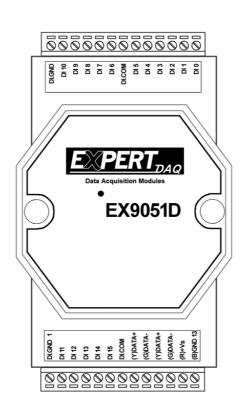
1. Introduction

EX-9051D-M provides 16 isolated digital input channels. All input channels are single ended with common source or common ground. (See Sec. 1.2.1 Block diagram)

Specifications

Interface: RS-485, 2 wires


Speed: 1200, 2400, 4800, 9600, 19.2K, 38.4K, 57.6K,115.2K

Input channels: 16 isolated input channels (sink/source).

Input type: Isolated single ended with common source or common ground

Logical level 0 : +4VDC Max. Logical level 1 : +10V ~ +50VDC

Input impedance: 10K ohms
Isolation Voltage: 3750Vrms
LED: 16 digital input status LED
Power input: +10V to +30VDC
Power Consumption: 1.2W

EX-9055D-M provides 8 isolated digital output(source)channels and 8 isolated digital input channels with common source/ ground . All output channels are open source (N-MOSFET). (See Sec. 1.2.1 Block diagram)

Specifications

Interface: RS-485, 2 wires

Speed: 1200, 2400, 4800, 9600, 19.2K, 38.4K, 57.6K,115.2K

Output channels: 8 isolated output channels (source)

Output type: Open Source (N-MOSFET) Output load voltage: +10V~+40VDC

Max. load current: 650mA Short-circuit protection: Yes

Output isolation Voltage: 3750Vrms

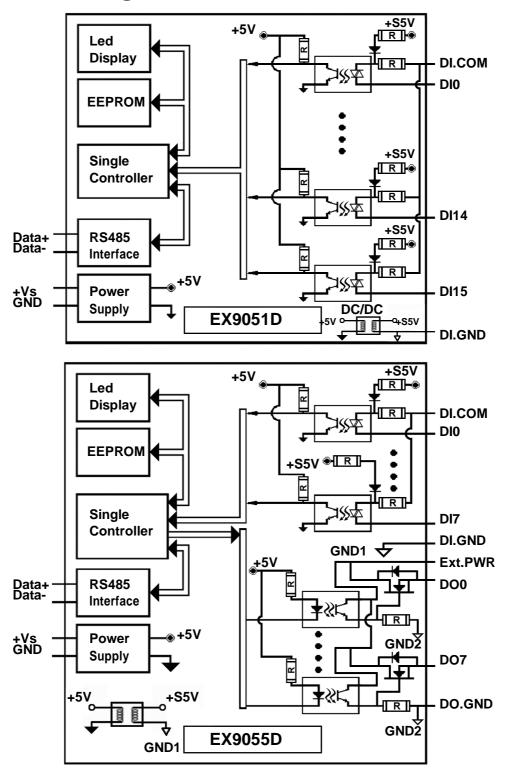
Input channels: 8 isolated input channels (sink/source)

Input type: Isolated single ended with common source or common ground

Input impedance: 10K ohms Logical level 0: +4VDC Max. Logical level 1: +10V ~ +50VDC Input isolation Voltage: 3750Vrms

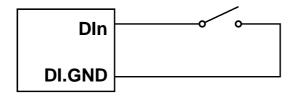
LED: 16 digital input/output status LED

Power input: +10V to +30VDC Power Consumption: 1.6W

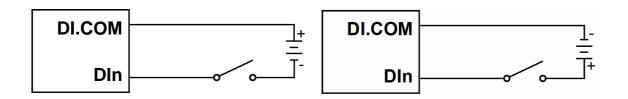


1.1 Specifications

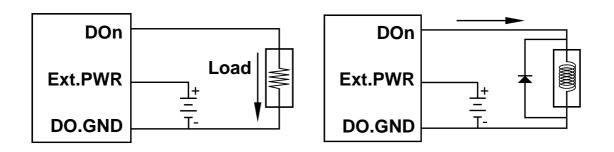
	EX-9051D-M	EX-9055D-M				
Digital Output						
Output Channels		8 (Source)				
Output Type		Open Source (N-MOSFET)				
Load Voltage		+10 to +40V				
Max Load Current		650mA				
Short-Circuit Protection		Yes				
Isolation Voltage		3750 Vrms				
Digital Input						
Input Channels	16 (Sink/Source)	8 (Sink/Source)				
Input Type	Isolated with Common source or Common ground					
ON Voltage Level	+10 to 50V					
OFF Voltage Level	+4V Max					
Input Impedance	10K Ohms					
Isolation Voltage	3750 Vrms					
Environment	Environment					
Modbus RTU	Su	pport				
Power Requirement	+10 to +30 VDC					
Power Consumption	1.2 W	1.6W				
Operating Temperature	-25°C to +75°C					
Storage Temperature	-30°C to +75°C					


1.2 Wire connection

1.2.1 Block Diagrams



1.2.2 Wiring diagram for the EX-9051/9055


Dry Contact Input

Wet Contact Input

Digital Output

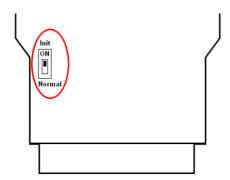
Note: The loading restriction is related by value of Ext.PWR

1.3 Default Settings

Default settings for the EX-9051D-M & EX-9055D-M modules are as follows:

. Protocol: Modbus RTU

. Module Address: 01


. DIO Type: 40

. Baud Rate: 9600 bps

1.4 INIT* Mode Operation

Each EX9000 module has a build-in EEPROM to store configuration information such as address, type, baudrate and other information. Sometimes, user may forget the configuration of the module. Therefore, the EX9000 have a special mode named "INIT* mode" to help user to resolve the problem. The "INIT* mode" is setting as Address=00, Baudrate=9600bps, no Checksum .

Originally, the INIT* mode is accessed by connecting the INIT* terminal to the GND terminal. New EX9000 modules have the INIT* switch located on the rear side of the module to allow easier access to the INIT* mode. For these modules, INIT* mode is accessed by sliding the INIT* switch to the Init position as shown below.

To enable INIT* mode, please following these steps:

Step1. Power off the module

Step2. Connect the INIT* pin with the GND pin.

(or sliding the INIT* switch to the Init* ON position)

Step3. Power on

Step4. Send command \$002 (cr) in 9600bps to read the

Configuration stored in the module's EEPROM.

There are commands that require the module to be in INIT* mode. They are:

- 1. %AANNTTCCFF when changing the Baud Rate and checksum settings. See Section 2.1 for details.
- 2. \$AAPN, See Section 2.18 for details.

1.5 Module Status for DIO, AIO

Power On Reset or **Module Watchdog Reset** will let all output goto **Power On Value**. And the module may accept the host's command to change the output value.

Host Watchdog Timeout will let all output goto Safe Value. The module's status(read by command~AA0) will be <u>04</u>, <u>and the output command will be ignored</u>.

1.6 Dual Watchdog Operation for DIO, AIO

Dual Watchdog=Module Watchdog + Host Watchdog

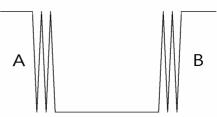
The <u>Module Watchdog</u> is a hardware reset circuit to monitor the module's operating status. While working in harsh or noisy environment, the module may be down by the external signal. The circuit may let the module to work continues and never halt.

The <u>Host Watchdog</u> is a software function to monitor the host's operating status. Its purpose is to prevent the network from communication problem or host halt. When the timeout interval expired, the module will turn all outputs to predefined Safe Value. This can prevent the controlled target from unexpected situation.

The EX9000 module with Dual Watchdog may let the control system more reliable and stable.

1.7 Reset Status

The Reset Status is set while the module power on or reset by module watchdog and is cleared while the command read Reset Status (\$AA5) applied. This is useful for user to check the module's working status. When the Reset Status is set means the module is reset and the output may be changed to the PowerOn Value. When the Reset Status is clear means the module is not rested and the output is not changed.


1.8 Digital O/P

The module's output have 3 different situation:

- <1>Safe Value. If the host watchdog timeout status is set, the output is set to Safe Value. While the module receive the output command like @AA(Date) or #AABBDD, the module will ignore the command and return "!". And will not change the output to the output command value. The host watchdog timeout status is set and store into EEPROM while the host watchdog timeout interval expired and only can be cleared by command ~AA1. If user want to change the output it need to clear the host watchdog timeout status firstly and send output command to change the output into desired value.
- <2>PowerOn Value. Only the module reset and the host watchdog timeout status is clear, the module's output is set to predefined Power On Value.
- <3> Output Command Value. If the host watchdog timeout status is clear and user issue a digital output command like @AA (Data) or #AABBDD to module for changing the output value. The module will response success (receive>).

1.9 Latch Digital I/P

For example, use connect the key switch to Digital input channel of a digital input/output module and want to read the key stoke. The Key input is a pulse digital input and user will lost the strike. While reading by command \$AA6 in A and B position, the response is that no key stroke and it will lose the key stroke information. Respectely, the read latch low digital input command \$AAL0 will solve this problem. When issue \$AAL0 command in A and B position, the response denote that there is a low pulse between A and B position for a key stroke.

1.10 Configuration Tables

Baud Rate Setting (CC)

Code	03	04	05	06	07	08	09	0A
Baud rate	1200	2400	4800	9600	19200	38400	57600	115200

Data Format Setting (FF)

7	6	5	4	3	2	1	0
*1	*2			*3			

*1: Counter Update Direction: 0 = Falling Edge,

1=Rising Edge.

*2: Checksum Bit : 0=Disable, 1=Enable.

*3: The reserved bits should be zero.

Read Digital Input/Output Data Format table

Data of \$AA6,\$AA4,\$AALS:(First Data)(Second Data)00

Data of @AA:(First Data)(Second Data)

Note: Both the First Data and the Second Data are in two hexadecimal digitals format.

Module	The Fir	st data	The Second data		
EX9051M	DI8~DI15	00~FF	DI0~DI7	00~FF	
EX9055M	DO0~DO7	00~FF	DI0~DI7	00~FF	

2.0 Command Sets 2.1 %AANNTTCCFF

Description: Set Module Configuration. **Syntax:** %AANNTTCCFF[CHK](cr)

% a delimiter character

AA address of setting/response module(00 to FF)

NN new address for setting/response module(00 to FF)

TT type 40 for DIO module

CC new baudrate for setting module.

FF new data format for setting module.

If the configuration with new baudrate or new checksum setting, before using this command, it is needed to short the INIT* to ground (or sliding the INIT* switch to the Init ON position of rear side). The new setting is saved in the EEPROM and will be effective after the next power-on reset.

Response: Valid Command: !AA

Invalid Command: ?AA

Example:

Command: %0102240600 Receive: !02

Set module address 01 to 02, return Success.

2.2 #**

Description: Synchronized Sampling

Syntax: #**[CHK](cr)

delimiter character

** synchronized sampling command

Response: No response

Example:

Command: #** No response

Send synchronized sampling command to all modules.

Command: \$014 Receive: !10F0000

Read synchronized data from address 01, return S=1, first read

and data is 0F0000

Command: \$014 Receive: !00F0000

Read synchronized data from address 01, return S=0, have readed

and data is 0F0000

2.3 #AABBDD

Description: Digital Output **Syntax:** #AABBDD[CHK](cr)

delimiter character

AA address of reading/response module(00 to FF)

BBDD Output command and parameter

For output multi-channel, the BB=00, 0A or 0B the select which output group, and the DD is the output value

Parameter for Multi-Channel Output						
	Output	DD	for comma	nd #AABBDD		
	Channels	BB=0	00/0A	BB=0B		
EX9042D	13	00 to FF	DO(0~7)	00 to 1F	DO(8~12)	
EX9043D	16	00 to FF	DO(0~7)	00 to 1F	DO(8~15)	
EX9044D	8	00 to FF	DO(0~7)	NA	NA	
EX9050D	8	00 to FF	DO(0~7)	NA	NA	
EX9055D	8	00 to FF	DO(0~7)	NA	NA	
EX9060D	4	00 to 0F	RL(1~4)	NA	NA	
EX9063D	3	00 to 07	RL(1~3)	NA	NA	
EX9065D	5	00 to 1F	RL(1~5)	NA	NA	
EX9066D	7	00 to 7F	RL(1~7)	NA	NA	
EX9067D	7	00 to 7F	RL(1~7)	NA	NA	

For output single-channel, the BB=1c, Ac or Bc where c is the selected channel, and the DD must be 00 to clear output and 01 to set output.

Parameter for Single-Channel Output					
	Single char	Single channel output command #AABBDD			
	c for BB	s=1c/Ac	c for BB=Bc		
EX9042D	0 to 7	DO(0~7)	0 to 4	DO(8~12)	
EX9043D	0 to 7	DO(0~7)	0 to 7	DO(8~15)	
EX9044D	0 to 7	DO(0~7)	NA	NA	
EX9050D	0 to 7	DO(0~7)	NA	NA	
EX9055D	0 to 7	DO(0~7)	NA	NA	
EX9060D	0 to 3	RL(1~4)	NA	NA	
EX9063D	0 to 2	RL(1~3)	NA	NA	
EX9065D	0 to 4	RL(1~5)	NA	NA	
EX9066D	0 to 6	RL(1~7)	NA	NA	
EX9067D	0 to 6	RL(1~7)	NA	NA	

Response: Valid Command: >

Invalid Command: ?

Ignore Command: !

Delimiter for ignore the command. The module's host watchdog timeout status is set, and the output is set to Safe Value.

Example:

Command: #0100FF Receive: >

Assume module is EX9055M, set address 01 output value FF,

return success.

Command: #021001 Receive: >

Assume module is EX9055M, set address 02 output channel 0

on, return success.

Command: #021001 Receive: >

Assume module is EX9055M, set address 02 output channel 0 on, return ignore, The module's host watchdog timeout status is

2.4 #AAN

Description: Read Digital Input Counter from channel N

Syntax: #AAN[CHK](cr)

delimiter character

AA address of reading/response module (00 to FF)

N channel to read

Response: Valid Command: >(Data)

Invalid Command: ?AA

(Data) digital input counter value in decimal, from 00000 to 99999

Example:

Command: #032 Receive: !0300103

Read address 03 digital input counter value of channel 2, return

value 103.

Command: #025 Receive: ?02

Read address 02 digital input counter value of channel 5, return

the channel is not available.

2.5 \$AA2

Description: Read configuration.

Syntax: \$AA2[CHK](cr)

\$ delimiter character

AA address of reading/response module (00 to FF)

2 command for read configuration

Response: Valid Command: !AATTCCFF

Invalid Command: ?AA

TT type code of module, it must be 40

CC baudrate code of module

FF data format of module

Example:

Command: \$012 Receive: !01400600

Read the configuration of module 01, return DIO mode, baudrate

9600, no checksum.

Note: check configuration Tables

2.6 \$AA4

Description: Reads the synchronized data

Syntax: \$AA4[CHK](cr)

\$ delimiter character

AA address of reading/response module (00 to FF)

4 command to read the synchronized data

Response: Valid Command: !S(Data)

Invalid Command: ?AA

status of synchronized data, 1=first read, 0=been readed

(Data) synchronized DIO value. See Section 1.10 for data format.

Example:

Command: #** no response

Send synchronized sampling to all modules.

Command: \$014 Receive: !10F0000

Read address 01 synchronized data, return S=1, first read, and

synchronized data 0F00

2.7 \$AA5

Description: Read Reset Status

Syntax: \$AA5[CHK](cr)

\$ delimiter character

AA address of reading/response module (00 to FF)

5 command for read reset status

Response: Valid Command: !AAS

Invalid Command: ?AA

S reset status, 1=the module is been reset, 0=the module is

not been rested

Example:

Command: \$ 015 Receive: !011

Read address 01 reset status, return module is been reset

Command: \$ 015 Receive: !010

Read address 01 reset status, return no reset occurred.

2.8 \$AA6

Description: Read Digital I/O Status

Syntax: \$AA6[CHK](cr)

\$ delimiter character

AA address of reading/response module (00 to FF)

6 command for read channel status

Response: Valid Command: !(Data)

Invalid Command: ?AA

(Data) Digital input/output value.

Example:

Command: \$016 Receive: !000F00

Assume module is EX9055M, read address 01 DIO status, return 000F, digital input channel 0~3 are on, digital output channel 0~7 are off.

2.9 **\$AAF**

Description: Read Firmware Version

Syntax: \$AAF[CHK](cr)

\$ delimiter character

AA address of reading/response module (00 to FF)

F command for read firmware version

Response: Valid Command: !AA(Data)

Invalid Command: ?AA

(Data) Firmware version of module

Example:

Command: \$01F Receive: !01D02.07

Read address 01 firmware version, return version D02.07

2.10 \$AAM

Description: Read Module Name

Syntax: \$AAM[CHK](cr)

\$ delimiter character

AA address of reading/response module (00 to FF)

M address of reading/response module(00 to FF)

Response: Valid Command: !AA(Data)

Invalid Command: ?AA

(Data) Name of module

Example:

Command: \$01M Receive: !019051M

Read address 01 module name, return name 9051M

Command: \$03M Receive: !039055M

Read address 03 module name, return name 9055M

2.11 \$AAC

Description: Clear Latched Digital Input

Syntax: \$AAC[CHK](cr)

\$ delimiter character

AA address of reading/response module (00 to FF)

C command for clear latched digital input

Response: Valid Command: !AA

Invalid Command: ?AA

Example:

Command: \$01L0 Receive: !FFFF00

Read address 01 latch-low data, return FFFF.

Command: \$01C Receive: !01

Clear address 01 Latched data, return success.

Command: \$01L0 Receive: !000000

Read address 01 latch-low data, return 0000.

2.12 **\$AACN**

Description: Clear Digital Input Counter

Syntax: \$AACN[CHK](cr)

\$ delimiter character

AA address of reading/response module (00 to FF)

C command for clear latched digital input

N digital counter channel N to clear

Response: Valid Command: !AA

Invalid Command: ?AA

Example:

Command: #010 Receive: !0100123

Read address 01 input channel 0 counter value, return 123.

Command: \$01C0 Receive: !01

Clear address 01 input channel 0 counter value, return success.

Command: #010 Receive: !0100000

Read address 01 input channel 0 counter value, return 0.

2.13 **\$AALS**

Description: Read Latched Digital Input

Syntax: \$AALS[CHK](cr)

\$ delimiter character

AA address of reading/response module (00 to FF)

L command for read latched digital input

S 1=select latch high status, 0=select latch low status

Response: Valid Command: !(Data)

Invalid Command: ?AA

(Data) readed status 1=the input channel is latched, 0=the input channel is not latched.

Example:

Command: \$01L1 Receive: !012300

Read address 01 latch-high data, return 0123.

Command: \$01C Receive: !01

Clear address 01 Latched data, return success.

Command: \$01L1 Receive: !000000

Read address 01 latch-high data, return 0000.

2.14 @AA

Description: Read Digital I/O Status

Syntax: @AA[CHK](cr)

@ delimiter character

AA address of reading/response module (00 to FF)

Response: Valid Command: >(Data)

Invalid Command: ?AA

(Data) Digital input/output value.

Example:

Command: @01 Receive: >000F

Assume module is EX9055M, read address 01 DIO status, return 000F, digital input channel 0~3 are on, digital output channel 0~7 are off.

2.15 @AA(Data)

Description: Set Digital I/O Status **Syntax:** @**AA**(**Data**)[**CHK**](**cr**)

@ delimiter character

AA address of reading/response module (00 to FF)

(Data) output value, the data format is following:

(Data) is one character for output channel less than 4

For EX9060D, from 0 to F

For EX9063D, from 0 to 7

(Data) is two characters for output channel less than 8

For EX9044D/50D/55M, from 00 to FF

For EX9065D, from 00 to 1F

For EX9066D/67D, from 00 to 7F

(Data) is four characters for output channel less than 16

For EX9042D, from 0000 to 1FFF

For EX9043D, from 0000 to FFFF

Response: Valid Command: >

Invalid Command: ?

Ignore Command: !

! delimiter for ignore command. The module is in Host Watchdog Timeout Mode, and the output is set to safe value.

Example:

Command: @0107 Receive: >

Output address 01 value 7, return success.(The example is suitable for EX9055M's digital output channel 0~2 are on)

2.16 ~AAO(Data)

Description: Set Module Name **Syntax:** ~**AAO(Data)[CHK](cr)**

delimiter character

AA address of reading/response module (00 to FF)

O command for set module name

(Data) new name for module, max 6 characters

Response: Valid Command: !AA

Invalid Command: ?AA

Example:

Command: ~01O9055M Receive: !01

Set address 01 module name 9055M, return success.

Command: \$01M Receive: !019055M

Read address 01 module name, return name 9055M.

2.17 **\$AAP**

Description: Read protocol information of Module

Syntax: \$AAP[CHK](cr)

\$ delimiter character

AA address of reading/response module (00 to FF)

P command for read protocol information of module

Response: Valid Command: !AAS

Invalid Command: ?AA

S The protocol supported by the module

10: the protocol set in EEPROM is Normal mode

11: the protocol set in EEPROM is ModbusRTU mode

Example:

Command: \$01P Receive: !0110

Reads the communication protocol of module 01 and returns a response of 10 meaning the protocol that will be used at the next power on reset is normal mode.

Command: \$01P1 Receive: !01

Sets the communication protocol of module 01 to Modbus RTU and returns a valid response. And the next power on reset is in Modbus RTU mode.

2.18 \$AAPN

Description: Set the protocol information of Module

Syntax: \$AAPN[CHK](cr)

\$ delimiter character

AA address of reading/response module (00 to FF)

P command for set protocol information of module

N The protocol supported by the module

0: the protocol set in EEPROM is Normal mode

1: the protocol set in EEPROM is ModbusRTU mode Before using this command, it is needed to short the INIT* to ground (or sliding the INIT* switch to the Init ON position of rear side). The new protocol is saved in the EEPROM and will be effective after the next

power-on reset.

Response: Valid Command: !AA

Invalid Command: ?AA

Example:

Command: \$01P1 Receive: !01

Sets the communication protocol of module 01 to Modbus RTU and returns a valid response. And the next power on reset is in ModbusRTU mode.

2.19 ~**

Description: Host OK

Host send this command to all modules for send the

information "Host OK"
Syntax: ~**[CHK](cr)

delimiter character

** command for all modules

Response: No response

Example:

Command: ~** No response

2.20 ~AA0

Description: Read Module Status

Syntax: ~AA0[CHK](cr)

delimiter character

AA address of reading/response module (00 to FF)

0 command for read module status

Response: Valid Command: !AASS

Invalid Command: **?AA**

ss module status, 00= host watchdog is disabled & host watchdog timeout status is clear; 80= host watchdog is enabled & host watchdog timeout status is clear; 84= host watchdog is enabled & host watchdog timeout status is set. The status will store into EEPROM and only may reset by the command~AA1.

SS	Host watchdog	Host watchdog timeout status
00	Disable	Clear
80	Enable	Clear
84	Enable	Set

2,21 ~AA1

Description: Reset Module Status

Syntax: ~AA1[CHK](cr)

~ delimiter character

AA address of reading/response module (00 to FF)

1 command for reset module status

Response: Valid Command: !AA

Invalid Command: ?AA

2.22 ~AA2

Description: Read the Host Watchdog Timeout Value

Syntax: ~AA2[CHK](cr)

delimiter character

AA address of reading/response module (00 to FF)

2 command for read host watchdog timeout value

Response: Valid Command: !AAEVV

Invalid Command: ?AA

E host watchdog enable status, 1=Enable, 0=Disable

VV timeout value in HEX format, each count is 0.1 second

01=0.1 second and FF=25.5 seconds

2.23 ~AA3EVV

Description: Set host Watchdog Timeout Value

Syntax: ~AA3EVV[CHK](cr)

delimiter character

AA address of reading/response module (00 to FF)

3 command for set host watchdog timeout value

E 1=Enabled / 0=Disable host watchdog

VV timeout value, from 01 to FF, each for 0.1 second

Response: Valid Command: !AA

Invalid Command: ?AA

Example:

Command: ~010 Receive: !0100

Read address 01 modules status, return host watchdog timeout

status is clear.

Command: ~013164 Receive: !01

Set address 01 host watchdog timeout value 10.0 seconds and

enable host watchdog, return success.

Command: ~012 Receive: !01164

Read address 01 host watchdog timeout value, return that host

watchdog is enabled, and time interval is 10.0 seconds.

Command: ~** No response

Reset the host watchdog timer. Wait for about 10 seconds and don't send command~**, the LED of module will go to flash. The flash LED indicates the host watchdog timeout status is set.

Command: ~010 Receive: !0104

Read address 01 module status, return host watchdog timeout status is set.

Command: ~012 Receive: !01064

Read address 01 host watchdog timeout value, return that host watchdog is disabled, and time interval is 10.0 seconds.

Command: ~011 Receive: !01

Reset address 01 host watchdog timeout status, return success And the LED of this module stop flash.

Command: ~010 Receive: !0100

Read address 01 module status, return host watchdog timeout status is clear.

2.24 ~AA4V

Description: Read Power On/Safe Value

Syntax: ~AA4V[CHK](cr)

delimiter character

AA address of reading/response module (00 to FF)

4 command for read Power On/Safe value

V P= read Power On Value, S= read Safe Value

Response: Valid Command: !AA(Data)

Invalid Command: ?AA

(Data) Power On Value or Safe Value

For EX9042D/43D(Data) is VVVV,

where VVVV is the Power On Value (or Safe Value).

For other modules, (Data) is **VV00**,

where VV is the Power On Value(or Safe Value).

Example:

Command: @0100 Receive: >

Output address 01 Value 00, return success.

Command: ~015S Receive: !01

Set address 01 Safe Value, return success.

Command: @01FF Receive: >

Output address 01 Value FF, return success..

Command: ~015P Receive: !01

Set address 01 Power On Value, return success.

Command: ~014S Receive: !0100

Read address 01 Safe Value, return 00.

Command: ~014P Receive: !01FF

Read address 01 Power On Value, return FF.

2.25 ~AA5V

Description: Set Power On/Safe Value

Syntax: ~AA5V[CHK](cr)

delimiter character

AA address of reading/response module (00 to FF)

5 command for set Power On/Safe value

V P= set current output as Power On Value, S= set current

output as Safe Value

Response: Valid Command: !AA

Invalid Command: ?AA

Example:

Command: @01AA Receive: >

Output address 01 Value AA, return success.

Command: ~015P Receive: !01

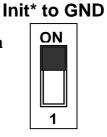
Set address 01 Power On Value, return success.

Command: @0155 Receive: >

Output address 01 Value 55, return success.

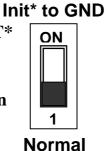
Command: @015S Receive: !01

Set address 01 Safe Value, return success..


Command: ~014P Receive: !01AA00

Read address 01 Power On Value, return AA.

Command: ~014S Receive: !015500 Read address 01 Safe Value, return 55.


EX9051-M/9055-M Quick Start

- 1. The default setting is MODBUS mode after Power On.
- 2. Sliding the INIT* switch to the Init*(ON) position of rear side then Power On will enter INIT* mode (use ASCII command).

Normal

- 3. On ASCII command mode, user can set other setting like Address,
 Baudrate, ...by use ASCII command or Utility of EX9000 (Please check
 the User Manual of EX9000).
- 4. After change the setting finished, Sliding the INIT* switch to the Normal(1) position of rear side, the new setting will be effectived after the next power-on reset.

40

01(0x01) Read Digital Input/Output Value

Request

Nequ	COL		
00	Address	1 Byte	1-247
01	Function code	1 Byte	0x01
02~03	Starting channel	2 Bytes	EX9051M:
			0x0020~0x002F for DI readback value
			0x0040~0x004F for DI Latch high value
			0x0060~0x006F for DI Latch low value
			EX9055M:
			0x0000~0x0007 for DO readback value
			0x0048~0x004F for DO Latch high value
			0x0068~0x006F for DO Latch low value
			0x0020~0x0027 for DI readback value
			0x0040~0x0047 for DI Latch high value
			0x0060~0x0067 for DI Latch low value
			0x0080~0x0087 for DO safe value
			0x00A0~0x00A7 for DO power-on value
04~05	Input/Output	2 Bytes	0x0001~0x0010
	channel numbers		

Response

	01100		
00	Address	1 Byte	1-247
01	Function code	1 Byte	0x01
02	Byte count	1 Byte	1
03	Input/Output	1 Byte	0x00~0x0F
	channel readback		A bit corresponds to a channel. When the
	value		bit is 1 it denotes that the value of the
			channel that was set is ON. if the bit is 0 it
			denotes that the value of the channel that
			was set is OFF.

00	Address	1 Byte	1-247		
01	Function code	1 Byte	0x81		
02	Exception code	1 Byte	Refer to the Modbus standard for more		
			details.		

02(0x02) Read Digital Input Value

Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x02
02~03	Starting channel	2 Bytes	EX9051M: 0x0000~0x000F
			EX9055M: 0x0000~0x0007
04~05	Input channel	2 Bytes	0x0001~0x0010
	numbers		

Response

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x02
02	Byte count	1 Byte	1
03	Input channel	1 Byte	0x00~0x0F
	readback value		A bit corresponds to a channel. When the
			bit is 1 it denotes that the value of the
			channel that was Input response. if the bit
			is 0 it denotes that the value of the channel
			that was no Input response.

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x82
02	Exception code	1 Byte	Refer to the Modbus standard for more
			details.

03(0x03) Read Digital Input Count Value

Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x03
02~03	Starting channel	2 Bytes	EX9051M: 0x0000~0x000F
			EX9055M: 0x0000~0x0007
04~05	Input channel	2 Bytes	0x0001~0x0010
	numbers		

Response

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x03
02	Byte count	1 Byte	1
03~	Input channel	N * x 2	Each channel can record a maximum
	count value	Byte	count value up to 65535(0xFFFF).

N*=Number of input channels

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x83
02	Exception code	1 Byte	Refer to the Modbus standard for more
			details.

04(0x04) Read Digital Input Count Value

Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x04
02~03	Starting channel	2 Bytes	EX9051M: 0x0000~0x000F
			EX9055M: 0x0000~0x0007
04~05	Input channel	2 Bytes	0x0001~0x0004
	numbers		

Response

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x04
02	Byte count	1 Byte	1
03~	Input channel	N * x 2	Each channel can record a maximum
	count value	Byte	count value up to 65535(0xFFFF).

N*=Number of input channels

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x84
02	Exception code	1 Byte	Refer to the Modbus standard for more
			details.

05(0x05) Write Digital Output/Clear DI count Value (Single channel)

Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x05
02~03	Output channel	2 Bytes	EX9051M:
	number		0x0107 to clear the latch value
			0x0200~0x020F to clear the DI counter
			value
			EX9055M:
			0x0000~0x0007 for output channel
			0x0107 to clear the latch value
			0x0200~0x0207 to clear the DI counter
			value
04~05	Output value	2 Bytes	A value of 0xFF00 sets the output to ON.
			A value of 0x0000 set it to OFF. All other
			values are illegal and won't affect the coil.

Response

· voop	spense					
00	Address	1 Byte	1-247			
01	Function code	1 Byte	0x05			
02~03	Output channel	2 Bytes	The value is the same as byte 02 and			
	numbers		03 of the Request			
04~05	Output value	2 Bytes	The value is the same as byte 04 and			
			05 of the Request			

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x85
02	Exception code	1 Byte	Refer to the Modbus standard for more
			details.

15(0x0F) Write Digital Output/Clear DI count Value (Multi channel)

Request

	request						
00	Address	1 Byte	1-247				
01	Function code	1 Byte	0x0F				
02~03	Starting channel	2 Bytes	EX9051M:				
			0x0200~0x020F to clear the DI counter				
			value				
			EX9055M:				
			0x0000~0x0007 for output channel				
			0x0200~0x0207 to clear the DI counter				
			value				
			0x0080~0x0087 for Safe value				
			0x00A0~0x00A7 for Power-on value				
04~05	Output channel	2 Bytes	0x0001~0x0010				
	numbers						
06	Byte count	1 Byte	2 for EX9051M, 1 for EX9055M				
07	Output	1 Byte	0x0000~0xFFFF for EX9051M				
	value/Clear DI		0x00~0xFF for EX9055M				
	count value		A bit corresponds to a channel. When the bit is 1				
			it denotes that the value of the channel that was				
			set is ON. if the bit is 0 it denotes that the value				
			of the channel that was set is OFF.				

Response

00	Address	1 Byte	1-247			
01	Function code	1 Byte	0x0F			
02~03	Starting channel	2 Bytes	The value is the same as byte 02 and			
			03 of the Request			
04~05	Output channel	2 Bytes	The value is the same as byte 04 and			
	numbers		05 of the Request			

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x8F
02	Exception code	1 Byte	Refer to the Modbus standard for more
			details.

01(0x01) Read WDT timeout status

Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x01
02~03	Starting channel	2 Bytes	0x010D
04~05	Read WDT timeout	2 Bytes	0x0001
	status		

Response

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x01
02	Byte count	1 Byte	1
03	Read WDT timeout	1 Byte	0x00 The WDT timeout status is clear
	status		0x01 The WDT timeout status is enable

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x81
02	Exception code	-	Refer to the Modbus standard for more details.

03(0x03) Read WDT timeout Value

Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x03
02~03	Starting channel	2 Bytes	0x01E8
04~05	Read WDT timeout	2 Bytes	0x0001
	value		

Response

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x03
02	Byte count	1 Byte	2
03~	Read WDT timeout	1 Byte	0x0000~0x00FF WDT timeout
	value		value, 0~255, in 0.1 second

00	Addr	ess	1 Byte	1-247
01	Funct	ion code	1 Byte	0x83
02	Excep	otion code	1 Byte	Refer to the Modbus standard for
				more details.

03(0x03) Send Host OK

Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x03
02~03	Starting channel	2 Bytes	0x3038
04~05	Send Host OK	2 Bytes	0x0000

No Response

04(0x04) Send Host OK

Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x04
02~03	Starting channel	2 Bytes	0x3038
04~05	Send Host OK	2 Bytes	0x0000

No Response

05(0x05) Set WDT timeout /Clear WDT timeout status

Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x05
02~03	WDT timeout	2 Bytes	0x0104 Set WDT timeout
			enable/disable
			0x010D Clear WDT timeout status
04~05	WDT timeout	2 Bytes	0xFF00 for WDT timeout enable
			0x0000 for WDT timeout disable
			0xFF00 for Clear WDT timeout
			status

Response

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x05
02~03	WDT timeout	2 Bytes	The value is the same as byte 02 and
			03 of the Request
04~05	WDT timeout	2 Bytes	The value is the same as byte 04 and
		-	05 of the Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x85
02	Exception code		Refer to the Modbus standard for
			more details.

06(0x06) Set WDT timeout Value

Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x06
02~03	Starting channel	2 Bytes	0x01E8
04~05	WDT timeout value	2 Bytes	0x0000~0x00FF WDT timeout
		-	value, 0~255, in 0.1 second

Response

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x06
02~03	WDT timeout value	2 Bytes	The value is the same as byte 02 and
		-	03 of the Request
04~05	WDT timeout value	2 Bytes	The value is the same as byte 04 and
			05 of the Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x86
02	Exception code	1 Byte	Refer to the Modbus standard for
			more details.

Modbus Mapping Table:

EX9051M (DI*16)

ADDR	Item	Attribute
00033~00048	Digital Input channel for DI0~15	R
00065~00080	DI Latch high value for DI0~15	R
00097~00112	DI Latch low value for DI0~15	R
00264	Clear the Latch value	W
30001~30016	Digital input counter for DI0~15	R
00513~00528	Clear the DI counter value for DI0~15	W

EX9055M (DI*8, DO*8)

ADDR	Item	Attribute
00033~00040	Digital Input channel for DI0~7	R
00065~00072	DI Latch high value for DI0~7	R
00097~00104	DI Latch low value for DI0~7	R
00264	Clear the Latch value	W
30001~30008	Digital input counter for DI0~7	R
00513~00520	Clear the DI counter value for DI0~7	W
00001~00008	Digital output channel for DO0~7	R/W