 and 15.

di_data : return value, either 0 or 1.

Function Reference•• 59

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidDIChannel

2.4.5 W_8112_DO

@ Description

This function is used to write data to digital output ports. There
are 16 digital outputs on the ACL-8112DG/HG, they are divided
to two ports, DO_LOW_BYTE and DO_HIGH_BYTE. The
channel 0 to channel 7 are defined in DO_LOW_BYTE port and
the channel 8 to channel 15 are defined as the
DO_HIGH_BYTE port.

@ Syntax

Microsoft C/C++

int W_8112_DO (int port_number, unsigned char do_data)

Visual Basic

Windows 3.11 Version:

W_8112_DO (ByVal port_number As Integer, ByVal
do_data As Byte) As Integer

Win-95/98, Win-NT/2000 Version:

W_8112_DO (ByVal port_number As Long, ByVal do_data
As Byte) As Long

@ Argument

port_number : DO_LOW_BYTE or DO_HIGH_BYTE
do_data : value will be written to digital output port

@ Return Code

ERR_NoError
ERR_BoardNoInit

60 •• Function Reference

ERR_PortError

2.4.6 W_8112_DA

@ Description

This function is used to write data to D/A converters. There are
two Digital-to-Analog conversion channels on the ACL-
8112DG/HG. The resolution of each channel is 12-bit, i.e. the
range is from 0 to 4095.

@ Syntax

Microsoft C/C++

int W_8112_DA (int da_ch_no, unsigned int da_data)

Visual Basic

Windows 3.11 Version:

W_8112_DA (ByVal da_ch_no As Integer, ByVal da_data
As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8112_DA (ByVal da_ch_no As Long, ByVal da_data As
Long) As Long

@ Argument

da_ch_no : D/A channel number, the valid data is :

0 Channel AO1
1 Channel AO2

da_data : D/A converted value, if the value is greater
than 4095, the higher 4 bits are negligent.

@ Return Code

ERR_NoError
ERR_BoardNoInit

Function Reference•• 61

ERR_InvalidDAChannel

62 •• Function Reference

2.4.7 W_8112_AD_Input_Mode

@ Description

This function is used to set A/D input mode to single-ended or
differential mode. The default mode of A/D input is single-
ended, so the A/D channel number can be set between 0 to 15.
If the A/D mode is set as differential, the input channel can be
selected from channel 0 to 7 only.

@ Syntax

Microsoft C/C++

int W_8112_AD_Input_Mode (int mode)

Visual Basic

Windows 3.11 Version:

W_8112_AD_Input_Mode (ByVal mode As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8112_AD_Input_Mode (ByVal mode As Long) As Long

@ Argument

mode : SIGNLE_ENDED : singled-ended mode is set
DIFFERENTIAL : differential mode is set

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADMode

Function Reference•• 63

2.4.8 W_8112_AD_Set_Channel

@ Description

This function is used to set A/D channel by means of writing
data to the A/D channel multiplexer register. There are 16
single-ended A/D channels in ACL-8112, so the channel
number should be set between 0 and 15 only. The initial state is
channel 0 which is the default setting by the ACL-8112
hardware configuration.

@ Syntax

Microsoft C/C++

int W_8112_AD_Set_Channel (int ad_ch_no)

Visual Basic

Windows 3.11 Version:

W_8112_AD_Set_Channel (ByVal ad_ch_no As Integer)
As Integer

Win-95/98, Win-NT/2000 Version:

W_8112_AD_Set_Channel (ByVal ad_ch_no As Long) As
Long

@ Argument

ad_ch_no : channel number to perform A/D conversion

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADChannel

64 •• Function Reference

2.4.9 W_8112_AD_Set_Range

@ Description

This function is used to set the A/D range by means of writing
data to the range control register. The major difference between
8112DG, 8112HG, and 8112PG is each card supports different
gains which affect the input voltage range of each card. This is
the only difference between these cards. Each card‘s gain and
its corresponding A/D input ranges are listed as below.

The initial value of gain is '1', which is set by the ACL-8112
hardware.

** ACL-8112DG
Input Range (V) Gain Gain Code

±10 V X 0.5 AD_B_10_V
±5 V X 1 AD_B_5_V

±2.5 V X 2 AD_B_2_5_V
±1.25 V X 4 AD_B_1_25_V
±0.625 V X 8 AD_B_0_625_V
0V ~ 10 V X 1 AD_U_10_V
0V ~ 5 V X 2 AD_U_5_V

0V ~ 2.5 V X 4 AD_U_2_5_V
0V ~ 1.25 V X 8 AD_U_1_25_V

** ACL-8112HG
Input Range (V) Gain Gain Code

±5 V X 1 AD_B_5_V
±0.5 V X 10 AD_B_0_5_V

±0.05 V X 100 AD_B_0_05_V
±0.005 V X 1000 AD_B_0_005_V
0V ~ 10 V X 1 AD_U_10_V
0V ~ 1 V X 10 AD_U_1_V

0V ~ 0.1 V X 100 AD_U_0_1_V
0V ~ 0.01 V X 1000 AD_U_0_01_V

±10V X 0.5 AD_B_10_V

±1V X 5 AD_B_1_V

±0.1V X 50 AD_B_0_1_V

±0.01V X 500 AD_B_0_01_V

Function Reference•• 65

** ACL-8112PG :
If input voltage range is set to ±5 V (JP9),

Input Range (V) Gain Gain Code
±5 V X 1 AD_GAIN_1

±2.5 V X 2 AD_GAIN_2
±1.25 V X 4 AD_GAIN_4
±0.625 V X 8 AD_GAIN_8
±0.3125V X 16 AD_GAIN_16

If input voltage range is set to ±10 V (JP9),

Input Range (V) Gain Gain Code
±10 V X 1 AD_GAIN_1
±5 V X 2 AD_GAIN_2

±2.5 V X 4 AD_GAIN_4
±1.25 V X 8 AD_GAIN_8
±0.625 V X 16 AD_GAIN_16

Note : This function will not check if you set a right gain code for
different data acquisition cards, so you should be very careful
what kind of data acquisition card you use, and set a right Gain
code.

@ Syntax

Microsoft C/C++

int W_8112_AD_Set_Range (int ad_range)

Visual Basic

Windows 3.11 Version:

W_8112_AD_Set_Range (ByVal ad_range As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8112_AD_Set_Range (ByVal ad_range As Long) As
Long

66 •• Function Reference

@ Argument

ad_range : the programmable gain of A/D conversion, the
possible values are:

 * ACL-8112DG :
AD_B_10_V, AD_B_5_V, AD_B_2_5_V, AD_B_1_25_V,
AD_B_0_625_V, AD_U_10_V, AD_U_5_V, AD_U_2_5_V,
AD_U_1_25_V

* ACL-8112HG :
AD_B_5_V, AD_B_0_5_V, AD_B_0_05_V, AD_B_0_005_V,
AD_U_10_V, AD_U_1_V, AD_U_0_1_V, AD_U_0_01_V,
AD_B_10_V, AD_B_1_V, AD_B_0_1_V, AD_B_0_01_V

* ACL-8112PG :
AD_GAIN_1, AD_GAIN_2, AD_GAIN_4, AD_GAIN_8, AD_GAIN_16

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADGain

2.4.10 W_8112_AD_Set_Mode

@ Description

This function is used to set the A/D trigger and data transfer
mode by means of writing data to the mode control register.
The hardware initial state of the ACL-8112DG/HG is set as
A8112_AD_MODE_1 software (internal) trigger with program
polling.

A/D Mode Description
A8112_AD_MODE_0 External Trigger, Software Polling
A8112_AD_MODE_1 Software Trigger, Software Polling
A8112_AD_MODE_2 Timer Trigger, DMA Transfer
A8112_AD_MODE_3 External Trigger, DMA Transfer
A8112_AD_MODE_4 External Trigger, Interrupt Transfer
A8112_AD_MODE_5 Software Trigger, Interrupt Transfer
A8112_AD_MODE_6 Timer Trigger, Interrupt Transfer
A8112_AD_MODE_7 Not Used

Function Reference•• 67

@ Syntax

Microsoft C/C++

int W_8112_AD_Set_Mode (int ad_mode)

Visual Basic

Windows 3.11 Version:

W_8112_AD_Set_Mode (ByVal ad_mode As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8112_AD_Set_Mode (ByVal ad_mode As Long) As
Long

@ Argument

ad_mode : A/D trigger and data transfer mode

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidMode

2.4.11 W_8112_AD_Soft_Trig

@ Description

This function is used to trigger the A/D conversion by software.
When the function is called, a trigger pulse will be generated
and the converted data will be stored in the address Base+4
and Base+5, and can be retrieved by function
W_8112_AD_Aquire().

@ Syntax

Microsoft C/C++

int W_8112_AD_Soft_Trig (void)

68 •• Function Reference

Visual Basic

Windows 3.11 Version:

W_8112_AD_Soft_Trig () As Integer
Win-95/98, Win-NT/2000 Version:

W_8112_AD_Soft_Trig () As Long

@ Argument

None

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.4.12 W_8112_AD_Aquire

@ Description

This function is used to poll the A/D conversion data. It will
trigger the A/D conversion, and read the 12 bits A/D data until
the data is ready ('data-ready' bit becomes to low).

@ Syntax

Microsoft C/C++

int W_8112_AD_Aquire (int *ad_data)

Visual Basic

Windows 3.11 Version:

W_8112_AD_Aquire (ad_data As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_8112_AD_Aquire (ad_data As Long) As Long

@ Argument

ad_data : 12 bits A/D converted value, the value should
be within 0 and 4095.

Function Reference•• 69

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_AD_AquireTimeOut

2.4.13 W_8112_CLR_IRQ

@ Description

This function is used to clear interrupt request which is
requested by the ACL-8112. If you use interrupt to transfer A/D
converted data, you should use this function to clear interrupt
request status, otherwise the new interrupt signal can not be
generated.

@ Syntax

Microsoft C/C++

int W_8112_CLR_IRQ (void)

Visual Basic

Windows 3.11 Version:

W_8112_CLR_IRQ () As Integer
Win-95/98, Win-NT/2000 Version:

W_8112_CLR_IRQ () As Long

@ Argument

None

@ Return Code

ERR_NoError
ERR_BoardNoInit

70 •• Function Reference

2.4.14 W_8112_AD_DMA_Start

@ Description

The function will perform A/D conversion N times with DMA
data transfer by using the pacer trigger (internal timer trigger) or
external trigger source. It will take place in the background and
will not be stopped until the N-th conversion has been
completed or your program executes
W_8112_AD_DMA_Stop() function to stop the process. After
executing this function, it is necessary to check the status of the
operation by using the function W_8112_AD_DMA_Status().
The function performs on single A/D channel with fixed A/D
range.

Note: W_8112_AD_DMA_Start() and W_8112_AD_DMA_Stop() are
pair function, i.e., you have to call W_8112_AD_DMA_Stop()
after W_8112_AD_DMA_Start(), otherwise the A/D converted
data will not be stored in the buffer you specified.

@ Syntax

Microsoft C/C++

int W_8112_DMA_Start (int ad_ch_no, int ad_range, int
dma_ch_no, int irq_ch_no, int count , unsigned
short *ad_buffer, unsigned int c1, unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_8112_DMA_Start (ByVal ad_ch_no As Integer, ByVal
ad_range As Integer, ByVal dma_ch_no As Integer,
ByVal irq_ch_no As Integer, ByVal count As
Integer, ad_buffer As Integer, ByVal c1 As Integer,
ByVal c2 As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8112_DMA_Start (ByVal ad_ch_no As Long, ByVal
ad_range As Long, ByVal dma_ch_no As Long,
ByVal irq_ch_no As Long, ByVal count As Long,
ad_buffer As Integer, ByVal c1 As Long, ByVal c2
As Long) As Long

Function Reference•• 71

@ Argument

ad_ch_no : A/D channel number
ad_gain : A/D range value. Please refer to section 2.4.9

for valid range value.
dma_ch_no : DMA channel number, DMA_CH_1 or

DMA_CH_3
irq_ch_no : IRQ channel number, used to stop DMA
count : the number of A/D conversion to perform
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must be
larger than the number of A/D conversion.

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

Note : While calling this function in Visual Basic program, please pass
the first element of the buffer array as the argument of ad_buffer.
For example, if the name of array is buf, pass buf(0) as argument
if index number of buf begins from 0. Also with Windows 3.11
version, because the Integer type in Visual Basic is signed integer
(i.e., its range is from -32768 to 32767), if you want to specify c1
or c2 to number larger than 32767, please set it as the number
minus 65536. For example, if you want to set c1 as 40000, please
set it as (40000 - 65536) = -25536 instead.

@ Return Code

ERR_NoError
ERR_BoardNoInit, ERR_InvalidADChannel,
ERR_InvalidADGain, ERR_InvalidDMAChannel,
ERR_InvalidIRQChannel, ERR_InvalidTimerValue

2.4.15 W_8112_AD_ContDMA_Start

@ Description

72 •• Function Reference

The function will perform continuous A/D conversions with DMA
data transfer by using the pacer trigger (internal timer trigger) or
external trigger source.
It will take place in the background and will not be stopped until
your program executes W_8112_AD_DMA_Stop() function to
stop the process. After executing this function, it is necessary
to check the status of the operation by using the function
W_8112_AD_DblBufferHalfReady().The function performs on
single A/D channel with fixed A/D range.

Note: W_8112_AD_ContDMA_Start() and W_8112_AD_DMA_Stop()
are pair function, i.e., you have to call W_8112_AD_DMA_Stop()
after W_8112_AD_ContDMA_Start(), otherwise the A/D
conversion will never stop .

@ Syntax

Microsoft C/C++

int W_8112_ContDMA_Start (int ad_ch_no, int ad_range,
int dma_ch_no, int irq_ch_no, int count , unsigned
short *ad_buffer, unsigned int c1, unsigned int c2)

Visual Basic

W_8112_ContDMA_Start (ByVal ad_ch_no As Long,
ByVal ad_range As Long, ByVal dma_ch_no As
Long, ByVal irq_ch_no As Long, ByVal count As
Long, ad_buffer As Integer, ByVal c1 As Long,
ByVal c2 As Long) As Long

@ Argument

ad_ch_no : A/D channel number
ad_gain : A/D range value. Please refer to section 2.4.9

for valid range value.
dma_ch_no : DMA channel number, DMA_CH_1 or

DMA_CH_3
irq_ch_no : IRQ channel number, used to stop DMA
count : the number of A/D conversion to perform
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must be
larger than the number of A/D conversion.

Function Reference•• 73

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

Note : While calling this function in Visual Basic program, please pass
the first element of the buffer array as the argument of ad_buffer.
For example, if the name of array is buf, pass buf(0) as argument
if index number of buf begins from 0. Also with Windows 3.11
version, because the Integer type in Visual Basic is signed integer
(i.e., its range is from -32768 to 32767), if you want to specify c1
or c2 to number larger than 32767, please set it as the number
minus 65536. For example, if you want to set c1 as 40000, please
set it as (40000 - 65536) = -25536 instead.

@ Return Code

ERR_NoError
ERR_AD_DMANotSet
ERR_BoardNoInit, ERR_InvalidADChannel,
ERR_InvalidADGain, ERR_InvalidDMAChannel,
ERR_InvalidIRQChannel, ERR_InvalidTimerValue

2.4.16 W_8112_AD_DMA_Status

@ Description

Since the W_8112_AD_DMA_Start function executes in
background, you can issue the function
W_8112_AD_DMA_Status() to check its operation status.

@ Syntax

Microsoft C/C++

int W_8112_AD_DMA_Status (int *status , int *count)

Visual Basic

Windows 3.11 Version:

W_8112_AD_DMA_Status (status As Integer, count As
Integer) As Integer

74 •• Function Reference

Win-95/98, Win-NT/2000 Version:

W_8112_AD_DMA_Status (status As Long, count As
Long) As Long

@ Argument

status : status of the DMA data transfer
AD_DMA_STOP : A/D DMA is completed
AD_DMA_RUN : A/D DMA is not completed

count : the number of A/D data which has been
transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_ADDMANotSet

2.4.17 W_8112_AD_DMA_Stop

@ Description

This function is used to stop the DMA data transfer. After
executing this function, the internal A/D trigger is disable and
the A/D timer (timer #1 and #2) is stopped. The function
returns the number of the data which has been transferred, no
matter the A/D DMA data transfer is stopped by this function or
by the DMA terminal count ISR.

This function has to be called after W_8112_AD_DMA_Start()
function issued. Otherwise, all converted data will not be saved
into the memory buffer you specified in your program.

@ Syntax

Microsoft C/C++

int W_8112_AD_DMA_Stop (int *count)

Visual Basic

Windows 3.11 Version:

W_8112_AD_DMA_Stop (count As Integer) As Integer

Function Reference•• 75

Win-95/98, Win-NT/2000 Version:

W_8112_AD_DMA_Stop (count As Long) As Long

@ Argument

count : the number of A/D converted data which has
been transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_ADDMANotSet

2.4.18 W_8112_AD_INT_Start

@ Description

This function will perform A/D conversion N times with interrupt
data transfer by using internal pacer trigger or external trigger
source. It will take place in the background which will not be
stopped until the N-th conversion has been completed or your
program execute W_8112_AD_INT_Stop() function to stop the
process. After executing this function, it is necessary to check
the status of the operation by using the function
W_8112_AD_INT_Status(). The function is performed on
single A/D channel with fixed gain.

Note: W_8112_AD_INT_Start() and W_8112_AD_INT_Stop() are a
pair function, i.e., you have to call W_8112_AD_INT_Stop()
after W_8112_AD_INT_Start(), otherwise the A/D converted
data will not be stored in the buffer you had specified.

@ Syntax

Microsoft C/C++
int W_8112_AD_INT_Start (int ad_ch_no, int ad_gain,

int irq_ch_no, int count, unsigned short *ad_buffer,
unsigned int c1, unsigned int c2)

Visual Basic

76 •• Function Reference

Windows 3.11 Version:

W_8112_AD_INT_Start (ByVal ad_ch_no As Integer,
ByVal ad_gain As Integer, ByVal irq_ch_no As
Integer, ByVal count As Integer, ad_buffer As
Integer, ByVal c1 As Integer, ByVal c2 As Integer)
As Integer

Win-95/98, Win-NT/2000 Version:

W_8112_AD_INT_Start (ByVal ad_ch_no As Long, ByVal
ad_gain As Long, ByVal irq_ch_no As Long, ByVal
count As Long, ad_buffer As Integer, ByVal c1 As
Long, ByVal c2 As Long) As Long

@ Argument

ad_ch_no : A/D channel number
ad_gain : A/D range value. Please refer to section 2.4.9

for valid range value.
irq_ch_no : IRQ channel number
count : the numbers of A/D conversion
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must large
than the number of A/D conversion. Only the
lower 12 bits of each data element in ad_buffer
is meaningful. The upper 4 bits may contains
some data, but this data should be ignored.

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

Note : While calling this function in Visual Basic program, please pass
the first element of the buffer array as the argument of ad_buffer.
For example, if the name of array is buf, pass buf(0) as argument
if index number of buf begins from 0. Also with Windows 3.11
version, because the Integer type in Visual Basic is signed integer
(i.e., its range is from -32768 to 32767), if you want to specify c1
or c2 to number larger than 32767, please set it as the number
minus 65536. For example, if you want to set c1 as 40000, please
set it as (40000 - 65536) = -25536 instead.

Function Reference•• 77

@ Return Code

ERR_NoError
ERR_BoardNoInit, ERR_InvalidADChannel,
ERR_InvalidADGain, ERR_InvalidIRQChannel,
ERR_InvalidTimerValue

@ Example

Visual Basic (Win-95/98, Win-NT/2000 Version)
Dim ad_buf(1024) As Integer
Dim Channel As Long, Gain As Long, Irq As Long
Dim ad_count As Long, c1 As Long, c2 As Long
Dim Ret As Long
 .

.
ad_count = 1024
 .

.
Ret = W_8112_AD_INT_Start (Channel, Gain, Irq, ad_count,
 ad_buf(0), c1, c2) . . .

2.4.19 W_8112_AD_INT_Status

@ Description

Since the W_8112_AD_INT_Start() function executes in
background, you can issue the function
W_8112_AD_INT_Status() to check the status of interrupt
operation.

@ Syntax

Microsoft C/C++
int W_8112_AD_INT_Status (int *status , int *count)

Visual Basic

Windows 3.11 Version:

W_8112_AD_INT_Status (status As Integer, count As
Integer) As Integer

78 •• Function Reference

Win-95/98, Win-NT/2000 Version:

W_8112_AD_INT_Status (status As Long, count As Long)
As Long

@ Argument

status : status of the interrupt data transfer
AD_INT_STOP : interrupt A/D is completed
AD_INT_RUN : interrupt A/D is not completed

count : the number of A/D data which has been
transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.4.20 W_8112_AD_INT_Stop

@ Description

This function is used to stop the interrupt data transfer function.
After executing this function, the internal A/D trigger is disabled
and the A/D timer is stopped. The function returns the number
of the data which has been transferred, no matter whether if the
A/D interrupt data transfer is stopped by this function or by the
W_8112_AD_INT_Start() itself.

This function has to be called after W_8112_AD_INT_Start()
function issued. Otherwise, all converted data will not be saved
into the memory buffer you had specified in
W_8112_AD_INT_Start() function call.

@ Syntax

Microsoft C/C++
int W_8112_AD_INT_Stop (int *count)

Visual Basic

Windows 3.11 Version:

Function Reference•• 79

W_8112_AD_INT_Stop (count As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_8112_AD_INT_Stop (count As Long) As Long

@ Argument

count : the number of A/D data which have been
transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_INTNotSet

2.4.21W_8112_AD_ContINT_Start

@ Description

The function will perform continuous A/D conversions with
interrupt data transfer by using timer pacer (internal clock
trigger). It will take place in the background which will not be
stopped until your program execute W_8112_AD_INT_Stop()
function to stop the process. After calling this function, it is
necessary to check the status of the operation by using the
function W_8112_AD_DblBufferHalfReady().

@ Syntax

Microsoft C/C++

int W_8112_ContINT_Start (int ad_ch_no, Boolean
autoscan , int ad_gain, int irq_ch_no, int count,
unsigned short *ad_buffer, unsigned int c1,
unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_8112_AD_ContINT_Start (ByVal ad_ch_no As Integer,
ByVal auto_scan As Integer, ByVal ad_gain As
Integer, ByVal irq_ch_no As Integer, ByVal count

80 •• Function Reference

As Integer, ad_buffer As Integer, ByVal c1 As
Integer, ByVal c2 As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8112_AD_ContINT_Start (ByVal ad_ch_no As Long,
ByVal auto_scan As Integer, ByVal ad_gain As
Long, ByVal irq_ch_no As Long, ByVal count As
Long, ad_buffer As Integer, ByVal c1 As Long,
ByVal c2 As Long) As Long

@ Argument

ad_ch_no : A/D channel number

If autoscan is enabled, the A/D channel scan sequence will be:
0, 1, 2, 3,…[ad_ch_no], 0, 1, …, [ad_ch_no], …
If autoscan is disabled, only the data from channel [ad_ch_no]
will be converted.

autoscan: FALSE: autoscan is disabled
 TRUE: autoscan is enabled
ad_gain : A/D range value. Please refer to section 2.4.9

for valid range value.
irq_ch_no : IRQ channel number used to transfer A/D data,

the possible value is defined in file DLL2.H
count : the number of A/D conversion
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must be
large than the number of A/D conversion.

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

@ Return Code

ERR_NoError
ERR_BoardNoInit, ERR_InvalidADChannel,

 ERR_InvalidADGain, ERR_InvalidIRQChannel,
 ERR_InvalidTimerValue
 ERR_AD_INTNotSet

Function Reference•• 81

2.4.22W_8112_AD_SCANINT_Start

@ Description

This function is used to start automatic channel scan . If
autoscan mode is started and the end channel number is set as
n by argument ad_ch_no, the data will be converted
automatically from channel 0 to channel n.
For example, the channel is set as 4 and autoscan is started,
the A/D conversion sequence will be 0, 1, 2, 3, 4, 0, 1, 2, 3, 4,
0, 1, 2, 3, 4, 0, If the autoscan is finished, the converted
channel will be kept at the specified channel, i.e. channel 4.

@ Syntax

Microsoft C/C++

int W_8112_AD_SCANINT_Start(int ad_ch_no, int
ad_gain , int irq_no, int count , unsigned short
*ad_buffer , unsigned int c1 , unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_8112_AD_ SCANINT_Start (ByVal ad_ch_no As
Integer, ByVal ad_gain As Integer, ByVal irq_ch_no
As Integer, ByVal count As Integer, ad_buffer As
Integer, ByVal c1 As Integer, ByVal c2 As Integer)
As Integer

Win-95/98, Win-NT/2000 Version:

W_8112_AD_ SCANINT_Start (ByVal ad_ch_no As Long,
ByVal ad_gain As Long, ByVal irq_ch_no As Long,
ByVal count As Long, ad_buffer As Integer, ByVal
c1 As Long, ByVal c2 As Long) As Long

@ Argument

ad_ch_no : end A/D channel number for AutoScan
ad_gain : A/D range value. Please refer to section 2.4.9

for valid range value.
irq_ch_no : IRQ channel number
count : the numbers of A/D conversion

82 •• Function Reference

ad_buffer : the start address of the memory buffer to
store the A/D data, the buffer size must large
than the number of A/D conversion. Only the
lower 12 bits of each data element in ad_buffer
is meaningful. The upper 4 bits may contains
some data, but this data should be ignored.

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADChannel
ERR_AD_InvalidGain
ERR_InvalidIRQChannel
ERR_InvalidTimerValue

2.4.23W_8112_AD_DblBufferHalfReady

@ Description

Checks whether the next half buffer of data in circular buffer is
ready for transfer during an double-buffered analog input
operation.

@ Syntax

Microsoft C/C++

int W_8112_AD_DblBufferHalfReady (BOOLEAN
*bHalfReady)

Visual Basic

W _8112_AD_DblBufferHalfReady (bHalfReady As Long)
As Long

@ Argument

Function Reference•• 83

bHalfReady : Whether the next half buffer of data is
available.If HalfReady = TRUE, you can call
W_8112_AD_DblBufferTransfer() to copy
the data to your user buffer.

@ Return Code

ERR_NoError
 ERR_InvalidMode

2.4.24W_8112_AD_DblBufferTransfer

@ Description

Depending on the continuous AI function elected, half of the
data in circular buffer will be logged into the user buffer.
You can execute this function repeatedly to return sequential
half buffers of the data.

@ Syntax

Microsoft C/C++

int W_8112_AD_DblBufferTransfer (USHORT *pwBuffer)

Visual Basic

W _8112_AD_DblBufferTransfer (pwBuffer As Integer) As
Long

@ Argument

pwBuffer: The user buffer. An integer array to which the
data is to be copied.

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.4.25 W_8112_AD_Timer

@ Description

84 •• Function Reference

This function is used to setup the Timer #1 and Timer #2. The
values of c1 and c2 are used as frequency dividers for
generating constant A/D sampling rate dedicatedly. It is
possible to stop the pacer trigger by setting any one of the
dividers as 0. Because the A/D conversion rate is limited due to
the conversion time of the A/D converter, the highest sampling
rate of the ACL-8112 can not exceed 100 KHz. The
multiplication of the dividers must be larger than 20.

@ Syntax

Microsoft C/C++
int W_8112_AD_Timer(unsigned int c1, unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_8112_AD_Timer (ByVal c1 As Integer, ByVal c2 As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8112_AD_Timer (ByVal c1 As Long, ByVal c2 As Long)
As Long

@ Argument

c1 : frequency divider of timer #1
c2 : frequency divider of timer #2

Note : the A/D sampling rate is equal to : 2MHz / (c1*c2), when c1 = 0
or c2 = 0, the pacer trigger will be stopped.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidTimerValue

2.4.26 W_8112_Timer_Start

@ Description

Function Reference•• 85

The Timer #0 on the ACL-8112 can be freely programmed by
the users. This function is used to program the Timer #0. This
timer can be used as frequency generator if internal clock is
used. It also can be used as event counter if external clock is
used. All the 8253 modes are available. Please refer to
"Timer/Counter 8253" in 8112's user's manual Appendix B.

@ Syntax

Microsoft C/C++
int W_8112_Timer_Start (int timer_mode, unsigned int c0)

Visual Basic

Windows 3.11 Version:

W_8112_Timer_Start (ByVal timer_mode As Integer,
ByVal c0 As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8112_Timer_Start (ByVal timer_mode As Long, ByVal
c0 As Long) As Long

@ Argument

timer_mode : the 8253 timer mode, the possible values are :
TIMER_MODE0, TIMER_MODE1,
TIMER_MODE2, TIMER_MODE3,
TIMER_MODE4, TIMER_MODE5.

c0 : the counter value of timer

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidTimerMode

2.4.27 W_8112_Timer_Read

@ Description

This function is used to read the counter value of the Timer #0.

86 •• Function Reference

@ Syntax

Microsoft C/C++
int W_8112_Timer_Read (unsigned int *counter_value)

Visual Basic

Windows 3.11 Version:

W_8112_Timer_Read (counter_value As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8112_Timer_Read (counter_value As Long) As Long

@ Argument

counter_value : the counter value of the Timer #0

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.4.28 W_8112_Timer_Stop

@ Description

This function is used to stop the timer operation. The timer is
set to the 'One-shot' mode with counter value '0'. That is, the
clock output signal will be set to high after executing this
function.

@ Syntax

Microsoft C/C++
int W_8112_Timer_Stop (unsigned int *counter_value)

Visual Basic

Windows 3.11 Version:

W_8112_Timer_Stop (counter_value As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

Function Reference•• 87

W_8112_Timer_Stop (counter_value As Long) As Long

@ Argument

counter_value : the current counter value of the Timer #0

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.4.29 W_8112_DMA_InitialMemoryAllocated

@ Description

This function is only available in Windows NT and Windows
2000 system. This function returns the available memory size
for DMA data transfer in the device driver in argument
MemSize. While performming analog input with DMA data
transfer, the analog input size can not exceed this size.

@ Syntax

Microsoft C/C++
W_8112_DMA_InitialMemoryAllocated(int *MemSize)

Visual Basic

Win-NT/2000 Version:

W_8112_DMA_InitialMemoryAllocated(MemSize As Long)
As Long

@ Argument

MemSize : the available memory size for DMA data transfer
in device driver of ACL-8112DG/HG.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_INTNotSet

88 •• Function Reference

2.5 8112PG Software DLL Driver

In this section, the ACL-8112PG’s software DLL drivers are
described. The function names of Windows 3.11, Window 95/98,
and Windows NT/2000 versions are the same. So, users do not
need to learn the difference between them. The application’s
portability between these three systems can be very high.

2.5.1 W_812_Initial

@ Description

An ACL-8112PG card is initialized according to the card
number and the corresponding base address. Each ACL-
8112PG multi-function data acquisition card has to be initialized
by this function before calling other functions.

Note: In this library, if you want to operate DMA or interrupt
operation, only two ACL-8112PG cards can be initialized. The
reason is only two DMA channels are supported in the card.

@ Syntax

Microsoft C/C++

int W_812_Initial (int card_number, int base_addresss)

Visual Basic

Windows 3.11 Version:

W_812_Initial (ByVal card_number As Integer, ByVal
base_address As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_812_Initial (ByVal card_number As Long, ByVal
base_address As Long) As Long

@ Argument

card_number : The card number to be initialized. If all the
ACL-8112PG cards only perform software
polling, eight cards can be initialized and the

Function Reference•• 89

valid card numbers are CARD_1, CARD_2,
…, CARD_8. However, if the ACL-8111PG
cards are operated in Windows NT system
and will perform interrupt or DMA data
transfer, only two cards can be initialized and
the card number must be CARD_1 or
CARD_2.

base_address : the I/O port base address of the card.

@ Return Code

ERR_NoError
ERR_InvalidBoardNumber
ERR_BaseAddressError

2.5.2 W_812_Switch_Card_No

@ Description

After initialized more than one ACL-8112PG cards, this function
is used to select which card is used currently.

@ Syntax

Microsoft C/C++

int W_812_Switch_Card_No (int card_number)

Visual Basic

Windows 3.11 Version:

W_812_Switch_Card_No (ByVal card_number As Integer)
As Integer

Win-95/98, Win-NT/2000 Version:

W_812_Switch_Card_No (ByVal card_number As Long)
As Long

@ Argument

card_number : The card number of the card that is set to be
active. If all the ACL-8112PG cards only

90 •• Function Reference

perform software polling, the valid card
numbers are CARD_1, CARD_2, …, CARD_8.
However, if the ACL-8112PG cards are
operated in Windows NT system and will
perform interrupt or DMA data transfer, only
two cards can be initialized and the card
number must be CARD_1 or CARD_2.

@ Return Code

ERR_NoError
ERR_InvalidBoardNumber

2.5.3 W_812_DI

@ Description

This function is used to read data from digital input port. There
are 16 digital inputs on the ACL-8112PG. The bit 0 to bit 7 are
defined as low byte and the bit 8 to bit 15 are defined as high
byte.

@ Syntax

Microsoft C/C++

int W_812_DI (int port_number, unsigned char *di_data)

Visual Basic

Windows 3.11 Version:

W_812_DI (ByVal port_number As Integer, di_data As
Byte) As Integer

Win-95/98, Win-NT/2000 Version:

W_812_DI (ByVal port_number As Integer, di_data As
Byte) As Long

@ Argument

port_number : To indicate which port is read, DI_LOW_BYTE
or DI_HIGH_BYTE.
DI_LOW_BYTE : bit 0 ~ bit 7

Function Reference•• 91

DI_HIGH_BYTE : bit8 ~ bit15
di_data : return value from digital port.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_PortError

2.5.4 W_812_DI _Channel

@ Description

This function is used to read data from digital input channels
(bit). There are 16 digital input channels on the ACL-8112PG.
When performs this function, the digital input port is read and
the value of the corresponding channel is returned.

* channel means each bit of digital input ports.

@ Syntax

Microsoft C/C++

int _812_DI_Channel (int di_ch_no, unsigned int *di_data)

Visual Basic

Windows 3.11 Version:

W_812_DI_Channel (ByVal di_ch_no As Integer, di_data
As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_812_DI_Channel (ByVal di_ch_no As Long, di_data As
Long) As Long

@ Argument

di_ch_no : the DI channel number, the value has to be set
between 0 and 15.

di_data : return value, either 0 or 1.

@ Return Code

92 •• Function Reference

ERR_NoError
ERR_BoardNoInit
ERR_InvalidDIChannel

2.5.5 W_812_DO

@ Description

This function is used to write data to digital output ports. There
are 16 digital outputs on the ACL-8112PG, they are divided to
two ports, DO_LOW_BYTE and DO_HIGH_BYTE. The channel
0 to channel 7 are defined in DO_LOW_BYTE port and the
channel 8 to channel 15 are defined as the DO_HIGH_BYTE
port.

@ Syntax

Microsoft C/C++

int W_812_DO (int port_number, unsigned char do_data)

Visual Basic

Windows 3.11 Version:

W_812_DO (ByVal port_number As Integer, ByVal
do_data As Byte) As Integer

Win-95/98, Win-NT/2000 Version:

W_812_DO (ByVal port_number As Long, ByVal do_data
As Byte) As Long

@ Argument

port_number : DO_LOW_BYTE or DO_HIGH_BYTE
do_data : value will be written to digital output port

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_PortError

Function Reference•• 93

2.5.6 W_812_DA

@ Description

This function is used to write data to D/A converters. There are
two Digital-to-Analog conversion channels on the ACL-8112PG.
The resolution of each channel is 12-bit, i.e. the range is from 0
to 4095.

@ Syntax

Microsoft C/C++

int W_812_DA (int da_ch_no, unsigned int da_data)

Visual Basic

Windows 3.11 Version:

W_812_DA (ByVal da_ch_no As Integer, ByVal da_data
As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_812_DA (ByVal da_ch_no As Long, ByVal da_data As
Long) As Long

@ Argument

da_ch_no : D/A channel number, the valid data is :

0 Channel AO1
1 Channel AO2

da_data : D/A converted value, if the value is greater
than 4095, the higher 4 bits are negligent.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidDAChannel

94 •• Function Reference

2.5.7 W_812_AD_Set_Channel

@ Description

This function is used to set A/D channel by means of writing
data to the A/D channel multiplexer register. There are 16
single-ended A/D channels in ACL-8112PG, so the channel
number should be set between 0 and 15 only. The initial state is
channel 0 which is the default setting by the ACL-8112PG
hardware configuration.

@ Syntax

Microsoft C/C++

int W_812_AD_Set_Channel (int ad_ch_no)

Visual Basic

Windows 3.11 Version:

W_812_AD_Set_Channel (ByVal ad_ch_no As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_812_AD_Set_Channel (ByVal ad_ch_no As Long) As
Long

@ Argument

ad_ch_no : channel number to perform A/D conversion

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADChannel

2.5.8 W_812_AD_Set_Gain

@ Description

Function Reference•• 95

This function is used to set the A/D range by means of writing
data to the range control register. The major difference between
8112DG, 8112HG, and 8112PG is each card supports different
ranges which affect the input voltage range of each card. This
is the only difference between these cards. Each card‘s gain
and its corresponding A/D input ranges are listed as below.

The initial value of gain is '1', which is set by the ACL-8112PG
hardware.

** ACL-8112PG :
If input voltage range is set to ±5 V (JP9),

Input Range (V) Gain Gain Code
±5 V X 1 AD_GAIN_1

±2.5 V X 2 AD_GAIN_2
±1.25 V X 4 AD_GAIN_4
±0.625 V X 8 AD_GAIN_8
±0.3125V X 16 AD_GAIN_16

If input voltage range is set to ±10 V (JP9),

Input Range (V) Gain Gain Code
±10 V X 1 AD_GAIN_1
±5 V X 2 AD_GAIN_2

±2.5 V X 4 AD_GAIN_4
±1.25 V X 8 AD_GAIN_8
±0.625 V X 16 AD_GAIN_16

Note : This function will not check if you setup a right gain code for
different data acquisition cards, so you should be very careful
what kind of data acquisition card you use, and setup a right Gain
code.

@ Syntax

Microsoft C/C++

int W_812_AD_Set_Gain (int ad_gain)

96 •• Function Reference

Visual Basic

Windows 3.11 Version:

W_812_AD_Set_Gain (ByVal ad_gain As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_812_AD_Set_Gain (ByVal ad_gain As Long) As Long

@ Argument

ad_gain : the programmable gain of A/D conversion, the
possible values are:
* ACL-8112PG :

AD_GAIN_1, AD_GAIN_2, AD_GAIN_4, AD_GAIN_8,
AD_GAIN_16

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADGain

2.5.9 W_812_AD_Set_Mode

@ Description

This function is used to set the A/D trigger and data transfer
mode by means of writing data to the mode control register.
The hardware initial state of the ACL-8112PG is set as
A8112_AD_MODE_1 software (internal) trigger with program
polling.

A/D Mode Description
A8112_AD_MODE_0 External Trigger, Software Polling
A8112_AD_MODE_1 Software Trigger, Software Polling
A8112_AD_MODE_2 Timer Trigger, DMA Transfer
A8112_AD_MODE_3 External Trigger, DMA Transfer
A8112_AD_MODE_4 External Trigger, Interrupt Transfer
A8112_AD_MODE_5 Software Trigger, Interrupt Transfer
A8112_AD_MODE_6 Timer Trigger, Interrupt Transfer

Function Reference•• 97

A8112_AD_MODE_7 Not Used

@ Syntax

Microsoft C/C++

int W_812_AD_Set_Mode (int ad_mode)

Visual Basic

Windows 3.11 Version:

W_812_AD_Set_Mode (ByVal ad_mode As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_812_AD_Set_Mode (ByVal ad_mode As Long) As
Long

@ Argument

ad_mode : A/D trigger and data transfer mode

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidMode

2.5.10 W_812_AD_Soft_Trig

@ Description

This function is used to trigger the A/D conversion by software.
When the function is called, a trigger pulse will be generated
and the converted data will be stored in the address Base+4
and Base+5, and can be retrieved by function
W_812_AD_Aquire().

@ Syntax

Microsoft C/C++

int W_812_AD_Soft_Trig (void)

98 •• Function Reference

Visual Basic

Windows 3.11 Version:

W_812_AD_Soft_Trig () As Integer
Win-95/98, Win-NT/2000 Version:

W_812_AD_Soft_Trig () As Long

@ Argument

None

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.5.11 W_812_AD_Aquire

@ Description

This function is used to poll the A/D conversion data. It will
trigger the A/D conversion, and read the 12 bits A/D data until
the data is ready ('data-ready' bit becomes to low).

@ Syntax

Microsoft C/C++

int W_812_AD_Aquire (int *ad_data)

Visual Basic

Windows 3.11 Version:

W_812_AD_Aquire (ad_data As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_812_AD_Aquire (ad_data As Long) As Long

@ Argument

ad_data : 12 bits A/D converted value, the value should
be within 0 and 4095.

Function Reference•• 99

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_AD_AquireTimeOut

2.5.12 W_812_CLR_IRQ

@ Description

This function is used to clear interrupt request which is
requested by the ACL-8112PG. If you use interrupt to transfer
A/D converted data, you should use this function to clear
interrupt request status, otherwise the new interrupt signal can
not be generated.

@ Syntax

Microsoft C/C++

int W_812_CLR_IRQ (void)

Visual Basic

Windows 3.11 Version:

W_812_CLR_IRQ () As Integer
Win-95/98, Win-NT/2000 Version:

W_812_CLR_IRQ () As Long

@ Argument

None

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.5.13 W_812_AD_DMA_Start

@ Description

100 •• Function Reference

The function will perform A/D conversion N times with DMA
data transfer by using the pacer trigger (internal timer trigger) or
external trigger source. It will take place in the background and
will not be stopped until the N-th conversion has been
completed or your program executes W_812_AD_DMA_Stop()
function to stop the process. After executing this function, it is
necessary to check the status of the operation by using the
function W_812_AD_DMA_Status(). The function performs on
single A/D channel with fixed A/D range.

Note: W_812_AD_DMA_Start() and W_812_AD_DMA_Stop() are pair
function, i.e., you have to call W_812_AD_DMA_Stop() after
W_812_AD_DMA_Start(), otherwise the A/D converted data will
not be stored in the buffer you specified.

@ Syntax

Microsoft C/C++

int W_812_DMA_Start (int ad_ch_no, int ad_range, int
dma_ch_no, int irq_ch_no, int count , unsigned
short *ad_buffer, unsigned int c1, unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_812_DMA_Start (ByVal ad_ch_no As Integer, ByVal
ad_range As Integer, ByVal dma_ch_no As Integer,
ByVal irq_ch_no As Integer, ByVal count As
Integer, ad_buffer As Integer, ByVal c1 As Integer,
ByVal c2 As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_812_DMA_Start (ByVal ad_ch_no As Long, ByVal
ad_range As Long, ByVal dma_ch_no As Long,
ByVal irq_ch_no As Long, ByVal count As Long,
ad_buffer As Integer, ByVal c1 As Long, ByVal c2
As Long) As Long

@ Argument

ad_ch_no : A/D channel number

Function Reference•• 101

ad_gain : A/D range value. Please refer to section 2.5.8
for valid range value.

dma_ch_no : DMA channel number, DMA_CH_1 or
DMA_CH_3

irq_ch_no : IRQ channel number, used to stop DMA
count : the number of A/D conversion to perform
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must be
larger than the number of A/D conversion.

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

Note : While calling this function in Visual Basic program, please pass
the first element of the buffer array as the argument of ad_buffer.
For example, if the name of array is buf, pass buf(0) as argument
if index number of buf begins from 0. Also with Windows 3.11
version, because the Integer type in Visual Basic is signed integer
(i.e., its range is from -32768 to 32767), if you want to specify c1
or c2 to number larger than 32767, please set it as the number
minus 65536. For example, if you want to set c1 as 40000, please
set it as (40000 - 65536) = -25536 instead.

@ Return Code

ERR_NoError
ERR_BoardNoInit, ERR_InvalidADChannel,
ERR_InvalidADGain, ERR_InvalidDMAChannel,
ERR_InvalidIRQChannel, ERR_InvalidTimerValue

2.5.14 W_812_AD_ContDMA_Start

@ Description

The function will perform continuous A/D conversions with DMA
data transfer by using the pacer trigger (internal timer trigger) or
external trigger source.
It will take place in the background and will not be stopped until
your program executes W_812_AD_DMA_Stop() function to

102 •• Function Reference

stop the process. After executing this function, it is necessary
to check the status of the operation by using the function
W_812_AD_ DblBufferHalfReady().The function performs on
single A/D channel with fixed A/D range.

Note: W_812_AD_ContDMA_Start() and W_812_AD_DMA_Stop() are
pair function, i.e., you have to call W_812_AD_DMA_Stop() after
W_812_AD_ContDMA_Start(), otherwise the A/D conversion will
never stop .

@ Syntax

Microsoft C/C++

int W_812_ContDMA_Start (int ad_ch_no, int ad_range,
int dma_ch_no, int irq_ch_no, int count , unsigned
short *ad_buffer, unsigned int c1, unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_812_ContDMA_Start (ByVal ad_ch_no As Integer,
ByVal ad_range As Integer, ByVal dma_ch_no As
Integer, ByVal irq_ch_no As Integer, ByVal count
As Integer, ad_buffer As Integer, ByVal c1 As
Integer, ByVal c2 As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_812_ContDMA_Start (ByVal ad_ch_no As Long, ByVal
ad_range As Long, ByVal dma_ch_no As Long,
ByVal irq_ch_no As Long, ByVal count As Long,
ad_buffer As Integer, ByVal c1 As Long, ByVal c2
As Long) As Long

@ Argument

ad_ch_no : A/D channel number
ad_gain : A/D range value. Please refer to section 2.5.8

for valid range value.
dma_ch_no : DMA channel number, DMA_CH_1 or

DMA_CH_3
irq_ch_no : IRQ channel number, used to stop DMA
count : the number of A/D conversion to perform

Function Reference•• 103

ad_buffer : the start address of the memory buffer to
store the A/D data, the buffer size must be
larger than the number of A/D conversion.

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

Note : While calling this function in Visual Basic program, please pass
the first element of the buffer array as the argument of ad_buffer.
For example, if the name of array is buf, pass buf(0) as argument
if index number of buf begins from 0. Also with Windows 3.11
version, because the Integer type in Visual Basic is signed integer
(i.e., its range is from -32768 to 32767), if you want to specify c1
or c2 to number larger than 32767, please set it as the number
minus 65536. For example, if you want to set c1 as 40000, please
set it as (40000 - 65536) = -25536 instead.

@ Return Code

ERR_NoError
ERR_AD_DMANotSet
ERR_BoardNoInit, ERR_InvalidADChannel,
ERR_InvalidADGain, ERR_InvalidDMAChannel,
ERR_InvalidIRQChannel, ERR_InvalidTimerValue

2.5.15 W_812_AD_DMA_Status

@ Description

Since the W_812_AD_DMA_Start function executes in the
background, you can issue the function
W_812_AD_DMA_Status() to check its operation status.

@ Syntax

Microsoft C/C++

int W_812_AD_DMA_Status (int *status , int *count)

Visual Basic

Windows 3.11 Version:

104 •• Function Reference

W_812_AD_DMA_Status (status As Integer, count As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_812_AD_DMA_Status (status As Long, count As Long)
As Long

@ Argument

status : status of the DMA data transfer
AD_DMA_STOP : A/D DMA is completed
AD_DMA_RUN : A/D DMA is not completed

count : the number of A/D data which has been
transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_ADDMANotSet

2.5.16 W_812_AD_DMA_Stop

@ Description

This function is used to stop the DMA data transfer. After
executing this function, the internal A/D trigger is disabled and
the A/D timer (timer #1 and #2) is stopped. The function
returns the number of the data which has been transferred, no
matter the A/D DMA data transfer is stopped by this function or
by the DMA terminal count ISR.

This function has to be called after W_812_AD_DMA_Start()
function issued. Otherwise, all converted data will not be saved
into the memory buffer you specified in your program.

@ Syntax

Microsoft C/C++

int W_812_AD_DMA_Stop (int *count)

Visual Basic

Function Reference•• 105

Windows 3.11 Version:

W_812_AD_DMA_Stop (count As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_812_AD_DMA_Stop (count As Long) As Long

@ Argument

count : the number of A/D converted data which has
been transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_ADDMANotSet

2.5.17 W_812_AD_INT_Start

@ Description

This function will perform A/D conversion N times with interrupt
data transfer by using internal pacer trigger or external trigger
source. It will take place in the background which will not be
stopped until the N-th conversion has been completed or your
program execute W_812_AD_INT_Stop() function to stop the
process. After executing this function, it is necessary to check
the status of the operation by using the function
W_812_AD_INT_Status(). The function is performed on single
A/D channel with fixed gain.

Note: W_812_AD_INT_Start() and W_812_AD_INT_Stop() are a
pair function, i.e., you have to call W_812_AD_INT_Stop()
after W_812_AD_INT_Start(), otherwise the A/D converted
data will not be stored in the buffer you had specified.

@ Syntax

Microsoft C/C++
int W_812_AD_INT_Start (int ad_ch_no, int ad_gain,

106 •• Function Reference

int irq_ch_no, int count, unsigned short *ad_buffer,
unsigned int c1, unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_812_AD_INT_Start (ByVal ad_ch_no As Integer, ByVal
ad_gain As Integer, ByVal irq_ch_no As Integer,
ByVal count As Integer, ad_buffer As Integer,
ByVal c1 As Integer, ByVal c2 As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_812_AD_INT_Start (ByVal ad_ch_no As Long, ByVal
ad_gain As Long, ByVal irq_ch_no As Long, ByVal
count As Long, ad_buffer As Integer, ByVal c1 As
Long, ByVal c2 As Long) As Long

@ Argument

ad_ch_no : A/D channel number
ad_gain : A/D range value. Please refer to section 2.5.8

for valid range value.
irq_ch_no : IRQ channel number
count : the numbers of A/D conversion
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must large
than the number of A/D conversion. Only the
lower 12 bits of each data element in ad_buffer
is meaningful. The upper 4 bits may contains
some data, but this data should be ignored.

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

Function Reference•• 107

Note : While calling this function in Visual Basic program, please pass
the first element of the buffer array as the argument of ad_buffer.
For example, if the name of array is buf, pass buf(0) as argument
if index number of buf begins from 0. Also with Windows 3.11
version, because the Integer type in Visual Basic is signed integer
(i.e., its range is from -32768 to 32767), if you want to specify c1
or c2 to number larger than 32767, please set it as the number
minus 65536. For example, if you want to set c1 as 40000, please
set it as (40000 - 65536) = -25536 instead.

@ Return Code

ERR_NoError
ERR_BoardNoInit, ERR_InvalidADChannel,
ERR_InvalidADGain, ERR_InvalidIRQChannel,
ERR_InvalidTimerValue

@ Example

Visual Basic (Win-95/98, Win-NT/2000 Version)
Dim ad_buf(1024) As Integer
Dim Channel As Long, Gain As Long, Irq As Long
Dim ad_count As Long, c1 As Long, c2 As Long
Dim Ret As Long
 .

.
ad_count = 1024
 .

.
Ret = W_812_AD_INT_Start (Channel, Gain, Irq, ad_count,
 ad_buf(0), c1, c2) . . .

2.5.18 W_812_AD_INT_Status

@ Description

Since the W_812_AD_INT_Start() function executes in
background, you can issue the function
W_812_AD_INT_Status() to check the status of interrupt
operation.

108 •• Function Reference

@ Syntax

Microsoft C/C++
int W_812_AD_INT_Status (int *status , int *count)

Visual Basic

Windows 3.11 Version:

W_812_AD_INT_Status (status As Integer, count As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_812_AD_INT_Status (status As Long, count As Long)
As Long

@ Argument

status : status of the interrupt data transfer
AD_INT_STOP : interrupt A/D is completed
AD_INT_RUN : interrupt A/D is not completed

count : the number of A/D data which has been
transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.5.19 W_812_AD_INT_Stop

@ Description

This function is used to stop the interrupt data transfer function.
After executing this function, the internal A/D trigger is disable
and the A/D timer is stopped. The function returns the number
of the data which has been transferred, no matter whether if the
A/D interrupt data transfer is stopped by this function or by the
W_812_AD_INT_Start() itself.

This function has to be called after W_812_AD_INT_Start()
function issued. Otherwise, all converted data will not be saved

Function Reference•• 109

into the memory buffer you had specified in
W_812_AD_INT_Start() function call.

@ Syntax

Microsoft C/C++
int W_812_AD_INT_Stop (int *count)

Visual Basic

Windows 3.11 Version:

W_812_AD_INT_Stop (count As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_812_AD_INT_Stop (count As Long) As Long

@ Argument

count : the number of A/D data which have been
transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_INTNotSet

2.5.20 W_812_AD_ContINT_Start

@ Description

The function will perform continuous A/D conversions with
interrupt data transfer by using timer pacer (internal clock
trigger). It will take place in the background which will not be
stopped until your program execute W_812_AD_INT_Stop()
function to stop the process. After calling this function, it is
necessary to check the status of the operation by using the
function W_812_AD_DblBufferHalfReady().

@ Syntax

Microsoft C/C++

110 •• Function Reference

int W_812_ContINT_Start (int ad_ch_no, Boolean
autoscan, int ad_gain, int irq_ch_no, int count,
unsigned short *ad_buffer, unsigned int c1,
unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_812_AD_ContINT_Start (ByVal ad_ch_no As Integer,
ByVal auto_scan As Integer, ByVal ad_gain As
Integer, ByVal irq_ch_no As Integer, ByVal count
As Integer, ad_buffer As Integer, ByVal c1 As
Integer, ByVal c2 As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_812_AD_ContINT_Start (ByVal ad_ch_no As Long,
ByVal auto_scan As Integer, ByVal ad_gain As
Long, ByVal irq_ch_no As Long, ByVal count As
Long, ad_buffer As Integer, ByVal c1 As Long,
ByVal c2 As Long) As Long

@ Argument

ad_ch_no : A/D channel number

If autoscan is enabled, the A/D channel scan sequence will be:
0, 1, 2, 3,…[ad_ch_no], 0, 1, …, [ad_ch_no], …
If autoscan is disabled, only the data from channel [ad_ch_no]
will be converted.

autoscan: FALSE: autoscan is disabled
 TRUE: autoscan is enabled
ad_gain : A/D range value. Please refer to section 2.5.8

for valid range value.
irq_ch_no : IRQ channel number
count : the numbers of A/D conversion
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must large
than the number of A/D conversion. Only the
lower 12 bits of each data element in ad_buffer
is meaningful. The upper 4 bits may contains
some data, but this data should be ignored.

Function Reference•• 111

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

@ Return Code

ERR_NoError
ERR_BoardNoInit, ERR_InvalidADChannel,

 ERR_InvalidADGain, ERR_InvalidIRQChannel,
 ERR_InvalidTimerValue
 ERR_AD_INTNotSet

2.5.21 W_812_AD_SCANINT_Start

@ Description

This function is used to start automatic channel scan . If
autoscan mode is started and the end channel number is set as
n by argument ad_ch_no, the data will be converted
automatically from channel 0 to channel n.
For example, the channel is set as 4 and autoscan is started,
the A/D conversion sequence will be 0, 1, 2, 3, 4, 0, 1, 2, 3, 4,
0, 1, 2, 3, 4, 0, If the autoscan is finished, the converted
channel will be kept at the specified channel, i.e. channel 4.

@ Syntax

Microsoft C/C++

int W_812_AD_SCANINT_Start(int ad_ch_no, int
ad_gain , int irq_no, int count , unsigned short
*ad_buffer , unsigned int c1 , unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_812_AD_ SCANINT_Start (ByVal ad_ch_no As Integer,
ByVal ad_gain As Integer, ByVal irq_ch_no As
Integer, ByVal count As Integer, ad_buffer As
Integer, ByVal c1 As Integer, ByVal c2 As Integer)
As Integer

112 •• Function Reference

Win-95/98, Win-NT/2000 Version:

W_812_AD_ SCANINT_Start (ByVal ad_ch_no As Long,
ByVal ad_gain As Long, ByVal irq_ch_no As Long,
ByVal count As Long, ad_buffer As Integer, ByVal
c1 As Long, ByVal c2 As Long) As Long

@ Argument

ad_ch_no : end A/D channel number for AutoScan
ad_gain : A/D range value. Please refer to section 2.5.8

for valid range value.
irq_ch_no : IRQ channel number used to transfer A/D data,

the possible value is defined in file DLL2.H
count : the number of A/D conversion
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must be
large than the number of A/D conversion.

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADChannel
ERR_AD_InvalidGain
ERR_InvalidIRQChannel
ERR_InvalidTimerValue

2.5.22 W_812_AD_DblBufferHalfReady

@ Description

Checks whether the next half buffer of data in circular buffer is
ready for transfer during an double-buffered analog input
operation.

@ Syntax

Function Reference•• 113

Microsoft C/C++

int W_812_AD_DblBufferHalfReady (BOOLEAN
*bHalfReady)

Visual Basic

W_812_AD_DblBufferHalfReady (bHalfReady As Long) As
Long

@ Argument

bHalfReady : Whether the next half buffer of data is
available.If HalfReady = TRUE, you can call
W_812_AD_DblBufferTransfer() to copy
the data to your user buffer.

@ Return Code

ERR_NoError
 ERR_InvalidMode

2.5.23 W_812_AD_DblBufferTransfer

@ Description

Depending on the continuous AI function elected, half of the
data in circular buffer will be logged into the user buffer .
You can execute this function repeatedly to return sequential
half buffers of the data.

@ Syntax

Microsoft C/C++

int W_812_AD_DblBufferTransfer (USHORT *pwBuffer)

Visual Basic

W_812_AD_DblBufferTransfer (pwBuffer As Integer) As
Long

@ Argument

pwBuffer: The user buffer. An integer array to which the
data is to be copied.

114 •• Function Reference

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.5.24 W_812_AD_Timer

@ Description

This function is used to setup the Timer #1 and Timer #2. The
values of c1 and c2 are used as frequency dividers for
generating constant A/D sampling rate dedicatedly. It is
possible to stop the pacer trigger by setting any one of the
dividers as 0. Because the A/D conversion rate is limited due to
the conversion time of the A/D converter, the highest sampling
rate of the ACL-8112PG can not exceed 100 KHz. The
multiplication of the dividers must be larger than 20.

@ Syntax

Microsoft C/C++
int W_812_AD_Timer(unsigned int c1, unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_812_AD_Timer (ByVal c1 As Integer, ByVal c2 As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_812_AD_Timer (ByVal c1 As Long, ByVal c2 As Long)
As Long

@ Argument

c1 : frequency divider of timer #1
c2 : frequency divider of timer #2

Note : the A/D sampling rate is equal to : 2MHz / (c1*c2), when c1 = 0
or c2 = 0, the pacer trigger will be stopped.

@ Return Code

Function Reference•• 115

ERR_NoError
ERR_BoardNoInit
ERR_InvalidTimerValue

2.5.25 W_812_Timer_Start

@ Description

The Timer #0 on the ACL-8112PG can be freely programmed
by the users. This function is used to program the Timer #0.
This timer can be used as frequency generator if internal clock
is used. It also can be used as event counter if external clock is
used. All the 8253 modes are available. Please refer to
"Timer/Counter 8253" in 812's user's manual Appendix B.

@ Syntax

Microsoft C/C++
int W_812_Timer_Start (int timer_mode, unsigned int c0)

Visual Basic

Windows 3.11 Version:

W_812_Timer_Start (ByVal timer_mode As Integer, ByVal
c0 As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_812_Timer_Start (ByVal timer_mode As Long, ByVal
c0 As Long) As Long

@ Argument

timer_mode : the 8253 timer mode, the possible values are :
TIMER_MODE0, TIMER_MODE1,
TIMER_MODE2, TIMER_MODE3,
TIMER_MODE4, TIMER_MODE5.

c0 : the counter value of timer

@ Return Code

ERR_NoError
ERR_BoardNoInit

116 •• Function Reference

ERR_InvalidTimerMode

2.5.26 W_812_Timer_Read

@ Description

This function is used to read the counter value of the Timer #0.

@ Syntax

Microsoft C/C++
int W_812_Timer_Read (unsigned int *counter_value)

Visual Basic

Windows 3.11 Version:

W_812_Timer_Read (counter_value As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_812_Timer_Read (counter_value As Long) As Long

@ Argument

counter_value : the counter value of the Timer #0

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.5.27 W_812_Timer_Stop

@ Description

This function is used to stop the timer operation. The timer is
set to the 'One-shot' mode with counter value '0'. That is, the
clock output signal will be set to high after executing this
function.

@ Syntax

Function Reference•• 117

Microsoft C/C++
int W_812_Timer_Stop (unsigned int *counter_value)

Visual Basic

Windows 3.11 Version:

W_812_Timer_Stop (counter_value As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_812_Timer_Stop (counter_value As Long) As Long

@ Argument

counter_value : the current counter value of the Timer #0

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.5.28 W_812_DMA_InitialMemoryAllocated

@ Description

This function is only available in Windows NT and Windows
2000 system. This function returns the available memory size
for DMA data transfer in the device driver in argument
MemSize. While performming analog input with DMA data
transfer, the analog input size can not exceed this size.

@ Syntax

Microsoft C/C++
W_812_DMA_InitialMemoryAllocated(int *MemSize)

Visual Basic

Win-NT/2000 Version:

W_812_DMA_InitialMemoryAllocated(MemSize As Long)
As Long

@ Argument

118 •• Function Reference

MemSize : the available memory size for DMA data transfer
in device driver of ACL-8112PG.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_INTNotSet

Function Reference•• 119

2.6 8113 / / 8113A Software DLL Driver
In this section, the software DLL drivers of ACL-8113/8113A are
described. The function names of Windows 3.11, Window 95/98,
Windows NT/2000 versions are the same. So, users do not need
to learn the difference between them. The application’s portability
between these three systems can be very high.

Note : All functions of the ACL-8113 can be applied to the ACL-813
directly. That is, users can use the 8113.DLL for both ACL-8113
and ACL-813 data acquisition cards.

2.6.1 W_8113_Initial / W_8113A_ Initial

@ Description

An ACL-8113/8113A card is initialized according to the card
number and the corresponding base address. Each ACL-
8113/8113A multi-function data acquisition card has to be
initialized by this function before calling other functions.

@ Syntax

Microsoft C/C++
int W_8113_Initial (int card_number, int base_addresss)
int W_8113A_Initial (int card_number, int base_addresss)

Visual Basic

Windows 3.11 Version:

W_8113_Initial (ByVal card_number As Integer, ByVal
base_address As Integer) As Integer

W_8113A_Initial (ByVal card_number As Integer, ByVal
base_address As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8113_Initial (ByVal card_number As Long, ByVal
base_address As Long) As Long

W_8113A_Initial (ByVal card_number As Long, ByVal
base_address As Long) As Long

120 •• Function Reference

@ Argument

card_number :The card number to be initialized, at most 8
cards can be initialized in one system, the card
number must be within 0 and 7.

base_address : the I/O port base address of the card.

@ Return Code

ERR_NoError
ERR_InvalidBoardNumber
ERR_BaseAddressError

2.6.2 W_8113_ActCard_Set / W_8113A_ActCard_Set

@ Description

This function is used on multi-card system. After the ACL-
8113/8113A cards are initialized by W_8113(A)_Initial()
function, you can use this function to select which one you want
to operate.

Note: With this library, up to eight ACL-8113/8113A cards can be
initialized.

@ Syntax

Microsoft C/C++
int _8113_ActCard_Set (int card_number)
int _8113A_ActCard_Set (int card_number)

Visual Basic

Windows 3.11 Version:

W_8113_ActCard_Set (ByVal card_number As Integer) As
Integer

W_8113A_ActCard_Set (ByVal card_number As Integer)
As Integer

Win-95/98, Win-NT/2000 Version:

Function Reference•• 121

W_8113_ActCard_Set (ByVal card_number As Long) As
Long

W_8113A_ActCard_Set (ByVal card_number As Long) As
Long

@ Argument

card_number : The card number to be initialized, totally 8
cards can be initialized. The card number must
be within the range of 0 and 7.

@ Return Code

ERR_NoError
ERR_InvalidBoardNumber

2.6.3 W_8113_Channel_Select/Deselect/Clear/ChannelNo_Get
W_8113A_Channel_Select/Deselect/Clear/ChannelNo_Get

@ Description

The library functions can perform the A/D conversions on
multiple channels at once. You may select multiple channels to
perform the A/D conversions on. The channels are not
necessary to select as contiguous, i.e. the channels can be
selected in any order, but the conversion sequence will be in
numerical order. The functions that support A/D channel
selection and de-selection are the following:

W_8113_Channel_Select / W_8113A_Channel_Select:
 selects a particular channel for conversion.
W_8113_Channel_Deselect / W_8113A_Channel_Deselect:
 removes a channel from the list of selected channels.
W_8113_Channel_Clear / W_8113A_Channel_Clear:
 clears all the channels from the list of slected list, and no
 channel is selected.
W_8113_ChannelNo_Get / W_8113A_ChannelNo_Get:
 returns the number of selected channels.

@ Syntax

122 •• Function Reference

Microsoft C/C++
int W_8113_Channel_Select (int channel)
int W_8113_Channel_Deselect (int channel)
int W_8113_Channel_Clear (void)
int W_8113_ChannelNo_Get (int *no)

int W_8113A_Channel_Select (int channel)
int W_8113A_Channel_Deselect (int channel)
int W_8113A_Channel_Clear (void)
int W_8113A_ChannelNo_Get (int *no)

Visual Basic

Windows 3.11 Version:

W_8113_Channel_Select (ByVal channel As Integer) As
Integer

W_8113_Channel_Deselect (ByVal channel As Integer)
As Integer

W_8113_Channel_Clear () As Integer
W_8113_ChannelNo_Get (no As Integer) As Integer

W_8113A_Channel_Select (ByVal channel As Integer) As
Integer

W_8113A_Channel_Deselect (ByVal channel As Integer)
As Integer

W_8113A_Channel_Clear () As Integer
W_8113A_ChannelNo_Get (no As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8113_Channel_Select (ByVal channel As Long) As
Long

W_8113_Channel_Deselect (ByVal channel As Long) As
Long

W_8113_Channel_Clear () As Long
W_8113_ChannelNo_Get (no As Long) As Long

W_8113A_Channel_Select (ByVal channel As Long) As
Long

W_8113A_Channel_Deselect (ByVal channel As Long)
As Long

Function Reference•• 123

W_8113A_Channel_Clear () As Long
W_8113A_ChannelNo_Get (no As Long) As Long

@ Argument

channel : A/D channel number to select/deselect (0 ... 31)
no : number of channels currently selected

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADChannel

2.6.4 W_8113_Gain_Select / W_8113A_Gain_Select

@ Description

This function is used to set the A/D gain by means of writing
data to the gain control register. It will effect the A/D input when
different gain is set. The initial value of gain is '1' which is the
default setting by the ACL-8113/8113A hardware.

The JP1 and JP2 are used to control A/D input modes - 10V or
20V, and Unipolar or Bipolar. The relationships between input
range and gain code are listed below.

Range & Mode JP1 JP2 Gain : Input Voltage
Range

Input Range 10V
&

Bipolar Mode
(Default)

10V

20V

UN

BI

 X1 : -5V ~ +5V
 X2 : -2.5V ~ +2.5V
 X4 : -1.25V ~ +1.25V
 X8 : -0.625V ~ +0.625V

124 •• Function Reference

Input Range 10V
&

Unipolar Mode

10V

20V

UN

BI

 X1 : 0V ~ 10V
 X2 : 0V ~ 5V
 X4 : 0V ~ 2.5V
 X8 : 0V ~ 1.25V

Input Range 20V
&

Bipolar Mode

10V

20V

UN

BI

 X1 : -10V ~10V
 X2 : -5V ~ +5V
 X4 : -2.5V ~ +2.5V
 X8 : -1.25V ~ +1.25V

Input Range 20V
&

Unipolar Mode

10V

20V

UN

BI

 X1 : Not Used
 X2 : 0V ~ 10V
 X4 : 0V ~ 5V
 X8 : 0V ~ 2.5V

Gain Gain Code
X 1 AD_GAIN_1
X 2 AD_GAIN_2
X 4 AD_GAIN_4
X 8 AD_GAIN_8

@ Syntax

Microsoft C/C++
int W_8113_Gain_Select (int ad_gain)
int W_8113A_Gain_Select (int ad_gain)

Visual Basic

Windows 3.11 Version:

W_8113_Gain_Select (ByVal ad_gain As Integer) As
Integer

Function Reference•• 125

W_8113A_Gain_Select (ByVal ad_gain As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8113_Gain_Select (ByVal ad_gain As Long) As Long
W_8113A_Gain_Select (ByVal ad_gain As Long) As Long

@ Argument

ad_gain : the programmable gain of A/D conversion, the
possible values is AD_GAIN_1, AD_GAIN_2,
AD_GAIN_4, and AD_GAIN_8.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADGain

2.6.5 W_8113_AD_Aquire / W_8113A_AD_Aquire

@ Description

This function is used to poll the A/D conversion data. It will
trigger the A/D conversion, and read the 12 bits A/D data until
the data is ready ('data ready' bit becomes to low).

@ Syntax

Microsoft C/C++
int W_8113_AD_Aquire (int *ad_data)
int W_8113A_AD_Aquire (int *ad_data)

Visual Basic

Windows 3.11 Version:

W_8113_AD_Aquire (ad_data As Integer) As Integer
W_8113A_AD_Aquire (ad_data As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_8113_AD_Aquire (ad_data As Long) As Long
W_8113A_AD_Aquire (ad_data As Long) As Long

126 •• Function Reference

@ Argument

ad_data : 12 bits A/D converted value, the value should
be within 0 and 4095.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_AD_AquireTimeOut

2.6.6 W_8113_MAD_Aquire / W_8113A_MAD_Aquire

@ Description

This function performs one A/D conversion on each of the
selected channels, and puts the data in the array 'Data_8113'. If
the channels in the selected list are 3, 8, 9, and 15, then the
converted values for channel 3 will be stored in Data_8113[3],
channel 8 in Data_8113[8], ..., etc. After using
W_8113(A)_MAD_Aquire, you should use
W_8113(A)_Get_MAD_Data function to get the converted data
stored in array Data_8113.

@ Syntax

Microsoft C/C++
int W_8113_MAD_Aquire (void)
int W_8113A_MAD_Aquire (void)

Visual Basic

Windows 3.11 Version:

W_8113_MAD_Aquire () As Integer
W_8113A_MAD_Aquire () As Integer
Win-95/98, Win-NT/2000 Version:

W_8113_MAD_Aquire () As Long
W_8113A_MAD_Aquire () As Long

@ Return Code

ERR_NoRrror

Function Reference•• 127

ERR_BoardNoInit

2.6.7 W_8113_Get_MAD_Data / W_8113A_Get_MAD_Data

@ Description

After using W_8113(A)_MAD_Aquire function to perform A/D
conversion, this function is called to get the converted data
stored in array ‘Data_8113’ (please refer to section 2.6.6 for the
details).

@ Syntax

Microsoft C/C++
int W_8113_Get_MAD_Data(unsigned int *ad_data_array)
int W_8113A_Get_MAD_Data(unsigned int

*ad_data_array)

Visual Basic

Windows 3.11 Version:

W_8113_Get_MAD_Data (ad_data_array As Integer) As
Integer

W_8113A_Get_MAD_Data (ad_data_array As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8113_Get_MAD_Data(ad_data_array As Long) As
Long

W_8113A_Get_MAD_Data(ad_data_array As Long) As
Long

@ Return Code

ERR_NoRrror

128 •• Function Reference

2.7 8216 Software DLL Driver
In this section, the ACL-8216’s software DLL drivers are
described. The function names of Windows 3.11, Window 95/98,
and Windows NT/2000 versions are the same. So, users do not
need to learn the difference between them. The application’s
portability between these three systems can be very high.

2.7.1 W_8216_Initial

@ Description

An ACL-8216 card is initialized according to the card number
and the corresponding base address. Each ACL-8216 multi-
function data acquisition card has to be initialized by this
function before calling other functions.

Note: In this library, if you want to operate DMA or interrupt
operation, only two ACL-8216 cards can be initialized. The
reason is only two DMA channels are supported in the card.

@ Syntax

Microsoft C/C++

int W_8216_Initial (int card_number, int base_addresss)

Visual Basic

Windows 3.11 Version:

W_8216_Initial (ByVal card_number As Integer, ByVal
base_address As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8216_Initial (ByVal card_number As Long, ByVal
base_address As Long) As Long

@ Argument

card_number : The card number to be initialized. If all the
ACL-8216 cards only perform software
polling, eight cards can be initialized and the
valid card numbers are CARD_1, CARD_2,

Function Reference•• 129

…, CARD_8. However, if the ACL-8216 cards
are operated in Windows NT system and will
perform interrupt or DMA data transfer, only
two cards can be initialized and the card
number must be CARD_1 or CARD_2.

base_address : the I/O port base address of the card.

@ Return Code

ERR_NoError
ERR_InvalidBoardNumber
ERR_BaseAddressError

2.7.2 W_8216_Switch_Card_No

@ Description

After initialized more than one ACL-8216 cards, this function is
used to select which card is used currently.

@ Syntax

Microsoft C/C++

int W_8216_Switch_Card_No (int card_number)

Visual Basic

Windows 3.11 Version:

W_8216_Switch_Card_No (ByVal card_number As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8216_Switch_Card_No (ByVal card_number As Long)
As Long

@ Argument

card_number : The card number of the card that is set to be
active. If all the ACL-8216 cards only perform
software polling, eight cards can be initialized
and the valid card numbers are CARD_1,

130 •• Function Reference

CARD_2, …, CARD_8. However, if the ACL-
8216 cards are operated in Windows NT
system and will perform interrupt or DMA data
transfer, only two cards can be initialized and
the card number must be CARD_1 or CARD_2.

@ Return Code

ERR_NoError
ERR_InvalidBoardNumber

2.7.3 W_8216_DI

@ Description

This function is used to read data from digital input port. There
are 16 digital inputs on the ACL-8216. The bit 0 to bit 7 are
defined as low byte and the bit 8 to bit 15 are defined as high
byte.

@ Syntax

Microsoft C/C++

int W_8216_DI (int port_number, unsigned char *di_data)

Visual Basic

Windows 3.11 Version:

W_8216_DI (ByVal port_number As Integer, di_data As
Byte) As Integer

Win-95/98, Win-NT/2000 Version:

W_8216_DI (ByVal port_number As Integer, di_data As
Byte) As Long

@ Argument

port_number : To indicate which port is read, DI_LOW_BYTE
or DI_HIGH_BYTE.
DI_LOW_BYTE : bit 0 ~ bit 7
DI_HIGH_BYTE : bit8 ~ bit15

di_data : return value from digital port.

Function Reference•• 131

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_PortError

2.7.4 W_8216_DI _Channel

@ Description

This function is used to read data from digital input channels
(bit). There are 16 digital input channels on the ACL-8216.
When performs this function, the digital input port is read and
the value of the corresponding channel is returned.

* channel means each bit of digital input ports.

@ Syntax

Microsoft C/C++

int _8216_DI_Channel (int di_ch_no, unsigned int
*di_data)

Visual Basic

Windows 3.11 Version:

W_8216_DI_Channel (ByVal di_ch_no As Integer, di_data
As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8216_DI_Channel (ByVal di_ch_no As Long, di_data
As Long) As Long

@ Argument

di_ch_no : the DI channel number, the value has to be set
between 0 and 15.

di_data : return value, either 0 or 1.

@ Return Code

ERR_NoError

132 •• Function Reference

ERR_BoardNoInit
ERR_InvalidDIChannel

2.7.5 W_8216_DO

@ Description

This function is used to write data to digital output ports. There
are 16 digital outputs on the ACL-8216, they are divided to two
ports, DO_LOW_BYTE and DO_HIGH_BYTE. The channel 0 to
channel 7 are defined in DO_LOW_BYTE port and the channel
8 to channel 15 are defined as the DO_HIGH_BYTE port.

@ Syntax

Microsoft C/C++

int W_8216_DO (int port_number, unsigned char do_data)

Visual Basic

Windows 3.11 Version:

W_8216_DO (ByVal port_number As Integer, ByVal
do_data As Byte) As Integer

Win-95/98, Win-NT/2000 Version:

W_8216_DO (ByVal port_number As Long, ByVal do_data
As Byte) As Long

@ Argument

port_number : DO_LOW_BYTE or DO_HIGH_BYTE
do_data : value will be written to digital output port

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_PortError

Function Reference•• 133

2.7.6 W_8216_DA

@ Description

This function is used to write data to D/A converters. There are
two Digital-to-Analog conversion channels on the ACL-8216.
The resolution of each channel is 12-bit, i.e. the range is from 0
to 4095.

@ Syntax

Microsoft C/C++

int W_8216_DA (int da_ch_no, unsigned int da_data)

Visual Basic

Windows 3.11 Version:

W_8216_DA (ByVal da_ch_no As Integer, ByVal da_data
As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8216_DA (ByVal da_ch_no As Long, ByVal da_data As
Long) As Long

@ Argument

da_ch_no : D/A channel number, the valid data is :

0 Channel AO1
1 Channel AO2

da_data : D/A converted value, if the value is greater than
4095, the higher 4 bits are negligent.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidDAChannel

134 •• Function Reference

2.7.7 W_8216_AD_Input_Mode

@ Description

This function is used to set A/D input mode to single-ended or
differential mode. The default mode of A/D input is single-
ended, so the A/D channel number can be set between 0 to 15.
If the A/D mode is set as differential, the input channel can be
selected from channel 0 to 7 only. This function is only available
for ACL-8216HG and 8216DG, but not for ACL-8216PG.

@ Syntax

Microsoft C/C++

int W_8216_AD_Input_Mode (int mode)

Visual Basic

Windows 3.11 Version:

W_8216_AD_Input_Mode (ByVal mode As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8216_AD_Input_Mode (ByVal mode As Long) As Long

@ Argument

mode : SIGNLE_ENDED : singled-ended mode is set
DIFFERENTIAL : differential mode is set

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADMode

2.7.8 W_8216_AD_Set_Channel

@ Description

Function Reference•• 135

This function is used to set A/D channel by means of writing
data to the A/D channel multiplexer register. There are 16
single-ended A/D channels in ACL-8216, so the channel
number should be set between 0 and 15 only. The initial state is
channel 0 which is the default setting by the ACL-8216
hardware configuration.

@ Syntax

Microsoft C/C++

int W_8216_AD_Set_Channel (int ad_ch_no)

Visual Basic

Windows 3.11 Version:

W_8216_AD_Set_Channel (ByVal ad_ch_no As Integer)
As Integer

Win-95/98, Win-NT/2000 Version:

W_8216_AD_Set_Channel (ByVal ad_ch_no As Long) As
Long

@ Argument

ad_ch_no : channel number to perform A/D conversion

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADChannel

2.7.9 W_8216_AD_Set_Range

@ Description

This function is used to set the A/D gain by means of writing
data to the range control register. The gain values and their
corresponding A/D input ranges are listed as below.

136 •• Function Reference

The initial value of gain is '1' which is which is the default
setting by the ACL-8216 hardware configuration.

Input Range (V) Gain Gain Code
±10 V X 1 AD_GAIN_1
±5 V X 2 AD_GAIN_2

±2.5 V X 4 AD_GAIN_4
±1.25 V X 8 AD_GAIN_8

@ Syntax

Microsoft C/C++
int W_8216_AD_Set_Range (int ad_gain)

Visual Basic

Windows 3.11 Version:

W_8216_AD_Set_Range (ByVal ad_gain As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8216_AD_Set_Range (ByVal ad_gain As Long) As
Long

@ Argument

ad_gain : the programmable gain of A/D conversion, the
possible value is AD_GAIN_1, AD_GAIN_2,
AD_GAIN_4, and AD_GAIN_8.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADGain

2.7.10 W_8216_AD_Set_Mode

@ Description

This function is used to set the A/D trigger and data transfer
mode by means of writing data to the mode control register.

Function Reference•• 137

The hardware initial state of the ACL-8216 is set as
A8216_AD_MODE_1 software (internal) trigger with program
polling.

A/D Mode Description
A8216_AD_MODE_0 External Trigger, Software Polling
A8216_AD_MODE_1 Software Trigger, Software Polling
A8216_AD_MODE_2 Timer Trigger, DMA Transfer
A8216_AD_MODE_3 External Trigger, DMA Transfer
A8216_AD_MODE_4 External Trigger, Interrupt Transfer
A8216_AD_MODE_5 Software Trigger, Interrupt Transfer
A8216_AD_MODE_6 Timer Trigger, Interrupt Transfer
A8216_AD_MODE_7 Not Used

@ Syntax

Microsoft C/C++

int W_8216_AD_Set_Mode (int ad_mode)

Visual Basic

Windows 3.11 Version:

W_8216_AD_Set_Mode (ByVal ad_mode As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8216_AD_Set_Mode (ByVal ad_mode As Long) As
Long

@ Argument

ad_mode : A/D trigger and data transfer mode

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidMode

2.7.11 W_8216_AD_Soft_Trig

138 •• Function Reference

@ Description

This function is used to trigger the A/D conversion by software.
When the function is called, a trigger pulse will be generated
and the converted data will be stored in the address Base+4
and Base+5, and can be retrieved by function
W_8216_AD_Aquire().

@ Syntax

Microsoft C/C++

int W_8216_AD_Soft_Trig (void)

Visual Basic

Windows 3.11 Version:

W_8216_AD_Soft_Trig () As Integer
Win-95/98, Win-NT/2000 Version:

W_8216_AD_Soft_Trig () As Long

@ Argument

None

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.7.12 W_8216_AD_Aquire

@ Description

This function is used to poll the A/D conversion data. It will
trigger the A/D conversion, and read the 16-bit A/D data until
the data is ready ('data ready' bit becomes to low).

@ Syntax

Microsoft C/C++
int W_8216_AD_Aquire (int *ad_data)

Visual Basic

Function Reference•• 139

Windows 3.11 Version:

W_8216_AD_Aquire (ad_data As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_8216_AD_Aquire (ad_data As Long) As Long

@ Argument

ad_data : 16-bit A/D converted value. The value is within
-32768 and 32767. -32768 and 32767
correspond to the lowest and highest voltage
respectively. For example, if the A/D range is
bipolar ±10V, -32768 represents -10V and
32767 represents +10V.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_AD_AquireTimeOut

2.7.13 W_8216_CLR_IRQ

@ Description

This function is used to clear interrupt request which is
requested by the ACL-8216. If you use interrupt to transfer A/D
converted data, you should use this function to clear interrupt
request status, otherwise the new interrupt signal can not be
generated.

@ Syntax

Microsoft C/C++

int W_8216_CLR_IRQ (void)

Visual Basic

Windows 3.11 Version:

W_8216_CLR_IRQ () As Integer
Win-95/98, Win-NT/2000 Version:

W_8216_CLR_IRQ () As Long

140 •• Function Reference

@ Argument

None

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.7.14 W_8216_AD_DMA_Start

@ Description

The function will perform A/D conversion N times with DMA
data transfer by using the pacer trigger (internal timer trigger). It
will take place in the background which will not be stop until the
N-th conversion has been completed or your program execute
W_8216_AD_DMA_Stop() function to stop the process. After
executing this function, it is necessary to check the status of the
operation by using the function W_8216_AD_DMA_Status().
The function is performed on single A/D channel with fixed gain.

Note: W_8216_AD_DMA_Start() and W_8216_AD_DMA_Stop()
are a pair function, i.e., you have to call
W_8216_AD_DMA_Stop() after W_8216_AD_DMA_Start(),
otherwise the A/D converted data will not be stored in the buffer
you had specified.

@ Syntax

Microsoft C/C++
int W_8216_DMA_Start (int ad_ch_no, int ad_gain,

int dma_ch_no, int irq_ch_no, int count , short
*ad_buffer, unsigned int c1, unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_8216_DMA_Start (ByVal ad_ch_no As Integer, ByVal
ad_gain As Integer, ByVal dma_ch_no As Integer,
ByVal irq_ch_no As Integer, ByVal count As

Function Reference•• 141

Integer, ad_buffer As Integer, ByVal c1 As Integer,
ByVal c2 As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8216_DMA_Start (ByVal ad_ch_no As Long, ByVal
ad_gain As Long, ByVal dma_ch_no As Long,
ByVal irq_ch_no As Long, ByVal count As Long,
ad_buffer As Integer, ByVal c1 As Long, ByVal c2
As Long) As Long

@ Argument

ad_ch_no : A/D channel number
ad_gain : A/D gain value. The possible values are

AD_GAIN_1, AD_GAIN_2, AD_GAIN_4, or
AD_GAIN_8.

dma_ch_no : DMA channel number, DMA_CH_1 or
DMA_CH_3

irq_ch_no : IRQ channel number, used to stop DMA
count : the number of A/D conversion
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must large
than the number of A/D conversion. Each data
element of ad_buffer contains 16-bit A/D
transfer data.

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

Note : While calling this function in Visual Basic program, please pass
the first element of the buffer array as the argument of ad_buffer.
For example, if the name of array is buf, pass buf(0) as argument
if index number of buf begins from 0. Also with Windows 3.11
version, because the Integer type in Visual Basic is signed integer
(i.e., its range is from -32768 to 32767), if you want to specify c1
or c2 to number larger than 32767, please set it as the number
minus 65536. For example, if you want to set c1 as 40000, please
set it as (40000 - 65536) = -25536 instead.

@ Return Code

142 •• Function Reference

ERR_NoError
ERR_BoardNoInit, ERR_InvalidADChannel,
ERR_InvalidADGain, ERR_InvalidDMAChannel,
ERR_InvalidIRQChannel, ERR_InvalidTimerValue

2.7.15 W_8216_AD_ContDMA_Start

@ Description

The function will perform continuous A/D conversions with DMA
data transfer by using the pacer trigger (internal timer trigger) or
external trigger source.
It will take place in the background and will not be stopped until
your program executes W_8216_AD_DMA_Stop() function to
stop the process. After executing this function, it is necessary
to check the status of the operation by using the function
W_8216_AD_ DblBufferHalfReady().The function performs on
single A/D channel with fixed A/D range.

Note: W_8216_AD_ContDMA_Start() and W_8216_AD_DMA_Stop()
are pair function, i.e., you have to call W_8216_AD_DMA_Stop()
after W_8216_AD_ContDMA_Start(), otherwise the A/D
conversion will never stop .

@ Syntax

Microsoft C/C++
int W_8216_ContDMA_Start (int ad_ch_no, int ad_gain,

int dma_ch_no, int irq_ch_no, int count , short
*ad_buffer, unsigned int c1, unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_8216_ContDMA_Start (ByVal ad_ch_no As Integer,
ByVal ad_gain As Integer, ByVal dma_ch_no As
Integer, ByVal irq_ch_no As Integer, ByVal count
As Integer, ad_buffer As Integer, ByVal c1 As
Integer, ByVal c2 As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

Function Reference•• 143

W_8216_ContDMA_Start (ByVal ad_ch_no As Long,
ByVal ad_gain As Long, ByVal dma_ch_no As
Long, ByVal irq_ch_no As Long, ByVal count As
Long, ad_buffer As Integer, ByVal c1 As Long,
ByVal c2 As Long) As Long

@ Argument

ad_ch_no : A/D channel number
ad_gain : A/D gain value. The possible values are

AD_GAIN_1, AD_GAIN_2, AD_GAIN_4, or
AD_GAIN_8.

dma_ch_no : DMA channel number, DMA_CH_1 or
DMA_CH_3

irq_ch_no : IRQ channel number, used to stop DMA
count : the number of A/D conversion
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must large
than the number of A/D conversion. Each data
element of ad_buffer contains 16-bit A/D
transfer data.

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

Note : While calling this function in Visual Basic program, please pass
the first element of the buffer array as the argument of ad_buffer.
For example, if the name of array is buf, pass buf(0) as argument
if index number of buf begins from 0. Also with Windows 3.11
version, because the Integer type in Visual Basic is signed integer
(i.e., its range is from -32768 to 32767), if you want to specify c1
or c2 to number larger than 32767, please set it as the number
minus 65536. For example, if you want to set c1 as 40000, please
set it as (40000 - 65536) = -25536 instead.

@ Return Code

ERR_NoError
ERR_AD_DMANotSet
ERR_BoardNoInit, ERR_InvalidADChannel,

144 •• Function Reference

ERR_InvalidADGain, ERR_InvalidDMAChannel,
ERR_InvalidIRQChannel, ERR_InvalidTimerValue

2.7.16 W_8216_AD_DMA_Status

@ Description

Since the W_8216_AD_DMA_Start function executes in the
background, you can issue the function
W_8216_AD_DMA_Status() to check its operation status.

@ Syntax

Microsoft C/C++

int W_8216_AD_DMA_Status (int *status , int *count)

Visual Basic

Windows 3.11 Version:

W_8216_AD_DMA_Status (status As Integer, count As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8216_AD_DMA_Status (status As Long, count As
Long) As Long

@ Argument

status : status of the DMA data transfer
AD_DMA_STOP : A/D DMA is completed
AD_DMA_RUN : A/D DMA is not completed

count : the number of A/D data which has been
transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_ADDMANotSet

2.7.17 W_8216_AD_DMA_Stop

Function Reference•• 145

@ Description

This function is used to stop the DMA data transfer. After
executing this function, the internal A/D trigger is disabled and
the A/D timer (timer #1 and #2) is stopped. The function
returns the number of the data which has been transferred, no
matter the A/D DMA data transfer is stopped by this function or
by the DMA terminal count ISR.

This function has to be called after W_8216_AD_DMA_Start()
function issued. Otherwise, all converted data will not be saved
into the memory buffer you specified in your program.

@ Syntax

Microsoft C/C++

int W_8216_AD_DMA_Stop (int *count)

Visual Basic

Windows 3.11 Version:

W_8216_AD_DMA_Stop (count As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_8216_AD_DMA_Stop (count As Long) As Long

@ Argument

count : the number of A/D converted data which has
been transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_ADDMANotSet

146 •• Function Reference

2.7.18 W_8216_AD_INT_Start

@ Description

The function will perform A/D conversion N times with interrupt
data transfer by using pacer trigger. It will take place in the
background which will not be stopped until the N-th conversion
has been completed or your program execute
W_8216_AD_INT_Stop() function to stop the process. After
executing this function, it is necessary to check the status of the
operation by using the function W_8216_AD_INT_Status().
The function is perform on single A/D channel with fixed gain.

Note: W_8216_AD_INT_Start(), and W_8216_AD_INT_Stop() are a
pair of functions, i.e., you have to call W_8216_AD_INT_Stop()
after W_8216_AD_INT_Start(), otherwise the A/D converted data
will not be stored in the buffer you had specified.

@ Syntax

Microsoft C/C++
int W_8216_INT_Start (int ad_ch_no, int ad_gain, int

irq_ch_no, int count , short *ad_buffer, unsigned int
c1, unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_8216_INT_Start (ByVal ad_ch_no As Integer, ByVal
ad_gain As Integer, ByVal irq_ch_no As Integer,
ByVal count As Integer, ad_buffer As Integer,
ByVal c1 As Integer, ByVal c2 As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8216_INT_Start (ByVal ad_ch_no As Long, ByVal
ad_gain As Long, ByVal irq_ch_no As Long, ByVal
count As Long, ad_buffer As Integer, ByVal c1 As
Long, ByVal c2 As Long) As Long

@ Argument

ad_ch_no : A/D channel number

Function Reference•• 147

ad_gain : A/D gain value. The possible values are
AD_GAIN_1, AD_GAIN_2, AD_GAIN_4, or
AD_GAIN_8.

irq_ch_no : IRQ channel number used to transfer A/D data,
the possible value is defined in file Dll2.h.

count : number of A/D conversions to perform
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must be
large than the number of A/D conversions.
Each data element of ad_buffer contains 16-bit
A/D transfer data.

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

Note : While calling this function in Visual Basic program, please pass
the first element of the buffer array as the argument of ad_buffer.
For example, if the name of array is buf, pass buf(0) as argument
if index number of buf begins from 0. Also with Windows 3.11
version, because the Integer type in Visual Basic is signed integer
(i.e., its range is from -32768 to 32767), if you want to specify c1
or c2 to number larger than 32767, please set it as the number
minus 65536. For example, if you want to set c1 as 40000, please
set it as (40000 - 65536) = -25536 instead.

@ Return Code

ERR_NoError
ERR_BoardNoInit, ERR_InvalidADChannel,
ERR_InvalidADGain, ERR_InvalidIRQChannel,
ERR_InvalidTimerValue

@ Example

Visual Basic (Win-95/98, Win-NT/2000 Version)
Dim ad_buf(1024) As Integer
Dim Channel As Long, Gain As Long, Irq As Long
Dim ad_count As Long, c1 As Long, c2 As Long
Dim Ret As Long

.

148 •• Function Reference

.
ad_count = 1024

.

.
Ret = W_8316_AD_INT_Start(Channel, Gain, Irq, ad_count,

 ad_buf(0), c1, c2)

2.7.19 W_8216_AD_INT_Status

@ Description

Since the W_8216_AD_INT_Start() function executes in
background, you can issue the function
W_8216_AD_INT_Status() to check the status of interrupt
operation.

@ Syntax

Microsoft C/C++
int W_8216_AD_INT_Status (int *status , int *count)

Visual Basic

Windows 3.11 Version:

W_8216_AD_INT_Status (status As Integer, count As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8216_AD_INT_Status (status As Long, count As Long)
As Long

@ Argument

status : status of the interrupt data transfer
AD_INT_STOP : interrupt A/D is completed
AD_INT_RUN : interrupt A/D is not completed

count : the number of A/D data which has been
transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit

Function Reference•• 149

2.7.20 W_8216_AD_INT_Stop

@ Description

This function is used to stop the interrupt data transfer function.
After executing this function, the internal A/D trigger is disabled
and the A/D timer is stopped. The function returns the number
of the data which has been transferred, no matter whether if the
A/D interrupt data transfer is stopped by this function or by the
W_8216_AD_INT_Start() itself.

This function has to be called after W_8216_AD_INT_Start()
function issued. Otherwise, all converted data will not be saved
into the memory buffer you had specified in
W_8216_AD_INT_Start() function call.

@ Syntax

Microsoft C/C++
int W_8216_AD_INT_Stop (int *count)

Visual Basic

Windows 3.11 Version:

W_8216_AD_INT_Stop (count As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_8216_AD_INT_Stop (count As Long) As Long

@ Argument

count : the number of A/D data which have been
transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_INTNotSet

150 •• Function Reference

2.7.21 W_8216_AD_ContINT_Start

@ Description

The function will perform continuous A/D conversions with
interrupt data transfer by using timer pacer (internal clock
trigger). It will take place in the background which will not be
stopped until your program execute W_8216_AD_INT_Stop()
function to stop the process. After calling this function, it is
necessary to check the status of the operation by using the
function W_8216_AD_DblBufferHalfReady().

Note: W_8216_AD_ContINT_Start(), and W_8216_AD_INT_Stop()
are a pair of functions, i.e., you have to call
W_8216_AD_INT_Stop() after W_8216_AD_ContINT_Start(),
otherwise the A/D converted data will not be stored in the buffer
you had specified.

@ Syntax

Microsoft C/C++
int W_8216_ContINT_Start (int ad_ch_no, Boolean

autoscan, int ad_gain, int irq_ch_no, int count ,
short *ad_buffer, unsigned int c1, unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_8216_ContINT_Start (ByVal ad_ch_no As Integer,
ByVal auto_scan As Integer, ByVal ad_gain As
Integer, ByVal irq_ch_no As Integer, ByVal count
As Integer, ad_buffer As Integer, ByVal c1 As
Integer, ByVal c2 As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8216_ContINT_Start (ByVal ad_ch_no As Long, ByVal
auto_scan As Integer, ByVal ad_gain As Long,
ByVal irq_ch_no As Long, ByVal count As Long,
ad_buffer As Integer, ByVal c1 As Long, ByVal c2
As Long) As Long

@ Argument

Function Reference•• 151

ad_ch_no : A/D channel number

If autoscan is enabled, the A/D channel scan sequence will be:
0, 1, 2, 3,…[ad_ch_no], 0, 1, …, [ad_ch_no], …
If autoscan is disabled, only the data from channel [ad_ch_no]
will be converted.

autoscan: FALSE: autoscan is disabled
 TRUE: autoscan is enabled
ad_gain : A/D gain value. The possible values are

AD_GAIN_1, AD_GAIN_2, AD_GAIN_4, or
AD_GAIN_8.

irq_ch_no : IRQ channel number used to transfer A/D data,
the possible value is defined in file Dll2.h.

count : number of A/D conversions to perform
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must be
large than the number of A/D conversions.
Each data element of ad_buffer contains 16-bit
A/D transfer data.

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

Note : While calling this function in Visual Basic program, please pass
the first element of the buffer array as the argument of ad_buffer.
For example, if the name of array is buf, pass buf(0) as argument
if index number of buf begins from 0. Also with Windows 3.11
version, because the Integer type in Visual Basic is signed integer
(i.e., its range is from -32768 to 32767), if you want to specify c1
or c2 to number larger than 32767, please set it as the number
minus 65536. For example, if you want to set c1 as 40000, please
set it as (40000 - 65536) = -25536 instead.

@ Return Code

ERR_NoError
ERR_BoardNoInit, ERR_InvalidADChannel,

152 •• Function Reference

ERR_InvalidADGain, ERR_InvalidIRQChannel,
ERR_InvalidTimerValue
ERR_AD_INTNotSet

2.7.22 W_8216_AD_SCANINT_Start

@ Description

This function is used to start automatic channel scan . If
autoscan mode is started and the end channel number is set as
n by argument ad_ch_no, the data will be converted
automatically from channel 0 to channel n.
For example, the channel is set as 4 and autoscan is started,
the A/D conversion sequence will be 0, 1, 2, 3, 4, 0, 1, 2, 3, 4,
0, 1, 2, 3, 4, 0,
If the autoscan is finished, the converted channel will be kept at
the specified channel, i.e. channel 4.

@ Syntax

Microsoft C/C++

int W_8216_AD_SCANINT_Start(int ad_ch_no, int
ad_gain , int irq_no, int count , unsigned short
*ad_buffer , unsigned int c1 , unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_8216_AD_ SCANINT_Start (ByVal ad_ch_no As
Integer, ByVal ad_gain As Integer, ByVal irq_ch_no
As Integer, ByVal count As Integer, ad_buffer As
Integer, ByVal c1 As Integer, ByVal c2 As Integer)
As Integer

Win-95/98, Win-NT/2000 Version:

W_8216_AD_ SCANINT_Start (ByVal ad_ch_no As Long,
ByVal ad_gain As Long, ByVal irq_ch_no As Long,
ByVal count As Long, ad_buffer As Integer, ByVal
c1 As Long, ByVal c2 As Long) As Long

Function Reference•• 153

@ Argument

ad_ch_no : end A/D channel number for AutoScan
ad_gain : A/D gain value. The possible values are

AD_GAIN_1, AD_GAIN_2, AD_GAIN_4, or
AD_GAIN_8.

irq_ch_no : IRQ channel number used to transfer A/D data,
the possible value is defined in file DLL2.H

count : the number of A/D conversion
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must be
large than the number of A/D conversion.

c1 : the 16-bit timer frequency divider of timer
channel #1

c2 : the 16-bit timer frequency divider of timer
channel #2

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADChannel
ERR_AD_InvalidGain
ERR_InvalidIRQChannel

 ERR_InvalidTimerValue

2.7.23 W_8216_AD_DblBufferHalfReady

@ Description

Checks whether the next half buffer of data in circular buffer is
ready for transfer during an double-buffered analog input
operation.

@ Syntax

Microsoft C/C++

int W_8216_AD_DblBufferHalfReady (BOOLEAN
*bHalfReady)

Visual Basic

154 •• Function Reference

W_8216_AD_DblBufferHalfReady (bHalfReady As Long)
As Long

@ Argument

bHalfReady : Whether the next half buffer of data is
available.If HalfReady = TRUE, you can call
W_8216_AD_DblBufferTransfer() to copy
the data to your user buffer.

@ Return Code

ERR_NoError
 ERR_InvalidMode

2.7.24 W_8216_AD_DblBufferTransfer

@ Description

Depending on the continuous AI function elected, half of the
data in circular buffer will be logged into the user buffer .
You can execute this function repeatedly to return sequential
half buffers of the data.

@ Syntax

Microsoft C/C++

int W_8216_AD_DblBufferTransfer (USHORT *pwBuffer)

Visual Basic

W_8216_AD_DblBufferTransfer (pwBuffer As Integer) As
Long

@ Argument

pwBuffer: The user buffer. An integer array to which the
data is to be copied.

@ Return Code

ERR_NoError
ERR_BoardNoInit

Function Reference•• 155

2.7.25 W_8216_AD_Timer

@ Description

This function is used to set up the Timer #1 and Timer #2. The
values of c1 and c2 are used as frequency dividers for
generating constant A/D sampling rate dedicatedly. It is
possible to stop the pacer trigger by setting any one of the
dividers as 0. Because the A/D conversion rate is limited due to
the conversion time of the A/D converter, the highest sampling
rate of the ACL-8216 can not exceed 100 KHz. The
multiplication of the dividers must be larger than 20.

@ Syntax

Microsoft C/C++
int W_8216_AD_Timer(unsigned int c1, unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_8216_AD_Timer (ByVal c1 As Integer, ByVal c2 As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8216_AD_Timer (ByVal c1 As Long, ByVal c2 As Long)
As Long

@ Argument

c1 : frequency divider of timer #1
c2 : frequency divider of timer #2

Note : the A/D sampling rate is equal to : 2MHz / (c1*c2), when c1 = 0
or c2 = 0, the pacer trigger will be stopped.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidTimerValue

156 •• Function Reference

2.7.26 W_8216_Timer_Start

@ Description

The Timer #0 on the ACL-8216 can be freely programmed by
the users. This function is used to program the Timer #0. This
timer can be used as frequency generator if internal clock is
used. It also can be used as event counter if external clock is
used.

@ Syntax

Microsoft C/C++
int W_8216_Timer_Start (int timer_mode, unsigned int c0)

Visual Basic

Windows 3.11 Version:

W_8216_Timer_Start (ByVal timer_mode As Integer,
ByVal c0 As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8216_Timer_Start (ByVal timer_mode As Long, ByVal
c0 As Long) As Long

@ Argument

timer_mode : the 8253 timer mode, the possible values are :
TIMER_MODE0, TIMER_MODE1,
TIMER_MODE2, TIMER_MODE3,
TIMER_MODE4, TIMER_MODE5.

c0 : the counter value of timer

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidTimerMode

2.7.27 W_8216_Timer_Read

@ Description

Function Reference•• 157

This function is used to read the counter value of the Timer #0.

@ Syntax

Microsoft C/C++
int W_8216_Timer_Read (unsigned int *counter_value)

Visual Basic

Windows 3.11 Version:

W_8216_Timer_Read (counter_value As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8216_Timer_Read (counter_value As Long) As Long

@ Argument

counter_value : the counter value of the Timer #0

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.7.28 W_8216_Timer_Stop

@ Description

This function is used to stop the timer operation. The timer is
set to the 'One-shot' mode with counter value '0'. That is, the
clock output signal will be set to high after executing this
function.

@ Syntax

Microsoft C/C++
int W_8216_Timer_Stop (unsigned int *counter_value)

Visual Basic

Windows 3.11 Version:

W_8216_Timer_Stop (counter_value As Integer) As
Integer

158 •• Function Reference

Win-95/98, Win-NT/2000 Version:

W_8216_Timer_Stop (counter_value As Long) As Long

@ Argument

counter_value : the current counter value of the Timer #0

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.7.29 W_8216_DMA_InitialMemoryAllocated

@ Description

This function is only available in Windows NT and Windows
2000 system. This function returns the available memory size
for DMA data transfer in the device driver in argument
MemSize. While performming analog input with DMA data
transfer, the analog input size can not exceed this size.

@ Syntax

Microsoft C/C++
W_8216_DMA_InitialMemoryAllocated(int *MemSize)

Visual Basic

Win-NT/2000 Version:

W_8216_DMA_InitialMemoryAllocated(MemSize As Long)
As Long

@ Argument

MemSize : the available memory size for DMA data transfer
in device driver of ACL-8216.

@ Return Code

ERR_NoError
ERR_BoardNoInit

Function Reference•• 159

ERR_INTNotSet

160 •• Function Reference

2.8 8316/12 Software DLL Driver
In this section, the ACL-8316/12’s software DLL drivers are
described. The function names of Windows 3.11, Window 95/98,
and Windows NT/2000 versions are the same. So, users do not
need to learn the difference between them. The application’s
portability between these three systems can be very high.

2.8.1 W_8316_Initial

@ Description

An ACL-8316/12 card is initialized according to the card
number and the corresponding base address. Each ACL-
8316/12 multi-function data acquisition card has to be initialized
by this function before calling other functions.

Note: In this library, if you want to operate DMA or interrupt
operation, only two ACL-8316/12 cards can be initialized. The
reason is only three DMA channels are supported in the card.

@ Syntax

Microsoft C/C++

int W_8316_Initial (int card_number, int base_addresss)

Visual Basic

Windows 3.11 Version:

W_8316_Initial (ByVal card_number As Integer, ByVal
base_address As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8316_Initial (ByVal card_number As Long, ByVal
base_address As Long) As Long

@ Argument

card_number : The card number to be initialized. If all the
ACL-8316/12 cards only perform software
polling, eight cards can be initialized and the

Function Reference•• 161

valid card numbers are CARD_1, CARD_2,
…, CARD_8. However, if the ACL-8316/12
cards are operated in Windows NT system
and will perform interrupt or DMA data
transfer, only three cards can be initialized
and the card number must be CARD_1,
CARD_2 or CARD_3.

base_address : the I/O port base address of the card.

@ Return Code

ERR_NoError
ERR_InvalidBoardNumber
ERR_BaseAddressError

2.8.2 W_8316_Switch_Card_No

@ Description

This function is used on multi-cards system. After initialized
more than one ACL-8316/12 cards, this function is used to
select which card is used currently.

@ Syntax

Microsoft C/C++

int W_8316_Switch_Card_No (int card_number)

Visual Basic

Windows 3.11 Version:

W_8316_Switch_Card_No (ByVal card_number As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8316_Switch_Card_No (ByVal card_number As Long)
As Long

@ Argument

162 •• Function Reference

card_number : The card number of the card that is set to be
active. If all the ACL-8316/12 cards only
perform software polling, eight cards can be
initialized and the valid card numbers are
CARD_1, CARD_2, …, CARD_8. However, if
the ACL-8316/12 cards are operated in
Windows NT system and will perform interrupt
or DMA data transfer, the card number must be
CARD_1, CARD_2 or CARD_3.

@ Return Code

ERR_NoError
ERR_InvalidBoardNumber

2.8.3 W_8316_DI

@ Description

This function is used to read data from digital input port. There
are 16 digital inputs on the ACL-8316/12.

@ Syntax

Microsoft C/C++

int W_8316_DI (U16 *di_data)

Visual Basic

Windows 3.11 Version:

W_8316_DI (di_data As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_8316_DI (di_data As Integer) As Long

@ Argument

di_data : return value from digital port.

@ Return Code

ERR_NoError
ERR_BoardNoInit

Function Reference•• 163

ERR_PortError

2.7.4 W_8316_DI _Channel

@ Description

This function is used to read data from digital input channels
(bit). There are 16 digital input channels on the ACL-8316/12.
When performs this function, the digital input port is read and
the value of the corresponding channel is returned.

* channel means each bit of digital input ports.

@ Syntax

Microsoft C/C++

int _8316_DI_Channel (U8 di_ch_no, Boolean *di_data)

Visual Basic

Windows 3.11 Version:

W_8316_DI_Channel (ByVal di_ch_no As Byte, di_data
As Byte) As Integer

Win-95/98, Win-NT/2000 Version:

W_8316_DI_Channel (ByVal di_ch_no As Byte, di_data
As Byte) As Long

@ Argument

di_ch_no : the DI channel number, the value has to be set
between 0 and 15.

di_data : return value, either 0 or 1.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidDIChannel

164 •• Function Reference

2.8.5 W_8316_DO

@ Description

This function is used to write data to digital output ports. There
are 16 digital outputs on the ACL-8316/12.

@ Syntax

Microsoft C/C++

int W_8316_DO (U16 do_data)

Visual Basic

Windows 3.11 Version:

W_8316_DO (ByVal do_data As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_8316_DO (ByVal do_data As Long) As Long

@ Argument

do_data : value will be written to digital output port

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_PortError

2.8.6 W_8316_DA_Set_Mode

@ Description

This function is used to configure D/A output mode. There are
four output modes can be set for ACL-8316/12. They are:

A_8316_DA_MODE_0: Transparency and Binary data format
A_8316_DA_MODE_1: Transparency and Two’s complement

data format
A_8316_DA_MODE_2: Double buffered and Binary data format

Function Reference•• 165

A_8316_DA_MODE_3: Double buffered and Two’s
complement data format

The data format of binary and two’s complement for ACL-
8316/12 are shown in the following table:

Digital Input Digital Input Analog Output
Binary Format 2‘s complement Unipolar

0 to 10V
Bipolar

-10V to 10V
FFF hex 7FFhex +9.9976V +9.9951V
800 hex 000 hex +5.0000V 0.0000V
7FF hex FFF hex +4.9976V -0.0049V
000 hex 800 hex 0.0000V -10.0000V

1LSB 1 LSB 2.44mV 4.88mV

@ Syntax

Microsoft C/C++

int W_8316_DA_Set_Mode (U8 ad_mode)

Visual Basic

Windows 3.11 Version:

W_8316_DA_Set_Mode (ByVal da_mode As Byte) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8316_DA_Set_Mode (ByVal da_mode As Byte) As
Integer

@ Argument

da_mode : D/A output mode. The valid code is:
DA_MODE_0, DA_MODE_1, DA_MODE_2
and DA_MODE_3

@ Return Code

ERR_NoError

166 •• Function Reference

ERR_BoardNoInit

2.8.7 W_8316_DA

@ Description

This function is used to write data to D/A converters. There are
two Digital-to-Analog conversion channels on the ACL-8316/12.
The resolution of each channel is 12-bit. The data format can
be binary or two’s complement format and is defined by using
function W_8316_DA_Set_Mode (refer to section 2.8.6 for the
details).

@ Syntax

Microsoft C/C++

int W_8316_DA (int da_ch_no, unsigned int da_data)

Visual Basic

Windows 3.11 Version:

W_8316_DA (ByVal da_ch_no As Integer, ByVal da_data
As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8316_DA (ByVal da_ch_no As Long, ByVal da_data As
Long) As Long

@ Argument

da_ch_no : D/A channel number, the valid data is :

0 Channel AO1
1 Channel AO2

da_data : D/A converted value. The data format of binary and
two’s complement for ACL-8316/12 are shown in the
following table:

Digital Input Digital Input Analog Output

Function Reference•• 167

Binary Format 2‘s complement Unipolar
0 to 10V

Bipolar
-10V to 10V

FFF hex 7Ffhex +9.9976V +9.9951V
800 hex 000 hex +5.0000V 0.0000V
7FF hex FFF hex +4.9976V -0.0049V
000 hex 800 hex 0.0000V -10.0000V

1LSB 1 LSB 2.44mV 4.88mV

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidDAChannel

2.8.8 W_8316_AD_Set_Mode

@ Description

This function is used to set A/D trigger source, data transfer
mode and A/D channel autoscan enabled/disabled by writing
data into AD Mode Control Register (refer to section 4.7 of
ACL-8316/12 user’s manual for the details). The hardware
initial state of ACL_8316/12 is set as internal software trigger
with program polling data transfer.

@ Syntax

Microsoft C/C++

int W_8316_AD_Set_Mode (U8 mode)

Visual Basic

Windows 3.11 Version:

W_8316_AD_Set_Mode (ByVal mode As Byte) As Integer
Win-95/98, Win-NT/2000 Version:

W_8316_AD_Set_Mode (ByVal mode As Byte) As Integer

@ Argument

168 •• Function Reference

mode : AD mode control value. This argument is an integer
expression formed from one or more of the manifest
constants defined DLL2.H. The valid constants are:

A8316_AD_DMA: DMA data transfer enabled
A8316_AD_EXT_SRC: External A/D trigger source
A8316_AD_INT_SRC: Internal A/D trigger source
A8316_AD_TimerTrig: Internal timer pacer trigger

source
A8316_AD_SoftTrig: Software trigger
A8316_AD_AutoScan: Channel autoscan enabled

When two or more constants are used to form mode
argument, these constants are combined with plus(+)
operator.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADMode

2.8.9 W_8316_AD_Set_Channel

@ Description

This function is used to set A/D channel by means of writing
data to the A/D channel multiplexer register. There are 16
single-ended A/D channels or 8 differential A/D channels in
ACL-8316/12. The initial state is channel 0 which is the default
setting by the ACL-8316/12 hardware configuration.

@ Syntax

Microsoft C/C++

int W_8316_AD_Set_Channel (U8 ad_ch_no)

Visual Basic

Windows 3.11 Version:

Function Reference•• 169

W_8316_AD_Set_Channel (ByVal ad_ch_no As Byte) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8316_AD_Set_Channel (ByVal ad_ch_no As Byte) As
Integer

@ Argument

ad_ch_no : channel number to perform A/D conversion.
Signal-Ended mode: 0 ~15
Differential mode: 0 ~ 7

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADChannel

2.8.10 W_8316_AD_Set_Range

@ Description

This function is used to set the A/D gain by means of writing
data to the range control register. The valid range codes and
their corresponding A/D input ranges are listed as below.

The initial value of gain is '1' which is which is the default
setting by the ACL-8316/12 hardware configuration.

Range Code Input Range (V)
AD_B_10_V ±10 V
AD_B_5_V ±5 V
AD_B_2_5_V ±2.5 V
AD_B_1_25_V ±1.25 V
AD_U_10_V 0 ~ 10 V
AD_U_5_V 0 ~ 5 V
AD_U_2_5_V 0 ~ 2.5 V
AD_U_1_25_V 0 ~ 1.25 V

170 •• Function Reference

@ Syntax

Microsoft C/C++
int W_8316_AD_Set_Range (U8 range)

Visual Basic

Windows 3.11 Version:

W_8316_AD_Set_Range (ByVal range As Byte) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8316_AD_Set_Range (ByVal range As Byte) As
Integer

@ Argument

range : the programmable range of A/D conversion, the
possible values are as:
AD_B_10_V, AD_B_5_V, AD_B_2_5_V,
AD_B_1_25_V, AD_U_10_V, AD_U_5_V,
AD_U_2_5_V, AD_U_1_25_V .

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidADGain

2.8.11 W_8316_AD_Set_Autoscan

@ Description

This function is used to set automatic hardware channel scan to
be enabled or disabled. If autoscan mode is enabled and the
end channel number is set as n by function
W_8316_AD_Set_Channel, the data will be converted
automatically from channel 0 to channel n. If autoscan mode is
disabled and the channel number is set as n by function
W_8316_AD_Set_Channel, the data at channel n will be
converted.

Function Reference•• 171

For example, the channel is set as 4 and autoscan is enabled,
the A/D conversion sequence will be 0, 1, 2, 3, 4, 0, 1, 2, 3, 4,
0, 1, 2, 3, 4, 0,
If the autoscan is disabled, the converted channel will be kept
at the specified channel, i.e. channel 4.

@ Syntax

Microsoft C/C++

int W_8316_AD_Set_AutoScan (Boolean flag)

Visual Basic

Windows 3.11 Version:

W_8316_AD_Set_AutoScan (ByVal flag As Byte) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8316_AD_Set_AutoScan (ByVal flag As Byte) As
Integer

@ Argument

flag : 1: autoscan enabled
0: autoscan is disabled

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.8.12 W_8316_AD_Set_FIFO

@ Description

This function is used to enable the FIFO on ACL-8316/12
board. As the FIFO is enabled, the A/D converted data are
stored into the FIFO. The size of A/D FIFO on board is 1K
words.

172 •• Function Reference

@ Syntax

Microsoft C/C++

int W_8316_AD_Set_FIFO (Boolean flag)

Visual Basic

Windows 3.11 Version:

W_8316_AD_Set_FIFO (ByVal flag As Byte) As Integer
Win-95/98, Win-NT/2000 Version:

W_8316_AD_Set_FIFO (ByVal flag As Byte) As Integer

@ Argument

flag : 1: autoscan enabled
0: autoscan is disabled

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.8.13 W_8316_AD_Set_INT_Source

@ Description

This function is used to set interrupt trigger source. There are
four interrupt sources provided. They are:

A8316_INTSRC_EXTERNAL : the interrupt is trigger by
external source

A8316_INTSRC_EOC: interrupt is triggered when an EOC (
A/D converter‘s end of conversion) is
asserted.

A8316_INTSRC_INTERNAL: interrupt is triggered by internal
timer pacer

A8316_INTSRC_FIFO_HF: interrupt is triggered by FIFO half
ready signal.

Function Reference•• 173

@ Syntax

Microsoft C/C++

int W_8316_AD_Set_INT_Source (U8 source)

Visual Basic

Windows 3.11 Version:

W_8316_AD_Set_INT_Source (ByVal source As Byte) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8316_AD_Set_INT_Source (ByVal source As Byte) As
Integer

@ Argument

source : interrupt trigger source, the valid interrupt source is:
A8316_INTSRC_EXTERNAL, A8316_INTSRC_EOC,
A8316_INTSRC_INTERNAL,
A8316_INTSRC_FIFO_HF

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.8.14 W_8316_AD_Soft_Trig

@ Description

This function is used to trigger the A/D conversion by software.
When the function is called, a trigger pulse will be generated
and the converted data will be stored in the address Base+4
and Base+5, and can be retrieved by function
W_8316_AD_Aquire().

@ Syntax

Microsoft C/C++

int W_8316_AD_Soft_Trig (void)

174 •• Function Reference

Visual Basic

Windows 3.11 Version:

W_8316_AD_Soft_Trig () As Integer
Win-95/98, Win-NT/2000 Version:

W_8316_AD_Soft_Trig () As Integer

@ Argument

None

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.8.15 W_8316_Read_FIFO

@ Description

This function is used to get the AD conversion data which are
stored in the FIFO. This function is useful while the FIFO is
enabled and the converted A/D data are already stored in FIFO.

@ Syntax

Microsoft C/C++
int W_8316_Read_FIFO (I16 *data)

Visual Basic

Windows 3.11 Version:

W_8316_AD_Aquire (data As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_8316_AD_Aquire (data As Integer) As Integer

@ Argument

data : 16- or 12-bit A/D converted value. Refer to
section 2.8.16 for the converted data format.

@ Return Code

Function Reference•• 175

ERR_NoError
ERR_BoardNoInit

176 •• Function Reference

2.8.16 W_8316_AD_Aquire

@ Description

This function is used to poll the A/D conversion data. It will
trigger the A/D conversion, and read the 16-bit or 12-bit A/D
data until the data is ready ('data ready' bit becomes to low).

@ Syntax

Microsoft C/C++
int W_8316_AD_Aquire (int *ad_data)

Visual Basic

Windows 3.11 Version:

W_8316_AD_Aquire (ad_data As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_8316_AD_Aquire (ad_data As Long) As Long

@ Argument

ad_data : 16-bit A/D converted value.
In ACL-8316, 16-bit A/D data is available. The
relationship between the voltage and the value
is shown in the following table:

A/D Data (Hex) Decimal
Value

Voltage
(Volts)

7FFF +32767 +10.00000
4000 +16384 +5.00015
0001 1 +0.00031
0000 0 0.00000
FFFF -1 -0.00031
C000 -16384 -5.00015
8001 -32767 -10.00000
8000 -32768 -10.00031

The A/D data format of 12-bit ACL-8312 is
compatible with the 16-bit ACL-8316. Only the
4 LSB of the 16-bit A/D data are truncated to

Function Reference•• 177

zero. Therefore the software is compatible for
the two cards. The relationship between the
voltage and the value is shown in the following
table:

A/D Data (Hex) Decimal
Value

Voltage
(Volts)

7FF 0 +32752 +10.0000
400 0 +16384 +5.0024
001 0 +16 +0.0049
000 0 0 0.0000
FFF 0 -16 -0.0049
C00 0 -16384 -5.0024
801 0 -32752 -10.0000
800 0 -32768 -10.0049

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_AD_AquireTimeOut

2.8.17 W_8316_CLR_IRQ

@ Description

This function is used to clear interrupt request which is
requested by the ACL-8316/12. If you use interrupt to transfer
A/D converted data, you should use this function to clear
interrupt request status, otherwise new coming interrupt can not
be generated.

@ Syntax

Microsoft C/C++

int W_8316_CLR_IRQ (void)

Visual Basic

178 •• Function Reference

Windows 3.11 Version:

W_8316_CLR_IRQ () As Integer
Win-95/98, Win-NT/2000 Version:

W_8316_CLR_IRQ () As Integer

@ Argument

None

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.8.18 W_8316_AD_DMA_Start

@ Description

The function will perform A/D conversion N times with DMA
data transfer by using the pacer trigger (internal timer trigger) or
external trigger source. It will take place in the background
which will not stop until the N-th conversion has been
completed or your program execute W_8316_AD_DMA_Stop()
function to stop the process. After executing this function, it is
necessary to check the status of the operation by using the
function W_8316_AD_DMA_Status().

Note: W_8316_AD_DMA_Start() and W_8316_AD_DMA_Stop()
are a pair function, i.e., you have to call
W_8316_AD_DMA_Stop() after W_8316_AD_DMA_Start(),
otherwise the A/D converted data will not be stored in the buffer
you had specified.

@ Syntax

Microsoft C/C++
int W_8316_DMA_Start (U8 trig_src, Boolean auto_scan,

U8 ad_ch_no, U8 ad_range, U8 dma_ch_no, U8
irq_no, U16 dma_count , I16 *ad_buffer)

Visual Basic

Function Reference•• 179

Windows 3.11 Version:

W_8316_DMA_Start (ByVal trig_src As Byte, ByVal
auto_scan As Byte, ByVal ad_ch_no As Byte,
ByVal ad_gain As Byte, ByVal dma_ch_no As Byte,
ByVal irq_no As Byte, ByVal count As Integer,
ad_buffer As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8316_DMA_Start (ByVal trig_src As Byte, ByVal
auto_scan As Byte, ByVal ad_ch_no As Byte,
ByVal ad_gain As Byte, ByVal dma_ch_no As Byte,
ByVal irq_no As Byte, ByVal count As Integer,
ad_buffer As Integer) As Integer

@ Argument

trig_src: DMA data transfer trigger source. The valid
trigger sources are as follows:

 DMA_MODE_0: Internal timer pacer trigger
 DMA_MODE_1: External trigger

autoscan: 0: autoscan is disabled
 1: autoscan is enabled
ad_ch_no : A/D channel number.

If autoscan is enabled, the A/D channel scan sequence will be:
0, 1, 2, 3,…[ad_ch_no], 0, 1, …, [ad_ch_no], …
If autoscan is disabled, only the data from channel [ad_ch_no]
will be converted.
ad_range : Analog input range. The possible value is

AD_B_10_V, AD_B_5_V, AD_B_2_5_V,
AD_B_1_25_V, AD_U_10_V, AD_U_5_V,
AD_U_2_5_V, AD_U_1_25_V .

dma_ch_no : DMA channel number, the valid DMA channel
number is DMA_CH_5, DMA_CH_6 or
DMA_CH_7

irq_ch_no : IRQ channel number, used to stop DMA
dma_count : the number of A/D conversion
ad_buffer : the start address of the memory buffer to store

the A/D data, the buffer size must be larger
than the number of A/D conversion. Each data

180 •• Function Reference

element of ad_buffer contains 16-bit A/D
transfer data.

Note : While calling this function in Visual Basic program, please pass
the first element of the buffer array as the argument of ad_buffer.
For example, if the name of array is buf, pass buf(0) as argument
if index number of buf begins from 0. Also with Windows 3.11
version, because the Integer type in Visual Basic is signed integer
(i.e., its range is from -32768 to 32767), if you want to specify c1
or c2 to number larger than 32767, please set it as the number
minus 65536. For example, if you want to set c1 as 40000, please
set it as (40000 - 65536) = -25536 instead.

@ Return Code

ERR_NoError
ERR_BoardNoInit, ERR_InvalidADChannel,
ERR_InvalidADGain, ERR_InvalidDMAChannel,
ERR_InvalidIRQChannel, ERR_InvalidTimerValue

2.8.19 W_8316_AD_ContDMA_Start

@ Description

The function will perform continuous A/D conversions with DMA
data transfer by using the pacer trigger (internal timer trigger) or
external trigger source.
It will take place in the background and will not be stopped until
your program executes W_8316_AD_DMA_Stop() function to
stop the process. After executing this function, it is necessary
to check the status of the operation by using the function
W_8316_AD_DblBufferHalfReady().

Note: W_8316_AD_ContDMA_Start() and
W_8316_AD_DMA_Stop() are a pair function, i.e., you have to
call W_8316_AD_DMA_Stop() after
W_8316_AD_ContDMA_Start(), otherwise the A/D converted
data will not be stored in the buffer you had specified.

@ Syntax

Function Reference•• 181

Microsoft C/C++
int W_8316_ContDMA_Start (U8 trig_src, Boolean

auto_scan, U8 ad_ch_no, U8 ad_range, U8
dma_ch_no, U8 irq_no, U16 dma_count , I16
*ad_buffer)

Visual Basic

Windows 3.11 Version:

W_8316_ContDMA_Start (ByVal trig_src As Byte, ByVal
auto_scan As Byte, ByVal ad_ch_no As Byte,
ByVal ad_gain As Byte, ByVal dma_ch_no As Byte,
ByVal irq_no As Byte, ByVal count As Integer,
ad_buffer As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8316_ContDMA_Start (ByVal trig_src As Byte, ByVal
auto_scan As Byte, ByVal ad_ch_no As Byte,
ByVal ad_gain As Byte, ByVal dma_ch_no As Byte,
ByVal irq_no As Byte, ByVal count As Integer,
ad_buffer As Integer) As Integer

@ Argument

trig_src: DMA data transfer trigger source. The valid
trigger sources are as follows:

 DMA_MODE_0: Internal timer pacer trigger
 DMA_MODE_1: External trigger

autoscan: 0: autoscan is disabled
 1: autoscan is enabled
ad_ch_no : A/D channel number.

If autoscan is enabled, the A/D channel scan sequence will be:
0, 1, 2, 3,…[ad_ch_no], 0, 1, …, [ad_ch_no], …
If autoscan is disabled, only the data from channel [ad_ch_no]
will be converted.
ad_range : Analog input range. The possible value is

AD_B_10_V, AD_B_5_V, AD_B_2_5_V,
AD_B_1_25_V, AD_U_10_V, AD_U_5_V,
AD_U_2_5_V, AD_U_1_25_V .

182 •• Function Reference

dma_ch_no : DMA channel number, the valid DMA channel
number is DMA_CH_5, DMA_CH_6 or
DMA_CH_7

irq_ch_no : IRQ channel number, used to stop DMA
dma_count : the number of A/D conversion
ad_buffer : the start address of the memory buffer to store

the A/D data, the buffer size must be larger
than the number of A/D conversion. Each data
element of ad_buffer contains 16-bit A/D
transfer data.

Note : While calling this function in Visual Basic program, please pass
the first element of the buffer array as the argument of ad_buffer.
For example, if the name of array is buf, pass buf(0) as argument
if index number of buf begins from 0. Also with Windows 3.11
version, because the Integer type in Visual Basic is signed integer
(i.e., its range is from -32768 to 32767), if you want to specify c1
or c2 to number larger than 32767, please set it as the number
minus 65536. For example, if you want to set c1 as 40000, please
set it as (40000 - 65536) = -25536 instead.

@ Return Code

ERR_NoError
ERR_AD_DMANotSet
ERR_BoardNoInit, ERR_InvalidADChannel,
ERR_InvalidADGain, ERR_InvalidDMAChannel,
ERR_InvalidIRQChannel, ERR_InvalidTimerValue

2.8.20 W_8316_AD_DMA_Status

@ Description

Since the W_8316_AD_DMA_Start function executes in
background, you can issue the function
W_8316_AD_DMA_Status() to check its operation status.

@ Syntax

Microsoft C/C++

int W_8316_AD_DMA_Status (U8 *status , U16 *count)

Function Reference•• 183

Visual Basic

Windows 3.11 Version:

W_8316_AD_DMA_Status (status As Byte, count As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8316_AD_DMA_Status (status As Byte, count As
Integer) As Integer

@ Argument

status : status of the DMA data transfer
AD_DMA_STOP : A/D DMA is completed
AD_DMA_RUN : A/D DMA is not completed

count : the number of A/D data which has been
transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_ADDMANotSet

2.8.21 W_8316_AD_DMA_Stop

@ Description

This function is used to stop the DMA data transfer. After
executing this function, the internal A/D trigger is disabled and
the A/D timer (timer #1 and #2) is stopped. The function
returns the number of the data which has been transferred, no
matter the A/D DMA data transfer is stopped by this function or
by the DMA terminal count ISR.

This function has to be called after W_8316_AD_DMA_Start()
function issued. Otherwise, all converted data will not be saved
into the memory buffer you specified in your program.

@ Syntax

Microsoft C/C++

184 •• Function Reference

int W_8316_AD_DMA_Stop (int *count)

Visual Basic

Windows 3.11 Version:

W_8316_AD_DMA_Stop (count As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_8316_AD_DMA_Stop (count As Long) As Long

@ Argument

count : the number of A/D converted data which has
been transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_ADDMANotSet

2.8.22 W_8316_AD_INT_Start

@ Description

The function will perform A/D conversion N times with interrupt
data transfer by using pacer trigger. It will takes place in the
background which will not be stopped until the N-th conversion
has been completed or your program execute
W_8316_AD_INT_Stop() function to stop the process. After
executing this function, it is necessary to check the status of the
operation by using the function W_8316_AD_INT_Status().

Note: W_8316_AD_INT_Start(), and W_8316_AD_INT_Stop() are a
pair of functions, i.e., you have to call W_8316_AD_INT_Stop()
after W_8316_AD_INT_Start(), otherwise the A/D converted data
will not be stored in the buffer you had specified.

@ Syntax

Microsoft C/C++

Function Reference•• 185

int W_8316_INT_Start (U8 ad_mode, Boolean autoscan,
U8 ad_ch_no, U8 ad_range, U8 irq_no, U16 count,
I16 *ad_buffer)

Visual Basic

Windows 3.11 Version:

W_8316_INT_Start (ByVal ad_mode As Byte, ByVal
auto_scan As Integer, ByVal ad_ch_no As Byte,
ByVal ad_gain As Byte, ByVal irq_no As Byte,
ByVal count As Integer, ad_buffer As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8316_INT_Start (ByVal ad_mode As Byte, ByVal
auto_scan As Integer, ByVal ad_ch_no As Byte,
ByVal ad_gain As Byte, ByVal irq_no As Byte,
ByVal count As Integer, ad_buffer As Integer) As
Long

@ Argument

int_mode: A/D conversion by interrupt data transfer. The
modes supported by this library are:

A8316_INT_MODE_0 : Internal timer pacer trigger A/D conversion
with EOC(end of conversion) trigger
interrupt, and get A/D converted data
through I/O port.

A8316_INT_MODE_1 : Internal timer pacer trigger A/D conversion
with FIFO_HF(FIFO half full ready)
trigger interrupt, and get 512 A/D converted
data through I/O port.

A8316_INT_MODE_2 : External Trigger A/D conversion with EOC(
end of conversion) trigger interrupt,
and get A/D converted data through I/O
port.

A8316_INT_MODE_3 : External trigger A/D conversion, with
FIFO_HF(FIFO half full ready) trigger
interrupt, and get 512 A/D converted data
through I/O port.

186 •• Function Reference

Note: If int_mode is A8316_INT_MODE_1or A8316_INT_MODE_3,
this function uses FIFO-Half-Full interrupt transfer mode. So the
value of count must be the multiple of 512.

Autoscan: 0: autoscan is disabled
 1: autoscan is enabled
ad_ch_no : A/D channel number
ad_range : analog input range value. The possible values

are:
AD_B_10_V, AD_B_5_V, AD_B_2_5_V,
AD_B_1_25_V, AD_U_10_V, AD_U_5_V,
AD_U_2_5_V, AD_U_1_25_V .

irq_ch_no : IRQ channel number used to transfer A/D data,
the possible value is defined in file Dll2.h.

count : number of A/D conversions to perform
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must be
large than the number of A/D conversions.
Each data element of ad_buffer contains 16-bit
A/D transfer data.

Note : While calling this function in Visual Basic program, please pass
the first element of the buffer array as the argument of ad_buffer.
For example, if the name of array is buf, pass buf(0) as argument
if index number of buf begins from 0. Also with Windows 3.11
version, because the Integer type in Visual Basic is signed integer
(i.e., its range is from -32768 to 32767), if you want to specify c1
or c2 to number larger than 32767, please set it as the number
minus 65536. For example, if you want to set c1 as 40000, please
set it as (40000 - 65536) = -25536 instead.

@ Return Code

ERR_NoError
ERR_BoardNoInit, ERR_InvalidADChannel,
ERR_InvalidADGain, ERR_InvalidIRQChannel,
ERR_InvalidTimerValue

Function Reference•• 187

2.8.23 W_8316_AD_INT_Status

@ Description

Since the W_8316_AD_INT_Start() function executes in
background, you can issue the function
W_8316_AD_INT_Status() to check the status of interrupt
operation.

@ Syntax

Microsoft C/C++
int W_8316_AD_INT_Status (int *status , int *count)

Visual Basic

Windows 3.11 Version:

W_8316_AD_INT_Status (status As Integer, count As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8316_AD_INT_Status (status As Long, count As Long)
As Long

@ Argument

status : status of the interrupt data transfer
AD_INT_STOP : interrupt A/D is completed
AD_INT_RUN : interrupt A/D is not completed

count : the number of A/D data which has been
transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.8.24 W_8316_AD_INT_Stop

@ Description

This function is used to stop the interrupt data transfer function.
After executing this function, the internal A/D trigger is disabled

188 •• Function Reference

and the A/D timer stops. The function returns the number of
the data which has been transferred, no matter whether if the
A/D interrupt data transfer is stopped by this function or by the
W_8316_AD_INT_Start() itself.

This function has to be called after W_8316_AD_INT_Start()
function issued. Otherwise, all converted data will not be saved
into the memory buffer you had specified in
W_8316_AD_INT_Start() function call.

@ Syntax

Microsoft C/C++
int W_8316_AD_INT_Stop (int *count)

Visual Basic

Windows 3.11 Version:

W_8316_AD_INT_Stop (count As Integer) As Integer
Win-95/98, Win-NT/2000 Version:

W_8316_AD_INT_Stop (count As Long) As Long

@ Argument

count : the number of A/D data which have been
transferred.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_INTNotSet

2.8.25 W_8316_AD_ContINT_Start

@ Description

The function will perform continuous A/D with interrupt data
transfer by using pacer trigger. It will take place in the
background which will not be stopped until your program
execute W_8316_AD_INT_Stop() function to stop the process.
After calling this function, it is necessary to check the status by

Function Reference•• 189

using the function W_8316_AD_DblBufferHalfReady().

Note: W_8316_AD_ContINT_Start(), and W_8316_AD_INT_Stop()
are a pair of functions, i.e., you have to call
W_8316_AD_INT_Stop() after W_8316_AD_ContINT_Start(),
otherwise the A/D converted data will not be stored in the buffer
you had specified.

@ Syntax

Microsoft C/C++
int W_8316_ContINT_Start (U8 ad_mode, Boolean

autoscan, U8 ad_ch_no, U8 ad_range, U8 irq_no,
U16 count, I16 *ad_buffer)

Visual Basic

Windows 3.11 Version:

W_8316_ContINT_Start (ByVal ad_mode As Byte, ByVal
auto_scan As Integer, ByVal ad_ch_no As Byte,
ByVal ad_gain As Byte, ByVal irq_no As Byte,
ByVal count As Integer, ad_buffer As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8316_ContINT_Start (ByVal ad_mode As Byte, ByVal
auto_scan As Integer, ByVal ad_ch_no As Byte,
ByVal ad_gain As Byte, ByVal irq_no As Byte,
ByVal count As Integer, ad_buffer As Integer) As
Long

@ Argument

int_mode: A/D conversion by interrupt data transfer. The
modes supported by this library are:

A8316_INT_MODE_0 : Internal timer pacer trigger A/D conversion
with EOC(end of conversion) trigger
interrupt, and get A/D converted data
through I/O port.

A8316_INT_MODE_1 : Internal timer pacer trigger A/D conversion

190 •• Function Reference

with FIFO_HF(FIFO half full ready)
trigger interrupt, and get 512 A/D converted
data through I/O port.

A8316_INT_MODE_2 : External Trigger A/D conversion with EOC(
end of conversion) trigger interrupt,
and get A/D converted data through I/O
port.

A8316_INT_MODE_3 : External trigger A/D conversion, with
FIFO_HF(FIFO half full ready) trigger
interrupt, and get 512 A/D converted data
through I/O port.

Note: If int_mode is A8316_INT_MODE_1or A8316_INT_MODE_3,
this function uses FIFO-Half-Full interrupt transfer mode. So the
value of count must be the multiple of 1024 for double-buffer
mode.

Autoscan: 0: autoscan is disabled
 1: autoscan is enabled
ad_ch_no : A/D channel number

If autoscan is enabled, the A/D channel scan sequence will be:
0, 1, 2, 3,…[ad_ch_no], 0, 1, …, [ad_ch_no], …
If autoscan is disabled, only the data from channel [ad_ch_no]
will be converted.

ad_range : analog input range value. The possible values
are:
AD_B_10_V, AD_B_5_V, AD_B_2_5_V,
AD_B_1_25_V, AD_U_10_V, AD_U_5_V,
AD_U_2_5_V, AD_U_1_25_V .

irq_ch_no : IRQ channel number used to transfer A/D data,
the possible value is defined in file Dll2.h.

count : number of A/D conversions to perform
ad_buffer : the start address of the memory buffer to

store the A/D data, the buffer size must be
large than the number of A/D conversions.
Each data element of ad_buffer contains 16-bit
A/D transfer data.

Function Reference•• 191

Note : While calling this function in Visual Basic program, please pass
the first element of the buffer array as the argument of ad_buffer.
For example, if the name of array is buf, pass buf(0) as argument
if index number of buf begins from 0. Also with Windows 3.11
version, because the Integer type in Visual Basic is signed integer
(i.e., its range is from -32768 to 32767), if you want to specify c1
or c2 to number larger than 32767, please set it as the number
minus 65536. For example, if you want to set c1 as 40000, please
set it as (40000 - 65536) = -25536 instead.

@ Return Code

ERR_NoError, ERR_InvalidCounterValue
ERR_BoardNoInit, ERR_InvalidADChannel,
ERR_InvalidADGain, ERR_InvalidIRQChannel,
ERR_InvalidTimerValue

2.8.26 W_8316_AD_DblBufferHalfReady

@ Description

Checks whether the next half buffer of data in circular buffer is
ready for transfer during an double-buffered analog input
operation.

@ Syntax

Microsoft C/C++

int W_8316_AD_DblBufferHalfReady (BOOLEAN
*bHalfReady)

Visual Basic

W_8316_AD_DblBufferHalfReady (bHalfReady As Integer)
As Integer

@ Argument

bHalfReady : Whether the next half buffer of data is
available.If HalfReady = TRUE, you can call
W_8316_AD_DblBufferTransfer() to copy

192 •• Function Reference

the data to your user buffer.

@ Return Code

ERR_NoError

2.8.27 W_8316_AD_DblBufferTransfer

@ Description

Depending on the continuous AI function elected, half of the
data in circular buffer will be logged into the user buffer .
You can execute this function repeatedly to return sequential
half buffers of the data.

@ Syntax

Microsoft C/C++

int W_8316_AD_DblBufferTransfer (USHORT *pwBuffer)

Visual Basic

W_8316_AD_DblBufferTransfer (pwBuffer As Integer) As
Integer

@ Argument

pwBuffer: The user buffer. An integer array to which the
data is to be copied.

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.8.28 W_8316_AD_Timer

@ Description

This function is used to setup the Timer #1 and Timer #2. The
values of c1 and c2 are used as frequency dividers for
generating constant A/D sampling rate dedicatedly. It is

Function Reference•• 193

possible to stop the pacer trigger by setting any one of the
dividers as 0. Because the A/D conversion rate is limited due to
the conversion time of the A/D converter, the highest sampling
rate of the ACL-8316/12 can not exceed 100 KHz. The
multiplication of the dividers must be larger than 20.

@ Syntax

Microsoft C/C++
int W_8316_AD_Timer(unsigned int c1, unsigned int c2)

Visual Basic

Windows 3.11 Version:

W_8316_AD_Timer (ByVal c1 As Integer, ByVal c2 As
Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8316_AD_Timer (ByVal c1 As Long, ByVal c2 As Long)
As Long

@ Argument

c1 : frequency divider of timer #1
c2 : frequency divider of timer #2

Note : the A/D sampling rate is equal to : 2MHz / (c1*c2), when c1 = 0
or c2 = 0, the pacer trigger will be stopped.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidTimerValue

2.8.29 W_8316_Timer_Start

@ Description

The Timer #0 on the ACL-8316 can be freely programmed by
the users. This function is used to program the Timer #0. This
timer can be used as frequency generator if internal clock is

194 •• Function Reference

used. It also can be used as event counter if external clock is
used. All the 8253 modes are available.

@ Syntax

Microsoft C/C++
int W_8316_Timer_Start (int timer_mode, unsigned int c0)

Visual Basic

Windows 3.11 Version:

W_8316_Timer_Start (ByVal timer_mode As Integer,
ByVal c0 As Integer) As Integer

Win-95/98, Win-NT/2000 Version:

W_8316_Timer_Start (ByVal timer_mode As Long, ByVal
c0 As Long) As Long

@ Argument

timer_mode : the 8253 timer mode, the possible values are :
TIMER_MODE0, TIMER_MODE1,
TIMER_MODE2, TIMER_MODE3,
TIMER_MODE4, TIMER_MODE5.

c0 : the counter value of timer

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_InvalidTimerMode

2.8.30 W_8316_Timer_Read

@ Description

This function is used to read the counter value of the Timer #0.

@ Syntax

Microsoft C/C++
int W_8316_Timer_Read (unsigned int *counter_value)

Function Reference•• 195

Visual Basic

Windows 3.11 Version:

W_8316_Timer_Read (counter_value As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8316_Timer_Read (counter_value As Long) As Long

@ Argument

counter_value : the counter value of the Timer #0

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.8.31 W_8316_Timer_Stop

@ Description

This function is used to stop the timer operation. The timer is
set to the 'One-shot' mode with counter value '0'. That is, the
clock output signal will be set to high after executing this
function.

@ Syntax

Microsoft C/C++
int W_8316_Timer_Stop (unsigned int *counter_value)

Visual Basic

Windows 3.11 Version:

W_8316_Timer_Stop (counter_value As Integer) As
Integer

Win-95/98, Win-NT/2000 Version:

W_8316_Timer_Stop (counter_value As Long) As Long

@ Argument

counter_value : the current counter value of the Timer #0

196 •• Function Reference

@ Return Code

ERR_NoError
ERR_BoardNoInit

2.8.32 W_8316_DMA_InitialMemoryAllocated

@ Description

This function is only available in Windows NT and Windows
2000 system. This function returns the available memory size
for DMA data transfer in the device driver in argument
MemSize. While performming analog input with DMA data
transfer, the analog input size can not exceed this size.

@ Syntax

Microsoft C/C++
W_8316_DMA_InitialMemoryAllocated(int *MemSize)

Visual Basic

Win-NT/2000 Version:

W_8316_DMA_InitialMemoryAllocated(MemSize As Long)
As Long

@ Argument

MemSize : the available memory size for DMA data transfer
in device driver of ACL-8316/12.

@ Return Code

ERR_NoError
ERR_BoardNoInit
ERR_INTNotSet

Status Codes •• 197

Appendix A Status Codes

This appendix lists the status codes returned by ACLS-DLL2,
including the name and description.
Each ACLS-DLL2 function returns a status code that indicates
whether the function was performed successfully. When an ACLS-
DLL2 function returns a non-zero number, it means that an error
occurred while executing the function.

Status
Code

Status Name Description

0 ERR_NoError No error occurred
1 ERR_BoardNoInit The specified board is not

initialized
2 ERR_InvalidBoardNumber The card_number argument

is not valid
3 ERR_InitializedBoardNumber The board with the specified

board number is not
initialized

4 ERR_BaseAddressError The specified base address
argument is invalid

5 ERR_BaseAddressConflict The specified base address
argument conflicts with
other hardware resource

6 ERR_DuplicateBoardSetting The base addresses setting
for two or more devices are
the same

7 ERR_DuplicateIrqSetting The irq setting for two or
more devices are the same

8 ERR_PortError The specified port is invalid
9 ERR_ChannelError The specified Channel is

invalid
10 ERR_InvalidADChannel The specified AD Channel is

invalid
11 ERR_InvalidDAChannel The specified DA Channel is

invalid
12 ERR_InvalidDIChannel The specified DI Channel is

198 •• Status Codes

invalid
13 ERR_InvalidDOChannel The specified DO Channel

is invalid
14 ERR_InvalidDIOChannel The specified programmable

DI/O Channel is invalid
15 ERR_InvalidIRQChannel The specified IRQ level is

invalid
16 ERR_InvalidDMAChannel The specified DMA Channel

is invalid
17 ERR_InvalidChangeValue The updated value is invalid
18 ERR_InvalidTimerValue The given counter value is

invalid
19 ERR_InvalidTimerMode The specified 8254 Timer

Mode is invalid
20 ERR_InvalidCounterValue The specified Counter value

is invalid
21 ERR_InvalidCounterMode The specified 8254 Counter

Mode is invalid
22 ERR_InvalidADMode The AD Mode is invalid
23 ERR_InvalidMode The specified mode is

invalid
24 ERR_NotOutputPort The specified DO port is

invalid
25 ERR_NotInputPort The specified DI port is

invalid
26 ERR_AD_DMANotSet The DMA data operation for

analog input is not initialized
27 ERR_AD_INTNotSet The Interrupt operation for

analog input is not initialized
28 ERR_AD_AquireTimeOut Time Out for AD operation
29 ERR_AD_InvalidGain The specifed analog input

gain code is invalid
30 ERR_INTNotSet The Interrupt operation for

digital input or output is not
initialized

31 ERR_InvalidPortNumber The specified port number is
invalid

32 ERR_InvalidTrigSrc The specified trigger source
is invalid

Status Codes •• 199

33 ERR_InvalidINTMode The specified interrupt mode
is invalid

34 ERR_InvalidINTMode The specified interrupt mode
is invalid

