
PCI-8134
4 Axes Servo / Stepper

Motion Control Card
User’s Guide

@Copyright 1999 ADLink Technology Inc.
All Rights Reserved.

Manual Rev. 1.00: July 20, 1999
Manual Rev. 2.00: November 28, 1999

The information in this document is subject to change without prior notice in order
to improve reliability, design and function and does not represent a commitment
on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental,
or consequential damages arising out of the use or inability to use the product or
documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All rights
are reserved. No part of this manual may be reproduced by any mechanical,
electronic, or other means in any form without prior written permission of the
manufacturer.

Trademarks
NuDAQ, PCI-8134 are registered trademarks of ADLink Technology Inc, MS-
DOS & Windows 95 are registered trademarks of Microsoft Corporation., Borland
C++ is a registered trademark of Borland International, Inc. Other product names
mentioned herein are used for identification purposes only and may be
trademarks and/or registered trademarks of their respective companies.

Getting service from ADLink
♦ Customer Satisfaction is always the most important thing for ADLink

Tech Inc. If you need any help or service, please contact us and get it.
ADLink Technology Inc.

Web Site http://www.adlink.com.tw
Sales & Service service@adlink.com.tw
Technical NuDAQ nudaq@adlink.com.tw
Support NuDAM nudam@adlink.com.tw

NuIPC nuipc@adlink.com.tw
NuPRO nupro@adlink.com.tw
Software sw@adlink.com.tw
AMB amb@adlink.com.tw

TEL +886-2-82265877 FAX +886-2-82265717
Address 9F, No. 166, Jian Yi Road, Chungho City, Taipei, 235 Taiwan, R.O.C.

♦ Please inform or FAX us of your detailed information for a prompt,
satisfactory and constant service.

Detailed Company Information
Company/Organization

Contact Person

E-mail Address

Address

Country

TEL FAX

Web Site

Questions
Product Model

Environment to Use � OS

� Computer Brand

� M/B : � CPU :

� Chipset : � Bios :
� Video Card :
� Network Interface Card :
� Other :

Challenge Description

Suggestions for ADLink

Contents •• i

CONTENTS

HOW TO USE THIS GUIDEV

CHAPTER 1 INTRODUCTION............................. 1
1.1 FEATURES..4

1.2 SPECIFICATIONS ...4

1.3 SOFTWARE SUPPORTING ...5
1.3.1 Programming Library .. 5
1.3.2 Motion Creator... 5
1.3.3 Programming Guide .. 5

CHAPTER 2 INSTALLATION.............................. 7
2.1 WHAT YOU HAVE ..7

2.2 PCI-8134 OUTLINE DRAWING ..8

2.3 HARDWARE INSTALLATION ...9
2.3.1 Hardware configuration... 9
2.3.2 PCI slot selection .. 9
2.3.3 Installation Procedures ... 9
2.3.4 Trouble shooting:.. 10

2.4 SOFTWARE DRIVER INSTALLATION..10

2.5 PROGRAMMING GUIDE INSTALLATION....................................10

2.6 CN1 PIN ASSIGNMENTS: EXTERNAL POWER INPUT12

2.7 CN2 PIN ASSIGNMENTS: MAIN CONNECTOR13

2.8 CN3 PIN ASSIGNMENTS: MANUAL PULSER INPUT14

2.9 CN4 PIN ASSIGNMENTS: SIMULTANEOUS START/STOP14

2.10 JUMPER SETTING ..15

2.11 SWITCH SETTING...15

ii •• Contents

CHAPTER 3 SIGNAL CONNECTIONS............... 17
3.1 PULSE OUTPUT SIGNALS OUT AND DIR17

3.2 ENCODER FEEDBACK SIGNALS EA, EB AND EZ19

3.3 ORIGIN SIGNAL ORG ..21

3.4 END-LIMIT SIGNALS PEL AND MEL......................................22

3.5 RAMPING-DOWN SIGNALS PSD AND MSD.............................23

3.6 IN-POSITION SIGNAL INP ...23

3.7 ALARM SIGNAL ALM...24

3.8 DEVIATION COUNTER CLEAR SIGNAL ERC............................25

3.9 GENERAL-PURPOSE SIGNAL SVON......................................25

3.10 GENERAL-PURPOSE SIGNAL RDY...26

3.11 PULSER INPUT SIGNALS PA AND PB26

3.12 SIMULTANEOUSLY START/STOP SIGNALS STA AND STP........27

3.13 DAUGHTER BOARD CONNECTOR ..28

CHAPTER 4 OPERATION THEOREM 29
4.1 MOTION CONTROL MODES ...29

4.1.1 Pulse Command Output .. 30
4.1.2 Constant Velocity Motion.. 31
4.1.3 Trapezoidal Motion.. 32
4.1.4 S-curve Profile Motion... 34
4.1.5 Linear and Circular Interpolated Motion 37
4.1.6 Home Return Mode.. 38
4.1.7 Manual Pulser Mode.. 40

4.2 MOTOR DRIVER INTERFACE..41
4.2.1 INP .. 41
4.2.2 ALM .. 41
4.2.3 ERC... 42

4.3 THE LIMIT SWITCH INTERFACE AND I/O STATUS42
4.3.1 SD .. 43
4.3.2 EL ... 43

Contents •• iii

4.3.3 ORG.. 44
4.3.4 SVON and RDY.. 44

4.4 THE ENCODER FEEDBACK SIGNALS (EA, EB, EZ).................44

4.5 MULTIPLE PCI-8134 CARDS OPERATION46

4.6 CHANGE SPEED ON THE FLY ..47

4.7 INTERRUPT CONTROL ..48

CHAPTER 5 MOTION CREATOR...................... 53
5.1 MAIN MENU ..54

5.2 AXIS CONFIGURATION WINDOW ..55

5.3 AXIS OPERATION WINDOWS ...58
5.3.1 Motion Status Display ... 58
5.3.2 Axis Status Display ... 58
5.3.3 I/O Status Display.. 59
5.3.4 Set Position Control .. 59
5.3.5 Operation Mode Control.. 59
5.3.6 Motion Parameters Control ... 60
5.3.7 Play Key Control.. 60
5.3.8 Velocity Profile Selection .. 61
5.3.9 Repeat Mode.. 61

5.4 2-D MOTION WINDOWS ...62
5.4.1 Linear Interpolation ... 63
5.4.2 Circular Interpolation .. 63
5.4.3 Continuous Jog... 63
5.4.4 Incremental Jog... 64
5.4.5 Other Control Objects ... 64

CHAPTER 6 FUNCTION LIBRARY 67
6.1 LIST OF FUNCTIONS...67

6.2 C/C++ PROGRAMMING LIBRARY ..70

6.3 INITIALIZATION ..71

6.4 PULSE INPUT / OUTPUT CONFIGURATION...............................72

6.5 CONTINUOUSLY MOTION MOVE...74

iv •• Contents

6.6 TRAPEZOIDAL MOTION MODE ...75

6.7 S-CURVE PROFILE MOTION..78

6.8 MULTIPLE AXES POINT TO POINT MOTION80

6.9 LINEAR AND CIRCULAR INTERPOLATED MOTION82

6.10 INTERPOLATION PARAMETERS CONFIGURING.........................84

6.11 HOME RETURN..86

6.12 MANUAL PULSER MOTION..88

6.13 MOTION STATUS ...89

6.14 SERVO DRIVE INTERFACE ..90

6.15 I/O CONTROL AND MONITORING ...92

6.16 POSITION CONTROL ..94

6.17 INTERRUPT CONTROL ..95

CHAPTER 7 CONNECTION EXAMPLE 99
7.1 GENERAL DESCRIPTION OF WIRING99

7.2 CONNECTION EXAMPLE WITH SERVO DRIVER....................... 102

PRODUCT WARRANTY/SERVICE 105

How to Use This Guide • v

How to Use This Guide

This manual is designed to help you use the PCI-8134. The manual describes
how to modify various settings on the PCI-8134 card to meet your requirements.
It is divided into six chapters:

• Chapter 1, "Introduction", gives an overview of the product features,
applications, and specifications.

• Chapter 2, "Installation", describes how to install the PCI-8134.
• Chapter 3, "Signal Connection", describes the connectors' pin

assignment and how to connect the outside signal and
devices with the PCI-8134.

• Chapter 4, "Operation Theorem", describes detail operations of the
PCI-8134.

• Chapter 5, “Motion Creator”, describe how to utilize a Microsoft
Windows based utility program to configure and test running
the PCI-8134.

• Chapter 6, " C/C++ Function Library", describes high-level
programming interface in C/C++ language. It helps
programmer to control PCI-8134 in high level language
style.

• Chapter 7, “Connection Example” shows some typical connection
examples between PCI-8134 and servo driver and stepping
driver.

Introcuction • 1

1

Introduction

The PCI-8134 is a 4 axes motion control card with PCI interface. It can
generate high frequency pulses to drive stepping motors and servo motors.
Multiple PCI-8134 cards can be used in one system. Incremental encoder
interface on all four axes provide the ability to correct for positioning errors
generated by inaccurate mechanical transmissions. In addition, mechanical
sensor interface, servo motor interface and general purpose I/O signals are
provided for system integration.

Figure 1.1 shows the function block diagram of PCI-8134 card. PCI-8134
uses two ASICs (PCL5023) to perform 4 axes motion control. These ASICs
are made of Nippon Pulse Motor incooperation. The motion control functions
include linear and S-curve acceleration/deceleration, interpolation between
two axes, continuous motion, in positioning and home return are done by the
ASIC. Since these functions needing complex computations are done
internally on the ASIC, the PC’s CPU is free to supervise and perform other
tasks.

Motion Creator, a Microsoft Windows based software is equipped with the
PCI-8134 card for supporting application development. The Motion Creator is
very helpful for debugging a motion control system during the design phase
of a project. The on-screen monitor shows all installed axis information and
I/O signals status of PCI-8134 cards. In addition to Motion Creator, both DOS
and Windows version function library are included for programmers using
C++ and Visual Basic language. Several sample programs are given to
illustrate how to use the function library.

Figure 1.2 is a flowchart that shows a recommending process of using this
manual to develop an application. Please also refer the relative chapters for
the detail of each step.

2 • Introduction

CN2

DC/DC

Ext+24V Input

PCI Bus
Controller

PCL 5023
for axes
X & Y

PCL 5023
for axes
Z & U

Pulser .
Input: PA,PB

Simultaneously
Start/Stop

CN3

CN4

Isolation

Pulse I/O
Mechanical

Interface

Servo
Driver

Interface

General
Purpose

I/O

OUT, DIR,
EA, EB, EZ

+EL, -EL,
+SD,-SD,

ORG

INP, ALM
ERC

SVON
RDY

 Figure 1.1 Block Diagram of PCI-8134

PCI Bus

Ext +5V out

CN1

Introcuction • 3

Figure 1.2 Flowchart of building an application

Hardware Installation
Jumper Setting

Wiring

Run Motion Creator
To Configure System

System is
OK?

END

Chapter 2 & 3

Chapter 5

Run Motion Creator
To Verify Operation

Chapter 4 & 5

Use Function Library
To develop
Applications

Chapter 4 & 6

No

Yes

4 • Introduction

1.1 Features
The following lists summarize the main features of the PCI-8134
motion control system.

� 32-bit PCI-Bus, plug and play.
� 4 axes of step and direction pulse output for controlling stepping or

servomotor.
� Maximum output frequency of 2.4 Mpps.
� 2-axis circular and linear interpolation.
� 28-bit up/down counter for incremental encoder feedback.
� Home switch, index signal, positive and negative limit switches

interface provided for all axes.
� Programmable interrupt sources.
� Change Speed on the Fly.
� Simultaneous start/stop motion on multiple axes.
� Manual pulser input interface.
� Software supports maximum up to 12 PCI-8134 cards (48 axes)

operation.
� Compact, half size PCB.
� Motion Creator, Microsoft Windows based application development

software.
� PCI-8134 Library and Utility for DOS library and Windows

95/98/NT DLL.

1.2 Specifications
♦ Applicable Motors:

• Stepping motors.
• AC or DC servomotors with pulse train input servodrivers.

♦ Performance:
• Number of controllable axes: 4 axes.
• Maximum pulse output frequency: 2.4Mpps, linear, trapezoidal or

S-Curve velocity profile drive.
• Internal reference clock: 9.8304 MHz
• Position pulse setting range: 0~268,435,455 pulses(28-bit).
• Ramping-down point setting range: 0 to 16777215
• Acceleration / deceleration rate setting range: 1 to 65535(16bit)
• Up / down counter counting range: 0~268,435,455 (28-bit.) or –

134,217,728 to +134,217,727

Introcuction • 5

• Pulse rate setting steps: 0 to 2.4Mpps.
♦ I/O Signales:

• Input/Output Signals for each axis
• All I/O signal are optically isolated with 2500Vrms isolation voltage
• Command pulse output pins: OUT and DIR.
• Incremental encoder signals input pins: EA and EB.
• Encoder index signal input pin: EZ.
• Mechanical limit/switch signal input pins: ±EL, ±SD and ORG.
• Servomotor interface I/O pins: INP, ALM and ERC.
• General purpose digital output pin: SVON.
• General purpose digital input pin: RDY.
• Pulser signal input pin: PA and PB.
• Simultaneous Start/Stop signal I/O pins: STA and STP.

♦ General Specifications
• Connectors: 100-pin SCSI-type connector
• Operating Temperature: 0° C ~ 50° C
• Storage Temperature: -20° C ~ 80° C
• Humidity: 5 ~ 85%, non-condensing
• Power Consumption:
² Slot power supply(input): +5V DC ±5%, 900mA max.

² External power supply(input): +24V DC ±5%, 500mA max.

² External power supply(output): +5V DC ±5%, 500mA, max.

• Dimension: 164mm(L) X 98.4mm(H)

1.3 Software Supporting

1.3.1 Programming Library

For the customers who are writing their own programs, we provide MS-DOS
Borland C/C++ programming library and Windows-95/NT DLL for PCI-8134.
These function libraries are shipped with the board.

1.3.2 Motion Creator

Refer to Chapter 5 for details.

1.3.3 Programming Guide

We provide 12 sample programs which was written by VB 5.0 to
demonstrate how to use this card step by step. We also provide two C/C++
programs to demonstrate how to use interrupt under Windows and DOS.
These programs are available on the additional “Programming Guide” disk.

Installation • 7

2

Installation

This chapter describes how to install the PCI-8134. Please follow the follow
steps to install the PCI-8134.

w Check what you have (section 2.1)
w Check the PCB (section 2.2)
w Install the hardware (section 2.3)
w Install the software driver (section 2.4)
w Understanding the I/O signal connections (chapter 3) and

their operation (chapter 4)
w Understanding the connectors’ pin assignments (the rest of

the sections) and wiring the connections
.

2.1 What You Have
In addition to this User's Guide, the package includes the following items:

• PCI-8134 4 Axes Servo / Stepper Motion Control Card
• ADLink All-in-one Compact Disc
• ADLink Programming Guide Disk for PCI-8134
• User’s Guide Manual
• Programming Guide Manual
• +24V power input cable (for CN1) accessory.

If any of these items are missing or damaged, contact the dealer from whom
you purchased the product. Save the shipping materials and carton in case
you want to ship or store the product in the future.

8 • Installation

2.2 PCI-8134 Outline Drawing

CN1: External Power Input Connector
CN2: Input / Output Signal Connector
CN3: Manual Pulser Signal Connector
CN4: Simultaneous Start / Stop Connector

Figure 2.1 PCB Layout of the PCI-8134

Front Panel

Installation • 9

2.3 Hardware Installation

2.3.1 Hardware configuration
PCI-8134 has plug and play PCI controller on board. The memory usage (I/O
port locations) of the PCI card is assigned by system BIOS. The address
assignment is done on a board-by-board basis for all PCI cards in the
system.

2.3.2 PCI slot selection
Your computer will probably have both PCI and ISA slots. Do not force the
PCI card into a PC/AT slot. The PCI-8134 can be used in any PCI slot.

2.3.3 Installation Procedures

1. Read through this manual, and setup the jumper according to your
application

2. Turn off your computer, Turn off all accessories (printer, modem,
monitor, etc.) connected to computer.

Remove the cover from your computer.
3. Select a 32-bit PCI expansion slot. PCI slots are short than ISA or

EISA slots and are usually white or ivory.
4. Before handling the PCI-8134, discharge any static buildup on your

body by touching the metal case of the computer. Hold the edge and
do not touch the components.

5. Position the board into the PCI slot you selected.
6. Secure the card in place at the rear panel of the system unit using

screw removed from the slot.

10 • Installation

2.3.4 Trouble shooting:
If your system won‘t boot or if you experience erratic operation with your PCI
board in place, it’s likely caused by an interrupt conflict (perhaps because
you incorrectly described the ISA setup). In general, the solution, once you
determine it is not a simple oversight, is to consult the BIOS documentation
that come with your system.

2.4 Software Driver Installation
Please refer to the ADLink All-in-one Compact Disc Manual to install it.

2.5 Programming Guide Installation
With ADLink’s “ Programming Guide” diskette :

step 1. Place the “PCI-8134 Programming Guide Disk #1” in the 3.5"
floppy drive A:.

step 2. Choose Run from the taskbar.

step 3. Type A:\SETUP in the Run dialog box.

At first setup displays a Welcome dialog box. Please click “Next” button to go
to the next step.

Installation • 11

Setup then prompts the following dialog box for you to specify the destination
directory for PCI-8134. The default path is D:\Program Files\ADLINK\PCI-
8134. If you want to install PCI-8134 in another directory, please enter the
directory you would like to install PCI-8134.(In Window 95 platform, the “PCI-
8134.inf” file and the related vxd files are located in the “driver” subdirectory
about the PCI-8134 installation directory,)

Then user must assign the “Program Folder”. The default “Program Folder”
is “PCI-8134”.

After these procedures, the installation of PCI-8134 is completed now.

12 • Installation

2.6 CN1 Pin Assignments: External Power Input

CN1 Pin No Name Description
1 EXGND Grounds of the external power.
2 EX+24V External power supply of +24V DC ± 5%

Notes:
1. CN1 is a plug-in terminal board with no screw.
2. Be sure to use the external power supply. The +24V DC is used by

external input/output signal circuit. The power circuit is configured as
follows.

3.Wires for connection to CN1
Solid wire: ϕ 0.32mm to ϕ 0.65mm (AWG28 to AWG22)
Twisted wire:0.08mm2 to 0.32mm2 (AWG28 to AWG22)

 Naked wire length:10mm standard

The following diagram shows the external power supply system of the PCI-
8134. The external +24V power must be provided, an on-board regulator
generates +5V for both internal and external usage.

Isolation

DC/DC

+5V

GND

I/O
SIGNALS

EX+5V

EXGND

EX+24
V

(OUTPUT)

(Bus Power)(External Power)

I/O SIGNALS

Installation • 13

2.7 CN2 Pin Assignments: Main connector
The CN2 is the major connector for the motion control I/O signals.

No. Name I/O Function(axis�/�) No. Name I/O Function(axis�/�)
1 EX+5V O +5V power supply output 51 EX+5V O +5V power supply output
2 EXGND Ext. power ground 52 EXGND Ext. power ground
3 OUT1+ O Pulse signal (+),� 53 OUT3+ O Pulse signal (+), �
4 OUT1- O Pulse signal (-),� 54 OUT3- O Pulse signal (-),�
5 DIR1+ O Dir. signal (+),� 55 DIR3+ O Dir. signal (+), �
6 DIR1- O Dir. signal (-),� 56 DIR3- O Dir. signal (-), �
7 SVON1 O Multi-purpose signal, � 57 SVON3 O Multi-purpose signal, �
8 ERC1 O Dev. ctr, clr. signal, � 58 ERC3 O Dev. ctr, clr. signal, �
9 ALM1 I Alarm signal, � 59 ALM3 I Alarm signal, �
10 INP1 I In-position signal, � 60 INP3 I In-position signal, �
11 RDY1 I Multi-purpose signal, � 61 RDY3 I Multi-purpose signal, �
12 EXGND Ext. power ground 62 EXGND Ext. power ground
13 EA1+ I Encoder A-phase (+), � 63 EA3+ I Encoder A-phase (+), �
14 EA1- I Encoder A-phase (-), � 64 EA3- I Encoder A-phase (-),�
15 EB1+ I Encoder B-phase (+), � 65 EB3+ I Encoder B-phase (+),�
16 EB1- I Encoder B-phase (-), � 66 EB3- I Encoder B-phase (-),�
17 EZ1+ I Encoder Z-phase (+), � 67 EZ3+ I Encoder Z-phase (+),�
18 EZ1- I Encoder Z-phase (-), � 68 EZ3- I Encoder Z-phase (-),�
19 EX+5V O +5V power supply output 69 EX+5V O +5V power supply output
20 EXGND Ext. power ground 70 EXGND Ext. power ground
21 OUT2+ O Pulse signal (+), � 71 OUT4+ O Pulse signal (+),�
22 OUT2- O Pulse signal (-), � 72 OUT4- O Pulse signal (-),�
23 DIR2+ O Dir. signal (+), � 73 DIR4+ O Dir. signal (+),�
24 DIR2- O Dir. signal (-), � 74 DIR4- O Dir. signal (-),�
25 SVON2 O Multi-purpose signal, � 75 SVON4 O Multi-purpose signal, �
26 ERC2 O Dev. ctr, clr. signal, � 76 ERC4 O Dev. ctr, clr. signal, �
27 ALM2 I Alarm signal, � 77 ALM4 I Alarm signal, �
28 INP2 I In-position signal, � 78 INP4 I In-position signal, �
29 RDY2 I Multi-purpose signal, � 79 RDY4 I Multi-purpose signal, �
30 EXGND Ext. power ground 80 EXGND Ext. power ground
31 EA2+ I Encoder A-phase (+), � 81 EA4+ I Encoder A-phase (+), �
32 EA2- I Encoder A-phase (-), � 82 EA4- I Encoder A-phase (-), �
33 EB2+ I Encoder B-phase (+), � 83 EB4+ I Encoder B-phase (+), �
34 EB2- I Encoder B-phase (-), � 84 EB4- I Encoder B-phase (-), �
35 EZ2+ I Encoder Z-phase (+), � 85 EZ4+ I Encoder Z-phase (+), �
36 EZ2- I Encoder Z-phase (-), � 86 EZ4- I Encoder Z-phase (-), �
37 PEL1 I End limit signal (+), � 87 PEL3 I End limit signal (+), �
38 MEL1 I End limit signal (-), � 88 MEL3 I End limit signal (-), �
39 PSD1 I Ramp-down signal (+), � 89 PSD3 I Ramp-down signal (+), �
40 MSD1 I Ramp-down signal (-), � 90 MSD3 I Ramp-down signal (-), �
41 ORG1 I Origin signal, � 91 ORG3 I Origin signal, �
42 EXGND Ext. power ground 92 EXGND Ext. power ground
43 PEL2 I End limit signal (+), � 93 PEL4 I End limit signal (+), �
44 MEL2 I End limit signal (-), � 94 MEL4 I End limit signal (-), �
45 PSD2 I Ramp-down signal (+), � 95 PSD4 I Ramp-down signal (+), �
46 MSD2 I Ramp-down signal (-), � 96 MSD4 I Ramp-down signal (-), �
47 ORG2 I Origin signal, � 97 ORG4 I Origin signal, �
48 EXGND Ext. power ground 98 EXGND Ext. power ground
49 EXGND Ext. power ground 99 EX+24V I Ext. power supply, +24V
50 EXGND Ext. power ground 100 EX+24V I Ext. power supply, +24V

14 • Installation

2.8 CN3 Pin Assignments: Manual Pulser Input
The signals on CN3 is for manual pulser input.

No. Name Function(Axis)
1 GND Bus power ground
2 PB4 Pulser B-phase signal input, �
3 PA4 Pulser A-phase signal input, �
4 PB3 Pulser B-phase signal input, �
5 PA3 Pulser A-phase signal input, �
6 +5V Bus power, +5V
7 GND Bus power ground
8 PB2 Pulser B-phase signal input, �
9 PA2 Pulser A-phase signal input, �

10 PB1 Pulser B-phase signal input, �
11 PA1 Pulser A-phase signal input, �
12 +5V Bus power, +5V

Note: +5V and GND pins are directly given by the PCI-Bus power.
Therefore, these signals are not isolated.

2.9 CN4 Pin Assignments: Simultaneous Start/Stop
The signals on CN3 is for simultaneously start/stop signals for multiple axes
and multiple cards.

No. Name Function(Axis)
1 GND Bus power ground
2 STP Simultaneous stop signal input/output
3 STA Simultaneous start signal input/output
4 STP Simultaneous stop signal input/output
5 STA Simultaneous start signal input/output
6 +5V Bus power, +5V

Note: +5V and GND pins are directly given by the PCI Bus power.

Installation • 15

2.10 Jumper Setting
The J1~J8 is used to set the signal type of the pulse output signals (DIR and
OUT). The output signal type could be differential line driver output or open
collector output. Please refer to section 3.1 for details of the jumper setting.
The default setting is the differential line driver mode.

Line Driver
Open Collector

2.11 Switch Setting
The switch S1 is used to set the EL limit switch’s type. The default setting of
EL switch type is “normal open” type limit switch (or “A” contact type). The
switch on is to use the “normal closed” type limit switch (or “B” contact type).
The default setting is set as normal open type.

Placement of S1 Switch on Board

1
2
3

J1 J2 J3 J4 J5 J6 J7 J8

Axis
1234

ON

OFF

S1

Select ‘a’ Contact EL Switch (Normal Open)

Select ‘b’ Contact EL Switch (Normal Close)

Signal Connections • 17

3

Signal Connections

The signal connections of all the I/O signals are described in this chapter.
Please refer the contents of this chapter before wiring the cable between the
PCI-8134 and the motor drivers.

This chapter contains the following sections:

Section 3.1 Pulse output signals OUT and DIR
Section 3.2 Encoder feedback signals EA, EB and EZ
Section 3.3 Origin signal ORG
Section 3.4 End-Limit signals PEL and MEL
Section 3.5 Ramping-down signals PSD and MSD
Section 3.6 In-position signal INP
Section 3.7 Alarm signal ALM
Section 3.8 Deviation counter clear signal ERC
Section 3.9 General-purpose signal SVON
Section 3.10 General-purpose signal RDY
Section 3.11 Pulser input signals PA and PB
Section 3.12 Simultaneous start/stop signals STA and STP
Section 3.13 Daughter Board Connector

3.1 Pulse Output Signals OUT and DIR
There are 4-axis pulse output signals on PCI-8134. For every axis, two
pairs of OUT and DIR signals are used to send the pulse train and to indicate
the direction. The OUT and DIR signals can also be programmed as CW
and CCW signals pair, refer to section 4.1.1 for details of the logical
characteristics of the OUT and DIR signals. In this section, the electronic

18 • Signal Connections

characteristics of the OUT and DIR signals are shown. Each signal consists
of a pair of differential signals. For example, the OUT2 is consisted of
OUT2+ and OUT2- signals. The following table shows all the pulse output
signals on CN2.

CN2 Pin No. Signal Name Description Axis #
3 OUT1+ Pulse signals (+) �
4 OUT1- Pulse signals (-) �
5 DIR1+ Direction signal(+) �
6 DIR1- Direction signal(-) �
21 OUT2+ Pulse signals (+) �
22 OUT2- Pulse signals (-) �
23 DIR2+ Direction signal(+) �
24 DIR2- Direction signal(-) �
53 OUT3+ Pulse signals (+) �
54 OUT3- Pulse signals (-) �
55 DIR3+ Direction signal(+) �
56 DIR3- Direction signal(-) �
71 OUT4+ Pulse signals (+) �
72 OUT4- Pulse signals (-) �
73 DIR4+ Direction signal(+) �
74 DIR4- Direction signal(-) �

The output of the OUT or DIR signals can be configured by jumpers as either
the differential line driver or open collector output. You can select the output
mode either by closing breaks between 1 and 2 or 2 and 3 of jumpers J1~J8
as follows.

Output
Signal

For differential line driver
output, close a break
between 1 and 2 of

For open collector
output, close a break
between 2 and 3 of:

OUT1- J1 J1
DIR1- J2 J2
OUT2- J3 J3
DIR2- J4 J4
OUT3- J5 J5
DIR3- J6 J6
OUT4- J7 J7
DIR4- J8 J8

The default setting of OUT and DIR signals are the as differential line driver
mode.

Signal Connections • 19

The following wiring diagram is for the OUT and DIR signals of the 4 axes.

NOTE: If the pulse output is set to the open collector output mode, the OUT-
and DIR- are used to send out signals. Please take care that the current
sink to OUT- and DIR- pins must not exceed 20mA. The current may
provide by the EX+5V power source, however, please note that the
maximum capacity of EX+5V power is 500mA.

3.2 Encoder Feedback Signals EA, EB and EZ
The encoder feedback signals include the EA, EB, and EZ. Every axis has
six pins for three differential pairs of phase-A (EA), phase-B (EB) and index
(EZ) input. The EA and EB are used for position counting, the EZ is used for
zero position index. The relative signal names, pin numbers and the axis
number are shown in the following tables.

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #
13 EA1+ � 63 EA3+ �
14 EA1- � 64 EA3- �
15 EB1+ � 65 EB3+ �
16 EB1- � 66 EB3- �
31 EA2+ � 81 EA4+ �
32 EA2- � 82 EA4- �
33 EB2+ � 83 EB4+ �
34 EB2- � 84 EB4- �

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #
17 EZ1+ � 67 EZ3+ �
18 EZ1- � 68 EZ3- �
35 EZ2+ � 85 EZ4+ �
36 EZ2- � 86 EZ4- �

The input circuits of the EA, EB, EZ signals are shown as follows.

VCC EX+5V
J1~J8

OUT
DIR

from PCL5023

OUT+, DIR+

OUT-, DIR-

EXGND

R
3

1
2

2631

CN2Inside PCI-8134

20 • Signal Connections

Please note that the voltage across every differential pair of encoder input
signals (EA+, EA-), (EB+, EB-) and (EZ+, EZ-) should be at least 3.5V or
higher. Therefore, you have to take care of the driving capability when
connecting with the encoder feedback or motor driver feedback. The
differential signal pairs will be converted to digital signal EA, EB and EZ to
connect to PCL5023 ASIC.

Here are two examples of connecting the input signals with the external
circuits. The input circuits can connect to the encoder or motor driver, which
are equipped with: (1) differential line driver or (2) open collector output.

l Connection to Line Driver Output
To drive the PCI-8134 encoder input, the driver output must provide at least
3.5V across the differential pairs with at least 6 mA driving capability. The
ground level of the two sides must be tight together too.

l Connection to Open Collector Output
To connect with open collector output, an external power supply is
necessary. Some motor drivers also provide the power source. The
connection between PCI-8134, encoder, and the power supply is shown in
the following diagram. Please note that the external current limit resistor R is
necessary to protect the PCI-8134 input circuit. The following table lists the
suggested resistor value according to the encoder power supply.

External Encoder / Driver
With line driver outputPCI-8134

A,B phase signals
Index signal

EA+,EB+,EZ+
EZ+
EA-, EB-, EZ-

EXGND GND

PCL5023

EA, EB
EZ

EA+, EB+,
EZ+

EA-, EB-
EZ-

R
CN2Inside PCI-8134

Signal Connections • 21

Encoder Power(VDD) External Resistor R
+5V 0 Ω (None)

+12V 1.8kΩ
+24V 4.3kΩ

If=6mA max.

For more detail operation of the encoder feedback signals, please refer to
setcion 4.4.

3.3 Origin Signal ORG
The origin signals (ORG1~ORG4) are used as input signals for origin of the
mechanism. The following table lists the relative signal name, pin number,
and the axis number.

CN2 Pin No Signal Name Axis #
41 ORG1 �
47 ORG2 �
91 ORG3 �
97 ORG4 �

The input circuits of the ORG signals are shown as following. Usually, a limit
switch is used to indicate the origin of one axis. The specifications of the
limit switches should with contact capacity of +24V, 6mA minimum. An
internal filter circuit is used to filter out the high frequency spike, which may
cause wrong operation.

VDD

GND

Motor Encoder / Driver
With Open Collector Output

External Power for
Encoder

PCI-8134

A, B phase
signals

EA+, EB+,

EA-, EB-,

R

22 • Signal Connections

When the motion controller is operated at the home return mode, the ORG
signal is used to stop the control output signals (OUT and DIR). For the
detail operation of the ORG, please refer to section 4.3.3.

3.4 End-Limit Signals PEL and MEL
There are two end-limit signals PEL and MEL for one axis. PEL indicates
end limit signal in plus direction and MEL indicates end limit signal in minus
direction. The relative signal name, pin number and axis number are shown
in the following table.

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #
37 PEL1 � 87 PEL3 �
38 MEL1 � 88 MEL3 �
43 PEL2 � 93 PEL4 �
44 MEL2 � 94 MEL4 �

The signals connection and relative circuit diagram is shown in the following
diagram. The external limit switches featuring a contact capacity of +24V,
6mA minimum. You can use either ‘A-type’ (normal open) contact switch or
‘B-type’ (normal closed) contact switch by setting the DIP switch S1. The
PCI-8134 is delivered with all bits of S1 set to OFF, refer to section 2.10. For
the details of the EL operation, please refer to section 4.3.2.

EX+24V

If=6mA Max.

Filter
Circuit

To PCL5023
ORG

4.7K

EXGND

Inside PCI-8134 CN2

ß Switch

EX+24V

If=6mA Max.

Filter
Circuit

To PCL5023
PEL
MEL

4.7K

EXGND

Inside PCI-8134 CN2

ß Switch

Signal Connections • 23

3.5 Ramping-down Signals PSD and MSD
There are two ramping-down (Slow-Down) signals PSD and MSD for one
axis. The relative signal name, pin number and axis number are shown in
the following table.

CN2 Pin No Signal Name Axis #
39 PSD1 �
40 MSD1 �
45 PSD2 �
46 MSD2 �
89 PSD3 �
90 MSD3 �
95 PSD4 �
96 MSD4 �

The signals connection and relative circuit diagram is shown in the following
diagram. Usually, limit switches are used to generate the slow-down signals
to make motor operating in a slower speed. For more details of the SD
operation, please refer to section 4.3.1.

3.6 In-position Signal INP
The in-position signals INP from the servo motor driver indicate the deviation
error is zero, that is the servo position error is zero. The relative signal
name, pin number and axis number are shown in the following table.

CN2 Pin No Signal Name Axis #
10 INP1 �
28 INP2 �
60 INP3 �
78 INP4 �

EX+24V

If=6mA Max.

Filter
Circuit

To PCL5023
PSD
MSD

4.7K

EXGND

Inside PCI-8134 CN2

ß Switch

24 • Signal Connections

The input circuit of the INP signals are shown in the following diagram.

The in-position signals are usually from servomotor drivers, which usually
provide open collector output signals. The external circuit must provide at
least 5 mA current sink capability to drive the INP signal active. For more
details of the INP signal operating, please refer to section 4.2.1.

3.7 Alarm Signal ALM
The alarm signal ALM is used to indicate the alarm status from the servo
driver. The relative signal name, pin number and axis number are shown in
the following table.

CN2 Pin No Signal Name Axis #
9 ALM1 �

27 ALM2 �
59 ALM3 �
77 ALM4 �

The input circuit of alarm circuit is shown in the following diagram. The ALM
signals are usually from servomotor drivers, which usually provide open
collector output signals. The external circuit must provide at least 5 mA
current sink capability to drive the ALM signal active. For more details of the
ALM operation, please refer to section 4.2.2.

EX+5V

If=12mA Max.
If=5mA Min.

To PCL5023

INP

R

Inside PCI-8134 CN2

EX+5V

If=12mA Max.
If=5mA Min.

To PCL5023

ALM

R

Inside PCI-8134 CN2

Signal Connections • 25

3.8 Deviation Counter Clear Signal ERC

The deviation counter clear signal (ERC) is active in the following 4
situations:

(1) home return is complete;
(2) the end-limit switch is active;
(3) an alarm signal stops OUT and DIR signals;
(4) an emergency stop command is issued by software (operator).

The relative signal name, pin number and axis number are shown in the
following table.

CN2 Pin No Signal Name Axis #
8 ERC1 �

26 ERC2 �
58 ERC3 �
76 ERC4 �

The ERC signal is used to clear the deviation counter of servomotor driver.
The ERC output circuit is in the open collector with maximum 35 V external
power at 50mA driving capability. For more details of the ERC operation,
please refer to section 4.2.3.

3.9 General-purpose Signal SVON
The SVON signals can be used as servomotor-on control or general-purpose
output signals. The relative signal name, pin number and axis number are
shown in the following table.

CN2 Pin No Signal Name Axis #
7 SVON1 �

25 SVON2 �
57 SVON3 �
75 SVON4 �

35V 50mA Maximum
ERC

From PCL5023

EXGND

Inside PCI-8134 CN2

26 • Signal Connections

The output circuit of SVON signal is shown in the following diagram.

3.10 General-purpose Signal RDY
The RDY signals can be used as motor driver ready input or general-
purpose input signals. The relative signal name, pin number and axis
number are shown in the following table.

CN2 Pin No Signal Name Axis #
11 RDY1 �
29 RDY2 �
61 RDY3 �
71 RDY4 �

The input circuit of RDY signal is shown in the following diagram

3.11 Pulser Input Signals PA and PB
The PCI-8134 can accept the input signals from pulser signals through the
following pins of connector CN3. The pulser’s behavior is as an encoder.
The signals are usually used as generate the position information which
guide the motor to follow.

35V 50mA Maximum
SVON

From PCL5023

EXGND

Inside PCI-8134 CN2

RDY

EX+5V

If=12mA Max.
If=5mA Min.

To PCL5023

R

Inside PCI-8134 CN2

Signal Connections • 27

CN3
Pin No

Signal
Name

Axis # CN3
Pin No

Signal
Name

Axis #

2 PA1 � 8 PA3 �
3 PB1 � 9 PB3 �
4 PA2 � 10 PA4 �
5 PB2 � 11 PB4 �

PA and PB pins of connector CN3 are directly connected to PA and PB pins
of PCL5023. The interfac circuits are shown as follows.

If the signal voltage of pulser is not +5V or if the pulser is distantly placed, it
is recommended to put a photo coupler or line driver in between. Also, +5V
and GND power lines of CN3 are direct from the PCI bus. Please carefully
use these signals because they are not isolated.

3.12 Simultaneously Start/Stop Signals STA and STP
The PCI-8134 provides the STA and STP signals, which enable
simultaneous start/stop of motions on multiple axes. The STA and STP
signals are on the CN4.

On one card, two PCL5023 chips provide two sets of STA and STP signals.
The following diagram shows the on-board circuits. The STA and STP
signals of the four axes are tight together respectively.

VCC VCC

PCL5023

STPSTP, AXIS 3&4

STA, AXIS 3&4

STP, AXIS 1&2

STA, AXIS 1&2

2

3

4

5

4.7K4.7K

CN4Inside PCI-8134

VCC

PA,PB

PCL5023

PA, PB

STA
Z
STP

STA

28 • Signal Connections

The STP and STA signals are both input and output signal. To operate the
simultaneously start and stop action, both software control and external
control are possible. By the software control, the signals can be generated
from any one of the PCL5023, and other chip will start and stop
simultaneously if proper programmed. You can also use an external open
collector or switch to drive the STA/STP signals for simultaneous start/stop.

If there are two or more PCI-8134 cards, cascade CN4 connectors of all
cards for simultaneous start/stop control on all concerned axes is possible.
In this case, connect CN4 as follows.

To let an external signal to initiate simultaneous start/stop, connect the 7406
(open collector) or the equivalent circuit as follows.

3.13 Daughter Board Connector
The CN2 connector of PCI-8134 can be connected with DIN-100S, including
a cable ACL-102100 (a 100-pin SCSI-II cable). DIN-100S is a general
purpose DIN-socket with 100-pin SCSI-II connector. It has easily wiring
screw terimal and easily installation DIN socket that can be mounted on DIN-
rails

Please check the NuDAQ catalog by ADLink for further information of DIN-
100S.

STP

CN4

PCI-8134 #1 PCI-8134 #2 PCI-8134 #3

CN4 CN4

STA

STP
STA

STP

STA

STP
STA

STP

STA

STP
STA

STOP7406

STP

CN4

PCI-8134 #1 PCI-8134 #2 PCI-8134 #3

CN4 CN4

STA

STP
STA

STP

STA

STP
STA

STP

STA

STP
STA

7406 START

Operation Theorem • 29

4

Operation Theorem

This chapter describes the detail operation of the PCI-8134 card. Contents of
the following sections are as following.

Section 4.1: The motion control modes
Section 4.2: The motor driver interface (INP, ERC, ALM, SVON, RDY)
Section 4.3: The limit switch interface and I/O status (SD, EL, ORG)
Section 4.4: The encoder feedback signals (EA, EB, EZ)
Section 4.5: Multiple PCI-8134 cards operation.
Section 4.6: Change Speed on the Fly
Section 4.7: Interrupt Control

4.1 Motion Control Modes
In this section, the pulse output signals’ configurations, and the following
motion control modes are described.
� Constant velocity motion for one axis
� Trapezoidal motion for one axis
� S-Curve profile motion for one axis
� Linear / Circular interpolation for two axes
� Home return mode for one axis
� Manual pulser mode for one axis

30 • Operation Theorem

4.1.1 Pulse Command Output
The PCI-8134 uses pulse command to control the servo / stepper motors via
the drivers. The pulse command consists of two signals: OUT and DIR.
There are two command types: (1) single pulse output mode (OUT/DIR); and
(2) dual pulse output mode (CW/CCW type pulse output). The software
function: set_pls_outmode() is used to program the pulse command type.
The modes vs. signal type of OUT and DIR pins are as following table:

Mode Output of OUT pin Output of DIR pin

Dual pulse output Pulse signal in plus (or
CW) direction

Pulse signal in minus (or
CCW) direction

Single pulse output Pulse signal Direction signal (level)

The interface characteristics of these signals could be differential line driver
or open collector output. Please refer to section 3.1 for the jumper setting of
signal types.

Single Pulse Output Mode(OUT/DIR Mode)

In this mode, the OUT signal is represent the pulse (position or velocity)
command. The numbers of OUT pulse represent the motion command for
relative “distance” or “position”, the frequency of the OUT pulse represents
the command for “speed” or “velocity”. The DIR signal represents direction
command of the positive (+) or negative (-). This mode is the most common
used mode. The following diagram shows the output waveform.

Dual Pulse Output Mode(CW/CCW Mode)

In this mode, the waveform of the OUT and DIR pins represents CW
(clockwise) and CCW (counter clockwise) pulse output respectively. Pulses
output from CW pin makes motor move in positive direction, whereas pulse
output from CCW pin makes motor move in negative direction. The following
diagram shows the output waveform of positive (plus,+) command and
negative (minus,-) command.

OUT

DIR Positive Command Negative Command

Operation Theorem • 31

Relative Function:
 set_pls_optmode(): Refer to section 6.4

4.1.2 Constant Velocity Motion
This mode is used to operate one axis motor at constant velocity motion.
The output pulse accelerates from a starting velocity (str_vel) to the specified
constant velocity (max_vel). The v_move() function is used to accelerate
constantly while the sv_move() function is to accelerate according to S-
curve (constant jerk). The pulse output rate will keep at maximum velocity
until another velocity command is set or stop command is issued. The
v_change() is used to change speed during moving. The v_stop() function
is used to decelerate the motion to zero velocity (stop). The velocity profile
is shown as following. Note that v_stop() function can be also be applied to
stop outputting command pulses during Preset Mode (both trapezoidal and
S-curve Motion) , Home Mode or Manual Pulser Mode operations.

Relative Functions:
v_move(), v_stop(), sv_move(): Refer to section 6.5

OUT
DIR

Negative Command

OUT
DIR

Positive Command

V
elocity(pps)

str_vel

Tacc
Tdec

max_vel

v_move() v_stop()

Time(second)

32 • Operation Theorem

4.1.3 Trapezoidal Motion
This mode is used to move one axis motor to a specified position (or
distance) with a trapezoidal velocity profile. Single axis is controlled from
point to point. An absolute or relative motion can be performed. In absolute
mode, the target position is assigned. In relative mode, the target
displacement is assigned. In both absolute and relative mode, the
acceleration and the deceleration can be different. The motion_done()
function is used to check whether the movement is complete.

The following diagram shows the trapezoidal profile. There are 9 relative
functions. In the a_move(), ta_move() and start_a_move(),
start_ta_move() functions, the absolute target position must be given in the
unit of pulse. The physical length or angle of one movement is dependent
on the motor driver and the mechanism (includes the motor). Since absolute
move mode needs the information of current actual position, so “External
encoder feedback (EA, EB pins)” must be enabled in set_cnt_src() function.
And the ratio between command pulses and external feedback pulse input
must be appropriately set by set_move_ratio() function.

 In the r_move(), t_move() and start_r_move(), start_t_move() functions,
the relative displacement must be given in the unit of pulse. Unsymmetrical
trapezoidal velocity profile (Tacc is not equal Tdec) can be specified in
ta_move() and t_move() functions; where symmetrical profile (Tacc = Tdec)
can be specified in a_move() and r_move() functions

 The str_vel and max_vel parameters are given in the unit of pulse per
second (pps). The Tacc and Tdec parameters are given in the unit of
second represent accel./decel. time respectively. You have to know the
physical meaning of “one movement” to calculate the physical value of the
relative velocity or acceleration parameters. The following formula gives the
basic relationship between these parameters.

max_vel = str_vel + accel*Tacc;
str_vel = max_vel + decel *Tdec;

where accel/decel represents the acceleration/deceleration rate in unit of
pps/sec. The area inside the trapezoidal profile represents the moving
distance.

The unit of velocity setting is pulses per second (pps). Usually, the unit of
velocity in the manual of motor or driver is in rounds per minute (rpm). A
simple conversion is necessary to match between these two units. Here we
use a example to illustrate the conversion.

Operation Theorem • 33

For example:
A servo motor with a AB phase encoder is used for a X-Y table. The
resolution of encoder is 2000 counts per phase. The maximum rotating
speed of motor is designed to be 3600 rpm. What is the maximum pulse
command output frequency that you have to set on PCI-8134?

Answer:
max_vel = 3600/60*2000*4
 = 48000pps

The reason why *4 is because there are four states per AB phase (See
Figures in Section 4.4).

Usually, the axes need to set the move ratio if their mechanical resolution is
different from the resolution of command pulse. For example, if an
incremental type encoder is mounted on the working table to measure the
actual position of moving part. A servomotor is used to drive the moving part
through a gear mechanism. The gear mechanism is used to convert the
rotating motion of motor into linear motion.(see the following diagram). If the
resolution of motor is 8000 pulses/round. The resolution of gear mechanism
is 100 mm/round.(i.e., part moves 100 mm if motor turns one round). Then
the resolution of command pulse will be 80 pulses/mm. The resolution of
encoder mounting on the table is 200 pulses/mm. Then users have to set the
move ratio as 200/80=2.5 by the function:

V
elocity (pps)

str_vel

Tacc
Tdec

max_vel

str_vel

Time (second)

34 • Operation Theorem

set_move_ratio(axis, 2.5);

If this ratio is not set before issuing the start moving command, it will cause
problems when running in “Absolute Mode”. Because the PCI-8134 can’t
recognize the actual absolute position during motion.

Relative Functions:
a_move(), r_move(), t_move(), ta_move(), start_a_move(), start_r_move(),
start_t_move(), start_ta_move() Refer to section 6.6.
motion_done(): Refer to section 6.13.
set_cnt_src(): Refer to section 6.4.
set_move_ratio(): Refer to section 6.10.

4.1.4 S-curve Profile Motion
This mode is used to move one axis motor to a specified position (or
distance) with a S-curve velocity profile. S-curve acceleration profiles are
useful for both stepper and servo motors. The smooth transitions between
the start of the acceleration ramp and the transition to the constant velocity
produce less wear and tear than a trapezoidal profile motion. The smoother
performance increases the life of the motors and mechanics of a system.

There are several parameters needed to be set in order to make a S-curve
move. They are:

pos: target position in absolute mode;
dist : moving distance in relative mode;
str_vel : specify the start velocity;
max_vel : specify the maximum velocity;
Tlacc : specify the time for linear acceleration section

 (constant acceleration).
Tsacc : specify the time for S-curve acceleration section

 (constant jerk).
Tldec : specify the time for linear deceleration section

 (constant deceleration).
Tsdec : specify the time for S-curve deceleration section

 (constant jerk).

Moving part

Motor Gear

Encoder

Table

Operation Theorem • 35

Total time of acceleration is : Tlacc+2Tsacc. The following formula gives the
basic relationship between these parameters.

max_vel = str_vel + accel*(Tlacc+Tsacc);
str_vel = max_vel + decel *(Tldec+Tsdec);
accel = Tsacc * jerk1;
decel = Tsdec * jerk2;

where accel/decel represents the acceleration/deceleration rate at linear
accel./decel. section and are in unit of pps/sec. jerk1, jerk2 are in unit of
pps/sec^2. The minimum value for setting time of accel./decel. should be 0.

The S-curve profile motion functions are designed to always produce smooth
motion. If the time for linear/S-Curve acceleration parameters combined with
the final position don’t allow an axis to reach the maximum velocity(i.e.: the
moving distance is too small to reach max_vel), the maximum velocity is
automatically lowered and

smooth accel./decel. is made (see the following Figure). This means that
with moves that don’t reach maximum velocity may cause longer than
expected move times. In such a case, the smaller the moving distance, the
shorter the linear accel./decel. section becomes and the S-curve section is
not reduced unless the linear section is decreased to 0.

Tsacc
Tlacc

Tsacc Tsdec
Tldec

Tsdec

36 • Operation Theorem

The following two graphs show the results of experiments after executing the
unsymmetrical absolute S-curve motion command. Graph1 is the typical
result. of S-curve velocity profile. Graph2 is obtained when the amount of
command pulses is failed to let the velocity reach the designated maximum
velocity. The PCI-8134 automatically lower the maximum velocity thus
provide a smooth velocity profile.

Command of Graph1:
start_tas_move(axis, 500000, 100, 1000000, 0.05, 0.05, 0.2, 0.2);

The total accelerating time = 0.05+2*0.05 = 0.15 (second).
Total decelerating time = 0.2+2*0.2 = 0.6 (second).

Command of Graph2:
start_tas_move(axis, 200000, 100, 1000000, 0.05, 0.05, 0.2, 0.2);

Time (sec)

Operation Theorem • 37

Relative Functions:
s_move(), rs_move(), tas_move(), start_s_move(), start_rs_move(),
start_tas_move() Refer to section 6.7
motion_done(): Refer to section 6.13

4.1.5 Linear and Circular Interpolated Motion
In this mode, two axes (“X and Y” or “Z and U” axes) is controlled by linear
interpolation or circular interpolation by designating the number of pulses
respectively. “Interpolation between two axes” means the two axes start
simultaneously, and reach their ending points at the same time. For
example, in the Figure below, we want to move the axes from P0 to P1, and
hope the two axes start and stop simultaneously at a period of time Ät. Then
the moving speed along X-axis and Y-axis will beÄX/Ät., ÄY/Ät. respectively.

The axis with larger numbers of moving pulses is the main axis, and the
other axis is the secondary axis. When both axes are set at the same
amount of pulses, the ‘X’ or ‘Z’ is the main axis. The speed relation between
main and secondary axes is as follows:

P0

P1

X-Axis

ÄX

ÄY

38 • Operation Theorem

Composite Speed = Speed of main axis ×

Relative Functions:
move_xy(), move_zu(), arc_xy(), arc_zu(): Refer to section 6.9
set_move_speed(), set_move_accel(), set_arc_division(), arc_optimization(),
set_move_ratio(): Refer to section 6.10

4.1.6 Home Return Mode
In this mode, you can let the PCI-8134 output pulses until the conditions to
complete the home return is satisfied after writing the home_move()
command. Finish of home return can be checked by motion_done()
function. Or you can check finish of home return accompanied with the
interrupt function by setting bit 5 of int_factor to 1 in set_int_factor()
function.

Moving direction of motors in this mode is determined by the sign of velocity
parameter in home_move() function. A v_stop() command during returning
home can stop OUT and DIR from outputting pulses.
Before writing home_move() command, configuration must be set by
set_home_config() function. . See also Section 4.3.3 for further description.
There are total three home return modes can be selected by setting
home_mode parameter in set_home_config() function. The meaning of
Home_mode will be described as the following:

� 1� Home_mode=0: ORG only, no index signal. The ORG signal
immediately stops OUT and DIR pins from outputting pulses to complete the
origin return.

Operation Theorem • 39

� 2� Home_mode=1: both ORG and index signal are useful. The ORG
signal lets the PCI-8134 starts to wait for EZ signal and then EZ signal stops
OUT and DIR pins from outputting pulses to complete the home return.

� 3� Home_mode=2: both ORG and index signal are useful. The ORG
signal lets the PCI-8134 decelerate to starting velocity and then EZ signal
stops OUT and DIR pins from outputting pulses to complete the home
return.

Note: If the starting velocity is zero, the axis will work properly in home
mode 2.

time� �

mvel
svel

Velocity
accel

ORG

� Writing home-move()
command to begin home
return operation

�ORG Signal ON

time� � �

mvel

svel

Velocity
accel

ORG

EZ

� Writing home-move()
command to begin home
return operation

�ORG Signal ON

�EZ Signal ON

time � � �

mvel

svel

Velocity
accel

ORG

EZ

40 • Operation Theorem

Relative Function:

 set_home_config(), home_move(), v_stop(): Refer to section 6.11

4.1.7 Manual Pulser Mode
For manual operation of a device, you may use a manual pulser such as a
rotary encoder. The PCI-8134 can input signals from the pulser and output
corresponding pulses from the OUT and DIR pins, thereby allowing you to
simplify the external circuit and control the present position of axis. This
mode is effective between a manu_move() command is written and a
v_stop() command.

The PCI-8134 receives plus and minus pulses (CW/CCW) or 90 degrees
phase difference signals(AB phase) from the pulser at PA and PB pins. The
90� phase difference signals can be input through multiplication by 1, 2 or 4.
If the AB pahse input mode is selected, the PA and PB signals should be
with 90° phase shifted, and the position counting is increasing when the PA
signal is leasding the PB signal by 90° phase.

Also, one pulser may be used for ‘X’ and ‘Y’ axes while internally distributing
the signals appropriately to two axes. To set the input signal modes of
pulser, use set_manu_iptmode() function. Then write manu_move() to
begin manual operation function. User must write v_stop() command in
order to end this function and begins to operate at another mode.
The error input of PA and PB can be used to generate IRQ. The following
two situations will be considered as error input of PA and PB signals. (1)
The PA and PB signals are changing simultaneously. (2) The input pulser
frequency is higher than the maximum output frequency 2.4M pps. Set bit
14 of INT factor will enable the IRQ when error happen.

Maximum moving velocity in this mode can be limited by setting max_vel
parameter in manu_move() function.

Relative Function:

 set_manu_iptmode(), manu_move(), v_stop(): Refer to section 6.12

Operation Theorem • 41

4.2 Motor Driver Interface
The PCI-8134 provides the INP, ERC and ALM signals for servomotor
driver’s control interface. The INP and ALM are used for feedback the servo
driver’s status. The ERC is used to reset the servo driver’s deviation counter
under special conditions.

4.2.1 INP
Usually, servomotor driver with pulse train input has a deviation (position
error) counter to detect the deviation between the input pulse command and
feedback counter. The driver controls the motion of servomotor to minimize
the deviation until it becomes 0. Theoretically, the servomotor operates with
some time delay from command pulses. Accordingly, when the pulse
generator stops outputting pulses, the servomotor does not stop but keep
running until the deviation counter become zero. At this moment, the servo
driver sends out the in-position signal (INP) to the pulse generator to indicate
the motor stops running.

Usually, the PCI-8134 stops outputting pulses upon completion of outputting
designated pulses. But by setting inp_enable parameter in set_inp_logic()
function, you can delay the completion of operation to the time when the INP
signal is turned on. Status of motion_done() and INT signal are also
delayed. That is, when performing under position control mode, the
completion of start_a_move(), start_r_move(), start_s_move()… functions
are delayed until INP signal is turned ON.

However, EL or ALM signal or the completion of home return does not cause
the INP signal to delay the timing of completion. The INP signal may be a
pulse signal, of which the shortest width is 5 micro seconds.
The in-position function can be enable or disable. The input logic polarity
isalso programmable by software function:set_inp_logic(). The signal
status can be monitored by software function: get_io_status().

4.2.2 ALM
The ALM pin receives the alarm signal output from the servo driver. The
signal immediately stops the PCI-8134 from generating pulses or stops it
after deceleration. If the ALM signal is in the ON status at the start, the PCI-
8134 outputs the INT signal without generating any command pulse. The
ALM signal may be a pulse signal, of which the shortest width is a time
length of 5 micro seconds.

42 • Operation Theorem

You can change the input logic by set_alm_logic() function. Whether or not
the PCI-8134 is generating pulses, the ALM signal lets it output the INT
signal.. The ALM status can be monitored by software function:
get_io_status(). The ALM signal can generate IRQ by setting the bit 2 of
INT. factor in software function: set_int_factor().

4.2.3 ERC
The deviation counter clear signal is inserted in the following 4 situations:

� 1� home return is complete;
� 2� the end-limit switch is active;
� 3� an alarm signal stops OUT and DIR signals;
� 4� an emergency stop command is issued by software operator.

Since the servomotor operates with some delay from pulse generated from
the PCI-8134, it keeps operating by responding to the position error
remaining in the deviation counter of the driver if the ±EL signal or the
completion of home return stops the PCL5023 from outputting pulses. The
ERC signal allows you to immediately stop the servomotor by resetting the
deviation counter to zero. The ERC signal is output as an one-shot signal.
The pulsewidth is a time length of 10ms. The ERC signal will automatically
output when ±EL signals, ALM signal is turned on to immediately stop the
servomotor. User can set the ERC pin output enable/disable by
set_erc_enable() function. ERC pin output is set output enabled when
initializing.

4.3 The Limit Switch Interface and I/O Status
In this section, the following I/O signals’ operations are described.

� ±SD: Ramping Down sensor
� ±EL: End-limit sensor
� ORG: Origin position
� SVON and RDY

I/O status readback

OFF
ON

ERC Output

Approximate 10ms

Operation Theorem • 43

In any operation mode, if an ±EL signal is active during moving condition, it
will cause PCI-8134 to stop output pulses automatically. If an SD signal is
active during moving condition, it will cause PCI-8134 to decelerate.

4.3.1 SD
The ramping-down signals are used to slow-down the control output signals
(OUT and DIR) when it is active. The signals are very useful to protect the
mechanism moving under high speed toward the mechanism limit. PSD
indicates ramping-sown signal in plus (+) direction and MSD indicates
ramping-down signal in minus (-) direction.

During varied speed operation in the home return mode or continuous
operation mode, the ramping-down signal in the moving direction lets the
output control signals (OUT and DIR) ramp down to the pre-setting starting
velocity.

The ramping-down function can be enable or disable by software function:
set_sd_logic(). The input logic polarity, level operation mode, or latched
input mode can also be set by this function. The signals status can be
monitored by get_io_status().

4.3.2 EL
The end-limit signals are used to stop the control output signals (OUT and
DIR) when the end-limit is active. PEL signal indicates end-limit in positive
(plus) direction. MEL signal indicates end-limit in negative (minus) direction.
When the output pulse signals (OUT and DIR) are toward positive direction,
the pulse train will be immediately stopped when the PEL signal is inserted,
while the MEL signal is meaningless in this case, and vise versa. When the
PEL is inserted and the output pulse is fully stop, only the negative (minus)
direction output pulse can be generated for moving the motor to negative
(minus) direction.

The end-limit signals can be used to generate the IRQ by setting the bit 0 of
INT. factor in software function: set_int_factor().

You can use either 'a' contact switch or 'b' contact switch by setting the dip
switch S1. The PCI-8134 is delivered from the factory with all bits of S1 set
to OFF.
The signal status can be monitored by software function: get_io_status().

44 • Operation Theorem

4.3.3 ORG
When the motion controller is operated at the home return mode, the ORG
signal is used to stop the control output signals (OUT and DIR).

There are three home return modes, you can select one of them by setting
“home_mode” argument in software function: set_home_config(). Note that
if home_mode=1 or 2, the ORG signal must be ON or latched during the EZ
signal is inserted (EZ=0). The logic polarity of the ORG signal, level input or
latched input mode are selectable by software function: set_home_config().

After setting the configuration of home return mode by set_home_config(),
a home_move() command can perform the home return function.

The ORG signal can also generate IRQ signal by setting the bit 5 of interrupt
reason register (or INT. factor) in software function: set_int_factor().

4.3.4 SVON and RDY
The SVON signals are controlled by software function: _8134_Set_SVON().
The function set the logic of AP0 (SVON) of PCL5023. The signal status of
SVON pins can be monitored by software function: get_io_status().

RDY pins are dedicated for digital input use The status of this signal can be
monitored by software function get_io_status(). RDY pin is interfaced with
AP3 pin of PCL5023 through a photocoulpe. The RDY signal can also
generate IRQ signal by setting the bit 23 of INT. factor in software function:
set_int_factor(). Note that interrupt is generated when AP3 from high to low.

4.4 The Encoder Feedback Signals (EA, EB, EZ)
The PCI-8134 has a 28-bits binary up/down counter for managing the
present position for each axis. The counter counts signals input from EA
and EB pins.
It can accept 2 kinds of pulse input.: (1). plus and minus pulses
input(CW/CCW mode); (2). 90° phase difference signals(AB phase mode).
90° phase difference signals may be selected to be multiplied by a factor of
1,2 or 4. 4x AB phase mode is the most commonly used for incremental
encoder input. For example, if a rotary encoder has 2000 pulses per phase
(A or B phase), then the value read from the counter will be 8000 pulses per
turn or –8000 pulses per turn depends on its turning direction. These input
modes can be selected by set_pls_iptmode() function.

Operation Theorem • 45

To enable the counters counting pulses input from (EA, EB) pins, set
“cnt_src” parameter of software function set_cnt_src() to 1.

Plus and Minus Pulses Input Mode(CW/CCW Mode)
The pattern of pulses in this mode is the same as Dual Pulse Output Mode
in Pulse Command Output section, expect that the input pins are EA and EB.
In this mode, pulse from EA causes the counter to count up, whereas EB
caused the counter to count down.

90° phase difference signals Input Mode(AB phase Mode)
In this mode, the EA signal is 90° phase leading or lagging in comparison
with EB signal. Where “lead” or “lag’ of phase difference between two signals
is caused by the turning direction of motors. The up/down counter counts up
when the phase of EA signal leads the phase of EB signal.
The following diagram shows the waveform.

The encoder error interrupt is provided to detect abnormal situation.
Simultaneously changing of EA and EB signals will cause an encoder error.
If bit #14 of the interrupt factor register (INT factor) is set as 1, the IRQ will
be generated when detect encoder error during operation.

The index inputs (EZ) signals of the encoders are used as the “ZERO” index.
This signal is common on most of the rotational motors. EZ can be used to
define the absolute position of the mechanism. The input logic polarity of the
EZ signals is programmable by software function set_home_config(). The
EZ signals status of the four axis can be monitored by get_io_status().

Relative Function:

set_cnt_src(), set_pls_iptmode(): Refer to section 6.4

EA

EB

Negative Direction

EA

EB

Positive Direction

46 • Operation Theorem

4.5 Multiple PCI-8134 Cards Operation
The software fuction library support maximum up to 12 PCI-8134 Cards, that
means maximum up to 48 axes of motors can be controlled. Since PCI-8134
has the characteristic of Plug-and-Play, users do not have to care about
setting the Based address and IRQ level of cards. They are automatically
assigned by the BIOS of system when booting up. Users can utilize Motion
Creator to check if the plugged PCI-8134 cards are successfully installed
and see the Baseaddress and IRQ level assigned by BIOS.

One thing needed to be noticed by users is to identify the card number of
PCI-8134 when multiple cards are applied. The card number of one PCI-
8134 depends on the locations on the PCI slots. They are numbered either
from left to right or right to left on the PCI slots. These card numbers will
effect the corresponding axis number on the cards. And the axis number is
the first argument for most funcions called in the library. So it is important to
identify the axis number before writing application programs. For example, if
3 PCI-8134 cards are plugged in the PCI slots. Then the corresponding axis
number on each card will be:

 Axis No.
Card No.

Axis 1 Axis 2 Axis 3 Axis 4

1 0 1 2 3
2 4 5 6 7
3 8 9 10 11

If we want to accelerate Axis 3 of Card2 from 0 to 10000pps in 0.5sec for
Constant Velocity Mode operation. The axis number should be 6. The code
on the program will be:

v_move(6, 0, 10000, 0.5);

To determine the right card number, Try and Error may be necessary before
application. Motion Creator can be utilized to minimize the search time.

For applications needed to move many axes simultaneously on multiple
PCI_8134 cards, users should follow the connection diagrams in Section
3.12 to make connections between their CN4 connectors. Several functions
illustrated in Section 6.8 may be useful when writing programs for such
applications.

Relative Function:

start_move_all(), move_all(), wait_for_all(): Refer to section 6.8

Operation Theorem • 47

4.6 Change Speed on the Fly
You can change the velocity profile of command pulse ouput during
operation by v_change() function. This function changes the maximum
velocity setting during operation. However, if you operate under “Preset
Mode” (like start_a_move(),…), you are not allowed to change the
acceleration parameter during operation because the deceleration point is
pre-determined. But changing the acceleration parameter when operating
under “Constant Velocity Mode” is valid. Changing speed pattern on the fly is
valid no matter what you choose “Trapezoidal Velocity Profile” or “S-curve
Velocity Profile”. Here we use an example of Trapezoidal velocity profile to
illustarte this function.

Example: There are 3 speed change sensor during an absolute move for
200000 pulses. Initial maximum speed is 10000pps. Change to 25000pps if
Sensor 1 is touched. Change to 50000pps if Sensor 2 is touched. Change to
100000pps if Sensor 3 is touched. Then the code for this application and the
resulting velocity profiles are shown below.

#include “pci_8134.h”

start_a_move(axis, 200000.0, 1000, 10000, 0.02);

while(!motion_done(axis))
 {

// Get Sensor’s information from other I/O card

if((Sensor1==High) && (Sensor2==Low) && (Sensor3 == Low))
v_change(axis, 25000, 0.02);

else if((Sensor1==Low) && (Sensor2==High) && (Sensor3 == Low))
v_change(axis, 50000, 0.02);

else if((Sensor1==Low) && (Sensor2==Low) && (Sensor3 == High))
v_change(axis, 100000, 0.02);

 }

Motor

Sensor 2 Sensor 3

Pos=0 Pos=200000

Moving part

Sensor 1

48 • Operation Theorem

Where the informations of three sensors are acquired from other I/O card.
And the resulting velocity profile from experiment is shown below.

Relative Function:

v_change(): Refer to section 6.5

4.7 Interrupt Control
The PCI-8134 motion controller can generate INT signal to host PC
according to 13 types of factors, refer to set_int_factor() function for more
details.. The INT signal is output when one or more interrupt factors occur on
either axis. To judge on which axis the interrupt factors occur, use
get_int_axis() function. The interrupt status is not closed until
get_int_status() function is performed. There is a little difference between
using DOS or Windows 95/NT to perform interrupt control. Users should
refer to Section 6.17 for more details. Here we use an example on Windows
OS to demonstrate how to perform interrupt control with the function library
we provided.

Use Thread to deal with Interrupt under Windows NT/95
In order to detect the interrupt signal from PCI-8134 under Windows NT/95,
user must create a thread routine first. Then use APIs provided by PCI-8134
to get the interrupt signal. The sample program is as follows :

Situatuins: Assume that we have one card (4 axis) and want to receive
Home Return and Preset Movement Finish interrupt signal from axis 2.

Steps:
1. Define a Global Value to deal with interrupt event

HANDLE hEvent[4];

Operation Theorem • 49

volatile bool ThreadOn;
2. In Initializing Section (you must Initialize PCI-8134 properly first), set

interrupt types and enable an event for each axis.
set_int_factor(2,0x002040);
W_8134_Set_INT_Control(0,1);
W_8134_INT_Enable(0,&hEvent[0]);

Note: For each card, you must assign a 4-events-array in
W_8134_INT_Enable function.

3. Define a Global Function (Thread Body). Use WaitForSingleObject() or
WaitForMultipleObjects() to wait events. Remenber to reset this event
after you get the event.

UINT IntThreadProc(LPVOID pParam)
{

U32 IntSts;

while(ThreadOn=TRUE)
{

::WaitForSingleObject(hEvent[2],INFINITE);
get_int_status(2,&IntSts);
::ResetEvent(hEvent[2]);

}

return 0;
}

4. Start the thread(Use a boolean value to control the thread’s life)
ThreadOn=TRUE;
AfxBeginThread(IntThreadProc,GetSafeHwnd(),THREAD_PRIORITY_HI
GHEST);

5. Before exit the program, remember to let the thread go to end naturally.
ThreadOn=FALSE;

For each time when a preset movement or homing of axis 2 is completed, this
program will receive a interrupt signal from PCI-8134.

50 • Operation Theorem

PCI-8134 Interrupt Service Routine (ISR) with DOS
A DOS function library is equipped with PCI-8134 for users to develop
applications under DOS environment. This library also provide some
functions for users to work with ISR. It is highly recommended to write
programs according to the following example for applications should work
with ISR. Since PCI-bus has the ability to do IRQ sharing when multiple PCI-
8134 are applied, each PCI-8134 should have a corresponding ISR. For
users who use the library we provide, the names of ISR are fixed, such as:
_8134_isr0(void), _8134_isr1(void)…etc. The sample program are
described as below. It assume two PCI-8134 are plugged on the slot , axis 1
and axis5 are asked to work with ISR.:

// header file declare
#include “pci_8134.h”

PCI_INFO info;

#define axis1 1
#define axis5 5
U16 int_flag=0, irq_axs;
U32 irq_sts;

/**/
/* MAIN Program */
/**/
void main(void)
{
 U16 i, bn=0, status;
 _8134_Initial(&bn, &info);
 // Do System configuration for all I/O signals

…………………..
//
// Set Interrupt factors for axis1, axis5
 set_int_factor(axis1, factor1);
 set_int_factor(axis5, factor2);
// Enable Interrupt for both PCI-8134 cards
 for(i=0; i<bn; i++)
 _8134_Set_INT_Enable(i, 1);
// Main program for application

…………………..
// End of Main Program
 for(i=0; i<bn; i++)
 _8134_Close(i); // Close all IRQ resources
}

Operation Theorem • 51

/**/
/* ISR begin here */
/**/
void interrupt _8134_isr0(void)
{
 U16 int_axis;
 U16 irq_status;
//
 disable(); // disable all interrupt
 _8134_Get_IRQ_Status(0, &irq_status);
 if(irq_status) // Judge if INT for card 0?
 {
 get_int_axis(&int_axis);
 int_flag = 1;
 irq_axs = int_axis;
 get_int_status(int_axis, &irq_sts);
 }
 else
 _chain_intr(pcinfo.old_isr[0]); // If not, chain to other INT
//
 outportb(0x20, 0x20); // End of INT
 outportb(0xA0, 0x20);
//---
 enable(); // enable interrupt request

}

void interrupt _8134_isr1(void)
{
 U16 int_axis;
 U16 irq_status;
//
 disable(); // disable all interrupt
 _8134_Get_IRQ_Status(1, &irq_status);
 if(irq_status) // Judge if INT for card 1?
 {
 get_int_axis(&int_axis);
 int_flag = 1;
 irq_axs = int_axis;
 get_int_status(int_axis, &irq_sts);
 }
 else
 _chain_intr(pcinfo.old_isr[1]); // If not, chain to other INT
//
 outportb(0x20, 0x20); // End of INT

52 • Operation Theorem

 outportb(0xA0, 0x20);
//---
 enable(); // enable interrupt request
}

So with the sample, user can get the interrupt signal about each axis in the
motion control system.

Motion Creator • 53

5

Motion Creator

After installing all the hardware properly according to Chapter 2, 3,
configuring cards and checkout are required before running. This chapter
gives guidelines for establishing a control system and manually exercising
the PCI-8134 cards to verify correct operation. Motion Creator provides a
simple yet powerful means to setup, configure, test and debug motion
control system that uses PCI-8134 cards.

Note that Motion Creator is available only for Windows 95/98 or Windows NT
with the screen resolution higher than 800x600 environment and can not run
on DOS.

54 • Motion Creator

5.1 Main Menu

Main Menu will appear when executing Motion Creator. Figure 5.1 shows the
Main Menu.

Figure 5.1 Main Menu of Motion Creator

From main menu window all PCI-8134 cards and their axes and the
corresponding status can be viewed. First of all, check if all the PCI-8134
cards which are plugged in the PCI-Bus can be viewed on “Select Card”
column. Next select the card and axis you want to configure and operate.
Since there are totally four axes on a card, the axis number of first axis on n-
the card will be numbered as 4*(n-1). Base address and IRQ level of the
card are also shown on this window.

Motion Creator • 55

5.2 Axis Configuration Window

Press the “Config Axis” button on the Main Menu will enter the Axis
Configuration window. Figure 5.2 shows the window.

Figure 5.2 Axis Configuration Window

the Axis Configuration window includes the following setting items which
cover most I/O signals of PCI-8134 cards and part of the interrupt factors.

• Pulse I/O Mode:
Related functions:

Ø set_pls_outmode() for “Pulse Output Mode” property.
Ø set_cnt_src() for “Pulse Input Active” property.
Ø set_pls_iptmode() for “Pulse Input Mode” property.

56 • Motion Creator

• Mechanical Signal:
Related functions:

Ø set_home_config() for “Home Signal” and “Index Signal”
property.

Ø set_sd_logic() for “Slow Down Point Signal” property.
• Servo Motor Signal:

Related functions:
Ø set_alm_logic() for “Alarm Signal” property.
Ø set_inp_logic() for “INP” property.

• Manual Pulser Input Mode:
Related functions:

Ø set_manu_iptmode() for “Manual Pulser Input Mode”
property.

• Interrupt Factor:
Related functions:

Ø set_int_factor() for “INT Factor” property.
• Home Mode:

Related functions:
Ø set_home_config() for “Home Mode” property.

The details of each section are shown at its related functions.

After selecting all the items you want to configure, user can choose to push
the “Save Configurations “ button on the right bottom side. If you push this
button, all the configurations you select for system integration will be saved
to a file called “8134.cfg”. This file is very helpful when user is developing
their own application programs. The following example illustrate how to
make use of this function. This example program is shown in C language
form.

Main()
{
 _8134_intial(); // Initialize the PCI-8134 cards
 _8134_Set_Config(); // Configure PCI-8134 cards according

�
// to 8134.cfg

�
}

Where _8134_initial() and _8134_Set_Config() can be called from the

Motion Creator • 57

function library we provide. _8134_initial() should be the first function called
within main{} function. It will check all the PCI-8134 existed and give the card
a base address and IRQ level. _8134_Set_Config() will configure the PCI-

8134 cards according to “8134.cfg”. That is, the contents of Axis
Configuration Window can be transferred to the application program by this
function called.

Figure 5.3 Axis Operation window

58 • Motion Creator

5.3 Axis Operation Windows

Press the “Operate Axis” button on the Main Menu or Axis Configuration
Menu will enter the Axis Configuration window. Figure 5.3 shows the
window. User can use this window to command motion, monitor all the I/O
status for the selected axis. This window includes the following displays and
controls:

♦ Motion Status Display,
♦ Axis Status Display
♦ I/O Status Display
♦ Set Position Control
♦ Operation Mode Control
♦ Motion Parameter Control
♦ Play Key Control
♦ Velocity Profile Selection
♦ Repeat Mode

5.3.1 Motion Status Display
The Motion Status display provides a real-time display of the axis’s position
in the Command, Actual, Error fields. Motion Creator automatically updates
these command, actual and error displays whenever any of the values
change.
When Pulse Input Active property is Axis Configuration Window is set to
Enable, the Actual Position read will be from the external encoder inputs(EA,
EB). Else, it will display the command pulse output when set to Disable.

5.3.2 Axis Status Display
The Axis Status display provides a real-time display of the axis’s status.
It displays the status(Yes(for logical True) or No(for logical False)) for In
Position or In Motion or displays there is Interrupt Events Occurs. When In
motion, you can check the motion done status in the next column. In Position
range can be specified in the Pos_Err column.

Motion Creator • 59

5.3.3 I/O Status Display
Use I/O Status display to monitor the all the I/O status of PCI-8134. The
Green Light represents ON status, Red Light represents OFF status and
BLACK LIGHT represents that I/O function is disabled. The ON/OFF status
is read based on the setting logic in Axis Configuration window.

5.3.4 Set Position Control
Use the Set Position Control to arbitrarily change the actual position of axis.
Write the position wanting to specify into the column and click the “Set
Position” button will set the actual position to the specified position.

5.3.5 Operation Mode Control
There are four Operation Modes mentioned in Chapter 4 can be tested in the
Axis Operation window. They are “Continuous Move Mode”, “Preset Mode
Operation”, “Home Mode Operation”, “Manual Mode Operation”.

• Continuous Move Mode:
Press “Continuous Move” button will enable Continuous Velocity motion as
specified by values entered in “Start Velocity” and “Maximum Velocity” 2
fields of Motion Parameters Control. The steady state moving velocity will be
as specified by “Maximum Velocity”. Press → to move forward or ← to move
backward. Press “STOP” to stop moving.

• Preset Mode:
Press “Absolute Mode” to enable absolute motion as specified by values
entered in “Position 1” and “Position 2” 2 fields. When selected, “Distance”
field for “Relative Mode” is disabled. Press → to move to Position 2 or ← to
move to Position 1. Press “STOP” to stop motion.
Also, user can specify repetitive motion in “Absolute Mode” by setting
“Repeat Mode” to “ON” state. When “Repeat Mode” goes “ON” and either →
or ← is pressed., axis starts repetitive motion between Position 1 and
Position 2 until “Repeat Mode” goes “OFF” as “STOP” are clicked.
Press “Relative Mode” to enable relative motion as specified by values
entered in “Distance” fields. When selected, “Position 1” and “Position 2”
fields for “Absolute Mode” is disabled. Press → to move forward to a
distance relative to present position as specified by “Distance” or ← to move
backward.
Note that both “Absolute Mode” and “Relative Mode” are operated under a
trapezoidal velocity profile as specified by Motion Parameters Control.

60 • Motion Creator

• Home Return Mode:
Press “Home Move” button will enable Home Return motion. The home
returning velocity is specified by settings in Motion Parameters Control. The
arriving condition for Home Return Mode is specified in Axis Configuration
Window. Press → to begin returning home function. Press “STOP” to stop
moving.

• Manual Pulser Mode:
Press “Manual Pulser Move” button will enable motion controlled by hand
wheel pulser. Using this function, user can manually operate the axis thus
verify operation. The maximum moving velocity is limited as specified by
“Maximum Velocity”. Press “STOP” to end this mode.
Do remember to press “STOP” to end operation under this mode. Otherwise,
operations under other modes will be inhibited.

5.3.6 Motion Parameters Control
Use the Motion Parameters with the Operation Mode Control to command
motion.

• Starting Velocity: Specify the starting moving speed in pulses per
second.

• Maximum Velocity: Specify the maximum moving speed in pulses
per second.

• Acceleration: Specify the acceleration in pulses per second square.
• Move delay: Specify time in mini seconds between movement.

• S curve Acc/dec Time: Specify time in mini second for S_curve
Movement.

5.3.7 Play Key Control

Use buttons in Play Key Control to begin or end operation.

: click button under this symbol to begin moving to Positions 2 in Absolute
Mode or moving forward in other modes.

: click button under this symbol to begin moving to Positions 1 in Absolute
Mode or moving backward in other modes.

Motion Creator • 61

: click button under this symbol to stop motion under any mode. Note that
this button is always in latch mode. Click again to release “STOP” function.

5.3.8 Velocity Profile Selection

: Click T_Curve or S_curve to select preset movement velocity profile. The
relative parameter settings are in Motion Parameter Frame.

5.3.9 Repeat Mode

: Repeat mode is only for absolute and relative mode. After choosing a
operation mode and click repeat mode on, you can press play key to make
axis run between position 1 and 2 (in absolute mode) or run between a
range (relative mode). It is useful on demonstrations. Use Stop button to
stop this operation.

62 • Motion Creator

5.4 2-D Motion Windows
Press 2-D button in operating window will enter this window. This is for 2-D
motion test. It includes the following topics:

♦ Linear Interpolation
♦ Circular Interpolation
♦ Incremental Jog
♦ Continous Jog
♦ Other Control Objects

Motion Creator • 63

5.4.1 Linear Interpolation

: After setting motion parameters correctly in “Interpolation Parameter Setting
Frame”, you can enter the destination in this frame. Then click Run button to
start linear interpolation motion.

5.4.2 Circular Interpolation
The setting for circular interpolation mode has three additional parameters in
“Interpolation Parameter Setting Frame”. They are arc degree, division axis
and optimize option. Please refer to section 6.9 to set them.

After setting these parameters, you can enter the arc center and degree in
“Interpolation Command Frame”. Click Run button to start circular
interpolation motion.

5.4.3 Continuous Jog

: Continuous Jog means that when you press one directional button, the axis
will continuously move with an increasing speed. The longer you press, the
faster it runs. When you un-press the button, the axis will stop immediately.

64 • Motion Creator

5.4.4 Incremental Jog

: Incremental jog means that when you click one directional button, the axis
will step a distance according to the Step-Size’s setting.

5.4.5 Other Control Objects

The above figure shows the result of circular interpolation mode. The graph
screen is an Active X object from ADLink Daqbench®. There are some
relative control objects as follows:

Motion Creator • 65

1. Zoom
2. Graph Range
3. Origin Position

The Zoom In/Out buttons are used for changing the display range according
to a scale number beside the button. The “Graph Range Frame” controls X
or Y axis’s display range. The “Origin Position Frame” let user to pan the
display location.
There are two home return buttons at the left-down corner of this window. It
is useful when user need to return to the origin.

Function Library • 67

6

Function Library

This chapter describes the supporting software for PCI-8134 cards. User can
use these functions to develop application program in C or Visual Basic or
C++ language.

6.1 List of Functions

Initialization Section 6.3
_8134_Initial(*existCards, *pciInfo); Software initialization
_8134_Close(*existCards; Software Close
_8134_Set_Config(void); Configure PCI-8134 according to

Motion Creator

Pulse Input/Output Configuration Section 6.4
set_pls_outmode(axis, pls_outmode); Set pulse command output mode
set_pls_iptmode(axis, pls_iptmode); Set encoder input mode
set_cnt_src(axis, cnt_src); Set counter input source

Continuously Motion Mode Section 6.5
v_move(axis, svel, mvel, Tacc); Accelerate an axis to a constant

velocity with trapezoidal profile
sv_move(axis, svel, mvel, Tlacc, Tsacc); Accelerate an axis to a constant

velocity with S-curve profile
v_change(axis, mvel, Tacc); Change speed on the fly
v_stop(axis, Tdec); Decelerate to stop

Trapezoidal Motion Mode Section 6.6
a_move(axis, pos, svel, mvel, Tacc); Perform an absolute trapezoidal

68 • Function Library

profile move
start_a_move(axis, pos, svel, mvel, Tacc); Begin an absolute trapezidal

profile move
r_move(axis, dist, svel, mvel, Tacc); Perform a relative trapezoidal

profile move
start_r_move(axis, dist, svel, mvel, Tacc); Begin a relative trapezoidal

profile move
t_move(axis, dist, svel, mvel, Tacc, Tdec); Perform a relative non-

symmetrical trapezoidal profile
move

start_t_move(axis, dist, svel, mvel, Tacc,
Tdec);

Begin a relative non-symmetrical
trapezidal profile move

start_ta_move(axis, pos, svel, mvel, Tacc,
Tdec);

Begin an absolute non-
symmetrical trapezidal profile
move

ta_move(axis, pos, svel, mvel, Tacc, Tdec); Perform an absolute non-
symmetrical trapezoidal profile
move

wait_for_done(axis); Wait for an axis to finish

S-Curve Profile Motion Section 6.7

s_move(axis, pos, svel, mvel, Tlacc,
Tsacc);

Perform an absolute S-curve
profile move

start_s_move(axis, pos, svel, mvel, Tlacc,
Tsacc);

Begin an absolute S-curve profile
move

rs_move(axis, dist, svel, mvel, Tlacc,
Tsacc);

Perform a relative S-curve profile
move

start_rs_move(axis, dist, svel, mvel, Tlacc,
Tsacc);

Begin a relative S-curve profile
move

tas_move(axis, pos, svel, mvel, Tlacc,
Tsacc, Tldec, Tsdec);

Perform an absolute non-
symmetrical S-curve profile
move

start_tas_move(axis, pos, svel, mvel, Tlacc,
Tsacc, Tldec, Tsdec);

Begin an absolute non-
symmetrical S-curve profile
move

Multiple Axes Point to Point Motion Section 6.8

start_move_all(n_axes, *axes, *pos, *svel,
*mvel, *Tacc);

Begin a multi-axis trapezodial
profile move

move_all(n_axes, *axes, *pos, *svel, *mvel,
*Tacc);

Perform a multi-axis trapezodial
profile move

wait_for_all(n_axes, *axes); Wait for all axes to finish

Linear / Circular Interpolated Motion Section 6.9
move_xy(cardNo, x, y); 2-axis linear interpolated move

for X & Y
move_zu(cardNo, z, u); 2-axis linear interpolated move

for Z & U
arc_xy(cardNo, x_center, y_center, angle); 2-axis circular interpolated move

Function Library • 69

for X & Y
arc_zu(cardNo, z_center, u_center, angle); 2-axis circular interpolated move

for Z & U

Interpolation Parameters Configuring Section 6.10
map_axes(n_axes, *map_array); Maps coordinated motion axes x,

y, z….
set_move_speed(svel, mvel); Set the vector velocity
set_move_accel(Tacc); Set the vector acceleration time
set_arc_division(axis, degrees); Set the interpolation arc segment

length
arc_optimization(optimize); Enable/Disable optimum

acceleration calculations for arce
set_move_ratio(axis, ratio); Set the axis resolution ratios

Home Return Mode Section 6.11
set_home_config(axis, mode, org_logic,
org_latch, index_logic);

Set or get the home/index logic
configuration

home_move(axis, svel, mvel, accel); Begin a home return action

Manual Pulser Motion Section 6.12
set_manu_iptmode(axis, ipt_mode,
op_mode);

Set pulser input mode and
operation mode

manu_move(axis, mvel); Begin a manual pulser
movement

Motion Status Section 6.13
motion_done(axis); Returns TRUE if motion done

Servo Drive Interface Section 6.14
set_alm_logic(axis, alm_logic, alm_mode); Set alarm logic and alarm mode
set_inp_logic(axis, inp_logic, inp_enable); Set In-Position logic and

enable/disable
set_sd_logic(axis, sd_logic, sd_latch,
sd_enable);

Set slow down point logic and
enable/disable

set_erc_enable(axis, erc_enable) Set the ERC output
enable/disable

I/O Control and Monitoring Section 6.15
_8134_Set_SVON(axis, on_off); Set the state of general purpose

output bit
get_io_status(axis, *io_status); Get all the I/O staus of PCI-8134

Position Control Section 6.16
set/get_position(axis, pos); Set or get current actual position
set/get_command(axis, pos); Set or get current command

position

70 • Function Library

Interrupt Control Section 6.17
_8134_Set_INT_ENABLE(axis, intFlag); Set Interrupt enable
set_int_factor(axis, int_factor); Set Interrupt generationg factors
get_int_axis(*int_axis); Get the axis which generates

interrupt (DOS)
get_int_status(axis, *int_status); Get the interrupting status of axis

6.2 C/C++ Programming Library
This section gives the details of all the functions. The function prototypes
and some common data types are decelerated in PCI-8134.H. These data
types are used by PCI-8134 library. We suggest you to use these data types
in your application programs. The following table shows the data type names
and their range.

Type Name Description Range
U8 8-bit ASCII character 0 to 255
I16 16-bit signed integer -32768 to 32767
U16 16-bit unsigned integer 0 to 65535
I32 32-bit signed long integer -2147483648 to 2147483647
U32 32-bit unsigned long integer 0 to 4294967295
F32 32-bit single-precision floating-point -3.402823E38 to 3.402823E38

F64 64-bit double-precision floating-point -1.797683134862315E308 to
1.797683134862315E309

Boolean Boolean logic value TRUE, FALSE

The functions of PCI-8134’s software drivers use full-names to represent the
functions' real meaning. The naming convention rules are :

In DOS Environment :

_{hardware_model}_{action_name}. e.g. _8134_Initial().

In order to recognize the difference between DOS library and Windows
95 library, A capital "W" is put on the head of each function name of the
Windows 95 DLL driver. e.g. W_8134_Initial().

There are 36 functions provided by PCI-8134 software drivers. The
detail descriptions of each function are specified in the following
sections.

Function Library • 71

6.3 Initialization

@ Name
_8134_Initial – Software Initialization for PCI-8134
_8134_Close – Software release resources of PCI-8134
_8134_Set_Config – Configure PCI-8134 according to Motion Creator
W_8134_Get_IRQ_Channel – Get the PCI-8134 card’s IRQ number
W_8134_Get_ Base_Addr – Get the PCI-8134 card’s base address

@ Description
_8134_Initial :

This function is used to initialize PCI-8134 card. Every PCI-8134 card
has to be initialized by this function before calling other functions.

_8134_Close :
This function is used to close PCI-8134 card and release the PCI-8134
related resources, which should be called at the end of an application.

_8134_Set_Config :
This function is used to configure PCI-8134 card. All the I/O
configurations and some operating modes appeared on “Axis
Configuration Window” of Motion Creator will be set to PCI-8134. Click
“Save Configuration” button on the “Axis Configuration Window” if you
want to use this function in the application program. Click “Save
Configuration” button will save all the configurations to a file call
“8134.cfg”. This file will appear in the “WINDOWS\SYSTEM\” directory.

W_8134_Get_IRQ_Channel :
This function is used to get the PCI-8134 card’s IRQ number. (This
function just suport Window 95 and Window NT platform only).

W_8134_Get_Base_Addr :
This function is used to get the PCI-8134 card’s base address. (This
function just suport Window 95 and Window NT platform only).

@ Syntax
C/C++ (DOS)

U16 _8134_Initial (U16 *existCards, PCI_INFO *info)
U16 _8134_Close(U16 cardNo)
U16 _8134_Set_Config(char* filename)

C/C++ (Windows 95/NT)
U16 W_8134_Initial(U16 *existCards, PCI_INFO *pciInfo)

(Windows 95 Only)
U16 W_8134_Initial(U16 cardNo)(Windows NT Only)
U16 W_8134_Close(U16 cardNo)(Windows NT Only)
U16 W_8134_Set_Config(char *fileName)
void W_8134_Get_IRQ_Channel(U16 cardNo, U16 *irq_no)
void W_8134_Get_Base_Addr(U16 cardNo, U16 *base_addr)

Visual Basic (Windows 95/NT)
W_8134_Initial (existCards As Integer, pciInfo As

72 • Function Library

PCI_INFO) As Integer(Windows 95 Only)

W_8134_Initial (ByVal cardNo As Long) As Integer
(Windows NT Only)

W_8134_Close (ByVal cardNo As Long) As Integer (Windows NT
Only)

W_8134_Set_Config (ByVal fileName As String) As Integer
W_8134_Get_IRQ_Channel (ByVal cardno As Integer, irq_no

As Integer)
W_8134_Get_Base_Addr (ByVal cardno As Integer, base_addr

As Integer)

@ Argument
existCards: numbers of existing PCI-8134 cards
info: relative information of the PCI-8134 cards
cardNo: The PCI-8134 card index number.

@ Return Code
 ERR_NoError
ERR_BoardNoInit
ERR_PCIBiosNotExist

6.4 Pulse Input / Output Configuration

@ Name
set_pls_outmode – Set the configuration for pulse command output.
set_pls_iptmode – Set the configuration for feedback pulse input.
set_cnt_src – Enable/Disable the external feedback pulse input

@ Description
set_pls_outmode:

Configure the output modes of command pulse. There are two modes
for command pulse output.

set_pls_iptmode:
Configure the input modes of external feedback pulse. There are four
types for feedback pulse input. Note that this function makes sense only
when cnt_src parameter in set_cnt_src() function is enabled.

set_cnt_src:
If external encoder feedback is available in the system, set the cnt_src
parameter in this function to Enabled state. Then internal 28-bit up/down
counter will count according configuration of set_pls_iptmode()
function.
Or the counter will count the command pulse output.

Function Library • 73

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 set_pls_outmode(I16 axis, I16 pls_outmode)
U16 set_pls_iptmode(I16 axis, I16 pls_iptmode)
U16 set_cnt_src(I16 axis, I16 cnt_src)

Visual Basic (Windows 95/NT)
set_pls_outmode (ByVal axis As Long, ByVal pls_outmode As

Long) As Integer
set_pls_iptmode (ByVal axis As Long, ByVal pls_iptmode As

Long) As Integer
set_cnt_src (ByVal axis As Long, ByVal cnt_src As Long) As

Integer

@ Argument
axis: axis number designated to configure pulse

Input/Output.
pls_outmode: setting of command pulse output mode for OUT

and DIR pins.
pls_outmode=0, OUT/DIR type pulse output.
pls_outmode=1, CW/CCW type pulse output.

pls_iptmode: setting of encoder feedback pulse input mode
for EA and EB pins.
pls_iptmode=0, 1X AB phase type pulse
input.
pls_iptmode=1, 2X AB phase type pulse
input.
pls_iptmode=2, 4X AB phase type pulse
input.
pls_iptmode=3, CW/CCW type pulse input.

cnt_src: Counter source
cnt_src=0, counter source from command
pulse
cnt_src=1, counter source from external
input EA, EB

@ Return Code

 ERR_NoError

74 • Function Library

6.5 Continuously Motion Move

@ Name
v_move – Accelerate an axis to a constant velocity with trapezoidal profile
sv_move – Accelerate an axis to a constant velocity with S-curve profile
v_change – Change speed on the fly
v_stop – Decelerate to stop

@ Description
v_move:

This function is used to accelerate an axis to the specified constant
velocity. The axis will continue to travel at a constant velocity until the
velocity is changed or the axis is commanded to stop. The direction is
determined by the sign of velocity parameter.

sv_move:
This function is similar to v_stop() but accelerating with S-curve.

v_change:
You can change the velocity profile of command pulse ouput during
operation by this function. This function changes the maximum velocity
setting during operation. However, if you operate under “Preset Mode”
(like start_a_move(),…), you are not allowed to change the acceleration
parameter during operation because the deceleration point is pre-
determined. But changing the acceleration parameter when operating
under “Constant Velocity Mode” is valid.

v_stop:
This function is used to decelerate an axis to stop. This function is also
useful when preset move(both trapezoidal and S-curve motion),
manual move or home return function is performed.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 v_move(I16 axis, F64 str_vel, F64 max_vel, F64 Tacc)
U16 sv_move(I16 axis, F64 str_vel, F64 max_vel, F64 Tlacc,

F64 Tsacc)
U16 v_change(I16 axis, F64 max_vel, F64 Tacc)
U16 v_stop(I16 axis, F64 Tdec)

Visual Basic (Windows 95/NT)
v_move (ByVal axis As Integer, ByVal str_vel As Double,

ByVal max_vel As Double, ByVal Tacc As Double) As
Integer

sv_move(I16 axis, F64 str_vel, F64 max_vel, F64 Tlacc, F64
Tsacc) As Integer

v_change(I16 axis, F64 max_vel, F64 Tacc) As Integer
v_stop (ByVal axis As Integer, ByVal Tacc As Double) As

Integer

Function Library • 75

@ Argument
axis: axis number designated to move or stop.
str_vel: starting velocity in unit of pulse per second
max_vel: maximum velocity in unit of pulse per second
Tacc: specified acceleration time in unit of second
Tdec: specified deceleration time in unit of second

@ Return Code
 ERR_NoError

6.6 Trapezoidal Motion Mode

@ Name
start_a_move– Begin an absolute trapezoidal profile motion
start_r_move– Begin a relative trapezoidal profile motion
start_t_move– Begin a non-symmetrical relative trapezoidal profile motion
start_ta_move– Begin a non-symmetrical absolute trapezoidal profile motion
a_move– Begin an absolute trapezoidal profile motion and wait for completion
r_move– Begin a relative trapezoidal profile motion and wait for completion
t_move– Begin a non-symmetrical relative trapezoidal profile motion and wait

for completion
ta_move– Begin a non-symmetrical absolute trapezoidal profile motion and

wait for completion

@ Description
start_a_move() :

This function causes the axis to accelerate from a starting velocity, slew
at constant velocity, and decelerate to stop at the specified absolute
position, immediately returning control to the program. The acceleration
rate is equal to the deceleration rate. a_move() starts an absolute
coordinate move and waits for completion.

start_r_move() :
This function causes the axis to accelerate from a starting velocity, slew
at constant velocity, and decelerate to stop at the relative distance,
immediately returning control to the program. The acceleration rate is
equal to the deceleration rate. r_move() starts a relative move and waits
for completion.

start_ta_move() :
This function causes the axis to accelerate from a starting velocity, slew
at constant velocity, and decelerate to stop at the specified absolute
position, immediately returning control to the program.. ta_move() starts
an absolute coordinate move and waits for completion.

start_t_move() :
This function causes the axis to accelerate from a starting velocity, slew
at constant velocity, and decelerate to stop at the relative distance,

76 • Function Library

immediately returning control to the program.. t_move() starts a relative
coordinate move and waits for completion.

The moving direction is determined by the sign of pos or dist
parameter.If the moving distance is too short to reach the specified
velocity, the controller will accelerate for the first half of the distance and
decelerate for the second half (triangular profile). wait_for_done() waits
for the motion to complete.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 start_a_move(I16 axis, F64 pos, F64 str_vel, F64
max_vel, F64 Tacc)

U16 a_move(I16 axis, F64 pos, F64 str_vel, F64 max_vel,
F64 Tacc)

U16 start_r_move(I16 axis, F64 distance, F64 str_vel, F64
max_vel, F64 Tacc)

U16 r_move(I16 axis, F64 distance, F64 str_vel, F64
max_vel, F64 Tacc)

U16 start_t_move(I16 axis, F64 dist, F64 str_vel, F64
max_vel, F64 Tacc, F64 Tdec)

U16 t_move(I16 axis, F64 dist, F64 str_vel, F64 max_vel,
F64 Tacc, F64 Tdec)

U16 start_ta_move(I16 axis, F64 pos, F64 str_vel, F64
max_vel, F64 Tacc, F64 Tdec)

U16 ta_move(I16 axis, F64 pos, F64 str_vel, F64 max_vel,
F64 Tacc, F64 Tdec)

U16 wait_for_done(I16 axis)

Visual Basic (Windows 95/NT)
start_a_move (ByVal axis As Integer, ByVal pos As Double,

ByVal str_vel As Double, ByVal max_vel As Double,
ByVal Tacc l As Double) As Integer

a_move (ByVal axis As Integer, ByVal pos As Double, ByVal
str_vel As Double, ByVal max_vel As Double, ByVal
Tacc As Double) As Integer

start_r_move (ByVal axis As Integer, ByVal distance As
Double, ByVal str_vel As Double, ByVal max_vel As
Double, ByVal Tacc As Double) As Integer

r_move (ByVal axis As Integer, ByVal distance As Double,
ByVal str_vel As Double, ByVal max_vel As Double,
ByVal Tacc As Double) As Integer

start_t_move (ByVal axis As Integer, ByVal distance As
Double, ByVal str_vel As Double, ByVal max_vel As
Double, ByVal Tacc As Double, ByVal Tdec As Double)
As Integer

t_move (ByVal axis As Integer, ByVal distance As Double,
ByVal str_vel As Double, ByVal max_vel As Double,

Function Library • 77

ByVal Tacc As Double, ByVal Tdec As Double) As
Integer

start_ta_move(ByVal axis As Integer, ByVal pos As Double ,
ByVal str_vel As Double, ByVal max_vel As Double,
ByVal Tacc As Double, ByVal Tdec As Double) As
Interger

ta_move(ByVal axis As Integer, ByVal pos As Double , ByVal
str_vel As Double, ByVal max_vel As Double, ByVal
Tacc As Double, ByVal Tdec As Double) As Integer

wait_for_done(ByVal axis As Integer) As Integer

@ Argument
axis: axis number designated to move.
pos: specified absolute position to move
distance or dist: specified relative distance to move
str_vel: starting velocity of a velocity profile in unit

of pulse per second
max_vel: starting velocity of a velocity profile in unit

of pulse per second
Tacc: specified acceleration time in unit of second
Tdec: specified deceleration time in unit of second

@ Return Code
 ERR_NoError
ERR_MoveError

78 • Function Library

6.7 S-Curve Profile Motion

@ Name
start_s_move– Begin a S-Curve profile motion
s_move– Begin a S-Curve profile motion and wait for completion
start_rs_move– Begin a relative S-Curve profile motion
rs_move– Begin a relative S-Curve profile motion and wait for completion
start_tas_move– Begin a non-symmetrical absolute S-curve profile motion
tas_move– Begin a non-symmetrical absolute S-curve profile motion and wait

for completion

@ Description
start_s_move() :

This function causes the axis to accelerate from a starting velocity, slew
at constant velocity, and decelerate to stop at the specified absolute
position, immediately returning control to the program. The acceleration
rate is equal to the deceleration rate. s_move() starts an absolute
coordinate move and waits for completion.

start_rs_move() :
This function causes the axis to accelerate from a starting velocity, slew
at constant velocity, and decelerate to stop at the relative distance,
immediately returning control to the program. The acceleration rate is
equal to the deceleration rate. rs_move() starts a relative move and waits
for completion.

start_tas_move() :
This function causes the axis to accelerate from a starting velocity, slew
at constant velocity, and decelerate to stop at the specified absolute
position, immediately returning control to the program.. tas_move() starts
an absolute coordinate move and waits for completion.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 start_s_move(I16 axis, F64 pos, F64 str_vel, F64
max_vel, F64 Tlacc, F64 Tsacc)

U16 s_move(I16 axis, F64 pos, F64 str_vel, F64 max_vel,
F64 Tlacc, F64 Tsacc)

U16 start_rs_move(I16 axis, F64 distance, F64 str_vel, F64
max_vel, F64 Tlacc, F64 Tsacc)

U16 rs_move(I16 axis, F64 distance, F64 str_vel, F64
max_vel, F64 Tlacc, F64 Tsacc)

U16 start_tas_move(I16 axis, F64 pos, F64 str_vel, F64
max_vel, F64 Tlacc, F64 Tsacc, F64 Tldec, F64 Tsdec)

U16 tas_move(I16 axis, F64 pos, F64 str_vel, F64 max_vel,
F64 Tlacc, F64 Tsacc, F64 Tldec, F64 Tsdec)

Function Library • 79

Visual Basic (Windows 95/NT)
start_s_move(ByVal axis As Integer, ByVal pos As Double,

ByVal str_vel As Double, ByVal max_vel As Double,
ByVal Tlacc As Double, ByVal Tsacc As Double) As
Integer

s_move(ByVal axis As Integer, ByVal pos As Double, ByVal
str_vel As Double, ByVal max_vel As Double ByVal
Tlacc As Double, ByVal Tsacc As Double) As Integer

start_rs_move(ByVal axis As Integer, ByVal distance As
Double, ByVal str_vel As Double, ByVal max_vel As
Double, ByVal Tlacc As Double, ByVal Tsacc As
Double) As Integer

rs_move(ByVal axis As Integer, ByVal distance As Double,
ByVal str_vel As Double, ByVal max_vel As Double,
ByVal Tlacc As Double, ByVal Tsacc As Double) As
Integer

start_tas_move(ByVal axis As Integer, ByVal pos As Double,
ByVal str_vel As Double, ByVal max_vel As Double,
ByVal Tlacc As Double, ByVal Tsacc As Double, ByVal
Tldec As Double, ByVal Tsdec As Double) As Integer

tas_move(ByVal axis As Integer, ByVal pos As Double ByVal
str_vel As Double, ByVal max_vel As Double ByVal
Tlacc As Double, ByVal Tsacc As Double, ByVal Tldec
As Double, ByVal Tsdec As Double) As Integer

@ Argument
axis: axis number designated to move.
pos: specified absolute position to move
distance or dist: specified relative distance to move
str_vel: starting velocity of a velocity profile in unit

of pulse per second
max_vel: starting velocity of a velocity profile in unit

of pulse per second
Tlacc: specified linear acceleration time in unit of

second
Tsacc: specified S-curve acceleration time in unit of

second
Tldec: specified linear deceleration time in unit of

second
Tsdec: specified S-curve deceleration time in unit of

second

@ Return Code
 ERR_NoError
ERR_MoveError

80 • Function Library

6.8 Multiple Axes Point to Point Motion

@ Name
start_move_all– Begin a multi-axis trapezoidal profile motion
move_all–Begin a multi-axis trapezoidal profile motion and wait for completion
wait_for_all–Wait for all axes to finish

@ Description
start_move_all() :

This function causes the specified axes to accelerate from a starting
velocity, slew at constant velocity, and decelerate to stop at the
specified absolute position, immediately returning control to the
program. The move axes are specified by axes and the number of axes
are defined by n_axes. The acceleration rate of all axes is equal to the
deceleration rate. move_all() starts the motion and waits for completion.
Both functions guarantee that motion begins on all axes at the same
sample time. Note that it is necessary to make connections according to
Section 3.12 on CN4 if these two functions are needed.
wait_for_done() waits for the motion to complete for all of the specified
axes.

The following code demos how to utilize these functions. This code
moves axis 0 and axis 4 to position 8000.0 and 120000.0 respectively. If
we choose velocities and acelerations that are propotional to the ratio of
distances, then the axes will arrive at their endpoints at the same time
(simultaneous motion).

#include “pci_8134.h”

int main()
{
I16 axes[2] = {0, 4};
F64

positions[2] = {8000.0, 12000.0},
str_vel[2]={0.0, 0.0},
max_vel[2]={4000.0, 6000.0},
Tacc[2]]={0.04, 0.06};

move_all(2, axes, positions, str_vel, max_vel, Tacc);

return ErrNoError;
}

Function Library • 81

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 start_move_all(I16 len, I16 *axes, F64 *pos, F64
*str_vel, F64 *max_vel, F64 *Tacc)

U16 move_all(I16 len, I16 *axes, F64 *pos, F64 *str_vel,
F64 *max_vel, F64 *Tacc)

U16 wait_for_all(I16 len, I16 *axes)

Visual Basic (Windows 95/NT)
start_move_all(ByVal len As Integer, ByRef axis As Integer

, ByRef pos As Double, ByRef str_vel As Double,
ByRef max_vel As Double, ByRef Tacc As Double) As
Integer

move_all(ByVal len As Integer, ByRef axis As Integer,
ByRef pos As Double, ByRef str_vel As Double, ByRef
max_vel As Double, ByRef Tacc As Double) As Integer

wait_for_all(ByVal n_axes As Integer, ByRef axis As
Integer) As Integer

@ Argument
n_axes: number of axes for simultaneous motion
*axes: specified axes number array designated to move.
*pos: specified position array in unit of pulse
*str_vel: starting velocity array in unit of pulse per

second
*max_vel: maximum velocity array in unit of pulse per

second
*Tacc: acceleration time array in unit of second

@ Return Code
 ERR_NoError
ERR_MoveError

82 • Function Library

6.9 Linear and Circular Interpolated Motion

@ Name
move_xy – Perform a 2-axes linear interpolated motion between X & Y
move_zu – Perform a 2-axes linear interpolated motion between Z & U
arc_xy – Perform a 2-axes circular interpolated motion between X & Y
arc_xy – Perform a 2-axes circular interpolated motion between Z & U

@ Description
move_xy, move_zu:

These two functions cause a linear interpolation motion between two
axes and wait for completion. The moving speed should be set before
performing these functions. Relations of speed between two axes are
given in Chapter 4.1.4.

arc_xy, arc_zu:
These two functions cause the axes to move along a circular arc and
wait for completion. The arc starts from origin and continues through the
specified angle. A positive value for angle produces clockwise arcs and
a negative value produces counter-clockwise arcs. The center of the arc
is specified by the parameters x_center and y_center.
set_arc_division() function specifies the maximum angle(in degrees)
between successive points along the arc. The default angle is 5
degrees. The moving speed should be set before performing these
functions.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 move_xy(I16 cardNo, F64 x, F64 y)
U16 move_zu(I16 cardNo, F64 z, F64 u)
U16 arc_xy(I16 cardNo, F64 x_center, F64 y_center, F64

angle)
U16 arc_zu(I16 cardNo, F64 z_center, F64 u_center, F64

angle)

Visual Basic (Windows 95/NT)
move_xy (ByVal cardno As Long, ByVal x As Double, ByVal y

As Double) As Integer
move_zu (ByVal cardno As Long, ByVal z As Double, ByVal u

As Double) As Integer
arc_xy (ByVal cardno As Long, ByVal x_center As Double,

ByVal y_center As Double, ByVal angle As Double) As
Integer

arc_zu (ByVal cardno As Long, ByVal z_center As Double,
ByVal u_center As Double, ByVal angle As Double) As
Integer

Function Library • 83

@ Argument
cardNo: card number designated to perform interpolating

function.
x, y, z, u: absolute target position of linear

interpolation motion
x_center, y_center, z_center, u_center: center position of

an arc
angle: specified angle for an arc

@ Return Code
 ERR_NoError

84 • Function Library

6.10 Interpolation Parameters Configuring

@ Name
map_axes – Configure the axis map for coordinated motion
set_move_speed – Set the vector velocity
set_move_accel – Set the vector acceleration time
set_arc_division – Set the interpolation arc segment length
arc_optimization – Enable/Disable optimum acceleration calculations for arcs
set_move_ratios – Set the axis resolution ratios

@ Description
map_axes:

This function initializes a group of axes for coordinated motion.
map_axes() must be called before any coordinated motion function is
used. For PCI-8134, coordinated motion is made only between two
axes. For example, if the z and u coordinates correspond to axes 2 and
3, the following code would be used to define the coordinate system:

int ax[2] = {2, 3};
map_axes(2, ax);
set_move_speed(10000.0); // Set vector velocity = 10000pps
set_move_accel(0.1); // Set vector accel. time = 0.1 sec

set_move_speed, set_move_accel:
The vector velocity and vector acceleration can be specified for
coordinated motion by this two functions. Codes at last samples
demonstrates how to utilize this two function associated with
map_axes().

set_arc_division:
This function specifies the maximum angle (in degrees) between
successive points along the arc. The default is 5 degrees.

arc_optimization:
This function enables (optimize = TRUE) or disable (optimize = FALSE)
the automatic calculation of the optimum acceleration for an arc. The
default state for arc optimization is enabled. When arc_optimization() is
enabled, circular intepolation is greatly improved by choosing the best
acceleration for the motion. The optimum acceleration is given by the
following formula:

Aopt = V2/d;

where Aopt , is the best acceleration, V is the set_move_speed()
velocity, d is the segment length. If the acceleration is higher than Aopt ,
the linear portions may be noticeable. If the acceleration is lower than
Aopt , the motion will be slowed during the arc and it will lose its

Function Library • 85

roundness. Both arc_xy() and arc_zu() automatically change the
acceleration to Aopt during the circular interpolated move.

set_move_ratio:
This function configures scale factors for the specified axis. Usually, the
axes only need scale factors if their mechanical resolutions are different.
For example, if the resolution of feedback sensors is two times
resolution of command pulse, then ratio = 2.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 map_axes(U16 n_axes, U16 *map_array)
U16 set_move_speed(F64 str_vel, F64 max_vel)
U16 set_move_accel(F64 Tacc)
U16 set_arc_division(F64 degrees)
U16 arc_optimization(U16 optimize)
U16 set_move_ratio(U16 axis, F64 ratio)

Visual Basic (Windows 95/NT)
map_axes (ByVal n_axes As Integer, map_array As Integer)

As Integer
set_move_speed (ByVal str_vel As Double, ByVal max_vel As

Double) As Integer
set_move_accel (ByVal accel As Double) As Integer
set_arc_division (ByVal axis As Integer, ByVal degrees As

Double) As Integer
arc_optimization (ByVal optimize As Long) As Integer
set_move_ratio (ByVal axis As Integer, ByVal ratio As

Double) As Integer

@ Argument
axis: axis number designated to configure
n_axes: number of axes for coordinated motion
*map_array: specified axes number array designated to

move.
str_vel: starting velocity in unit of pulse per second
max_vel: maximum velocity in unit of pulse per second
Tacc: specified acceleration time in unit of second
degrees: maximum angle between successive points along the

arc.
ratio: ratio of (feedback resolution)/(command resolution)

@ Return Code
 ERR_NoError

86 • Function Library

6.11 Home Return

@ Name
set_home_config – Set the configuration for home return.
home_move – Perform a home return move.

@ Description
set_home_config:

Configure the logic of origin switch and index signal needed for
home_move() function. If you need to stop the axis after EZ signal is
active(home_mode=1 or 2), you should keep placing ORG signal in the
ON status until the axis stop. If the pulse width of ORG signal is too
short to keep it at ON status till EZ goes ON, you should select the
org_latch as enable. The latched condition is cancelled by the next start
or by disabling the org_latch. Three home return modes are available.
Refer to Chapter4.1.5 for the setting of home_mode control.

home_move:
This function will cause the axis to perform a home return move
according to the setting of set_home_config() function. The direction of
moving is determined by the sign of velocity parameter(svel, mvel).
Since the stopping condition of this function is determined by
home_mode setting, user should take care to select the initial moving
direction. Or user should take care to handle the condition when limit
switch is touched or other conditions that is possible causing the axis to
stop. Executing v_stop() function during home_move() can also cause
the axis to stop.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 set_home_config(I16 axis, I16 home_mode, I16
org_logic, I16 org_latch, I16 EZ_logic)

U16 home_move(I16 axis, F64 svel, F64 mvel, F64 accel)

Visual Basic (Windows 95/NT)
set_home_config (ByVal axis As Long, ByVal home_mode As

Long, ByVal org_logic As Long, ByVal org_latch As
Long, ByVal EZ_logic As Long) As Integer

home_move (ByVal axis As Long, ByVal str_vel As Double,
ByVal max_vel As Double, ByVal accel As Double) As
Integer

@ Argument
axis: axis number designated to configure and perform home

returning
home_mode: stopping modes for home return.

home_mode=0, ORG active only.
home_mode=1, ORG active and then EZ active

Function Library • 87

to stop, high speed all the way.
home_mode=2, ORG active and then EZ active
to stop, high speed till ORG active then
low speed till EZ active.

org_logic: Action logic configuration for ORG signal
org_logic=0, active low; org_logic=1,
active high

org_latch: Latch state control for ORG signal
org_latch=0, don’t latch input;
org_latch=1, latch input.

EZ_logic: Action logic configuration for EZ signal
EZ_logic=0, active low; EZ_logic=1, active
high.

@ Return Code

 ERR_NoError

88 • Function Library

6.12 Manual Pulser Motion

@ Name
set_manu_iptmode – Set pulser input mode and operation mode
manu_move – Begin a manual pulser movement

@ Description
set_manu_iptmode:

Four types of pulse input modes can be available for pulser or hand
wheel. User can also move two axes simultaneously with one pulser by
selecting the operation mode to common mode. Or move the axes
independently by selecting the operation mode to independent mode.

manu_move:
Begin to move the axis according to manual pulser input as this
command is written. The maximum moving velocity is limited by mvel
parameter. Not until the v_stop() command is written won’t system end
the manual move mode.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 set_manu_iptmode(I16 axis, I16 ipt_mode, I16 op_mode)
U16 manu_move(I16 axis, F64 mvel)

Visual Basic (Windows 95/NT)
set_manu_iptmode (ByVal axis As Long, ByVal manu_iptmode

As Long, ByVal op_mode As Long) As Integer
manu_move (ByVal axis As Long, ByVal max_vel As Double) As

Integer

@ Argument
axis: axis number designated to start manual move
ipt_mode: setting of manual pulser input mode from PA and

PB pins
ipt_mode=0, 1X AB phase type pulse input.
ipt_mode=1, 2X AB phase type pulse input.
ipt_mode=2, 4X AB phase type pulse input.
ipt_mode=3, CW/CCW type pulse input.

op_mode: common or independent mode selection
op_mode=0, Independent for each axis
op_mode=1,PAX, PBX common for PAY, PBY

or PAZ, PBZ common for
PAU, PBU.

mvel: limitation for maximum velocity

@ Return Code

 ERR_NoError

Function Library • 89

6.13 Motion Status

@ Name
motion_done – Return the status when a motion is done

@ Description
motion_done:

Return the motion status of PCI-8134. position.
Definition of return value is as following:
Return value =

0 : the axis is busying.
1: a movement is finished
2: the axis stops at positive limit switch
3: the axis stops at negative limit switch
4: the axis stops at origin switch
5: the axis stops because the ALARM signal is active

The following code demonstrates how to utilize this function:

start_a_move(axis_x, pos1, svel, mvel, Tacc);
// Begin a trapezoidal velocity profile motion

while(!motion_done(axis_x)) // Wait for completion of
{

// start_a_move()
if(kbhit())
{

// Keyboard hit to escape the
 getch();

// WHILE loop
 exit(1);
}

}

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 motion_done(I16 axis)

Visual Basic (Windows 95/NT)
motion_done (ByVal axis As Integer) As Integer

@ Argument
axis: axis number of motion status

@ Return Code
 ERR_NoError

90 • Function Library

6.14 Servo Drive Interface

@ Name
set_alm_logic – Set alarm logic and alarm mode
set_inp_logic – Set In-Position logic and enable/disable
set_sd_logic – Set slow down point logic and enable/disable
set_erc_enable – Set ERC pin output enable/disable

@ Description
set_alm_logic:

Set the active logic of ALARM signal input from servo driver. Two
reacting modes are available when ALARM signal is active.

set_inp_logic:
Set the active logic of In-Position signal input from servo driver. Users
can select whether they want to enable this function. Default state is
disabled.

set_sd_logic:
Set the active logic and latch control of SD signal input from mechanical
system. Users can select whether they want to enable this function.
Default state is disabled.

set_erc_enable:
You can set ERC pin output enable/disable by this function. Default
state is enabled.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 set_alm_logic(I16 axis, I16 alm_logic, I16 alm_mode)
U16 set_inp_logic(I16 axis, I16 inp_logic, I16 inp_enable)
U16 set_sd_logic(I16 axis, I16 sd_logic, I16 sd_latch, I16

sd_enable)
U16 set_erc_enable(I16 axis, I16 erc_enable)

Visual Basic (Windows 95/NT)
set_alm_logic (ByVal axis As Long, ByVal alm_logic As

Long, ByVal alm_mode As Long) As Integer
set_inp_logic (ByVal axis As Long, ByVal inp_logic As

Long, ByVal inp_enable As Long) As Integer
set_sd_logic (ByVal axis As Long, ByVal sd_logic As Long,

, ByVal sd_latch As Long, ByVal sd_enable As Long)
As Integer

set_erc_enable(ByVal axis As Integer, ByVal erc_enable As
Long) As Integer

Function Library • 91

@ Argument
axis: axis number designated to configure
alm_logic: setting of active logic for ALARM signal

alm_logic=0, active LOW.
alm_logic=1, active HIGH.

inp_logic: setting of active logic for INP signal
inp_logic=0, active LOW.
inp_logic=1, active HIGH.

sd_logic: setting of active logic for SD signal
sd_logic=0, active LOW.
sd_logic=1, active HIGH.

sd_latch: setting of latch control for SD signal
sd_logic=0, do not latch.
sd_logic=1, latch.

alm_mode: reacting modes when receiving ALARM signal.
alm_mode=0, motor immediately stops.
alm_mode=1, motor decelerates then stops.

inp_enable: INP function enable/disable
inp_enable=0, Disabled
inp_enable=1, Enabled

sd_enable: Slow down point function enable/disable
sd_enable=0, Disabled
sd_enable=1, Enabled

erc_enable: ERC pin output enable/disable
erc_enable=0, Disabled
erc_enable=1, Enabled

@ Return Code

 ERR_NoError

92 • Function Library

6.15 I/O Control and Monitoring

@ Name
_8134_Set_SVON – Set state of general purpose output pin
get_io_status – Get all the I/O status of PCI-8134

@ Description
_8134_Set_SVON:

Set the High/Low output state of general purpose output pin SVON.
get_io_status:

Get all the I/O status for each axis. The definition for each bit is as
following:

Bit Name Description
0 +EL Positive Limit Switch
1 -EL Negative Limit Switch
2 +SD Positive Slow Down Point
3 -SD Negative Slow Down Point
4 ORG Origin Switch
5 EZ Index signal
6 ALM Alarm Signal
7 SVON SVON of PCL5023 pin output
8 RDY RDY pin input
9 INT Interrupt status
10 ERC ERC pin output
11 INP In-Position signal input

@ Syntax
C/C++ (DOS)

U16 _8134_Set_SVON(I16 axis, I16 on_off)
U16 get_io_status(I16 axis, U16 *io_status)

C/C++ (Windows 95/NT)
U16 W_8134_Set_SVON(I16 axis, I16 on_off)
U16 get_io_status(I16 axis, U16 *io_status)

Visual Basic (Windows 95/NT)
W_8134_Set_SVON (ByVal axis As Long, ByVal on_off As

Long) As Integer
get_io_status (ByVal axis As Integer, io_sts As Integer)

As Integer

Function Library • 93

@ Argument
axis: axis number for I/O control and monitoring
on_off: setting for SVON pin digital output

on_off=0, SVON is LOW.
on_off=1, SVON is HIGH.

*io_status: I/O status word. Where “1’ is ON and “0” is
OFF. ON/OFF state is read based on the
corresponding set logic.

@ Return Code

 ERR_NoError

94 • Function Library

6.16 Position Control

@ Name
set_position – Set the actual position.
get_position – Get the actual position.
set_command – Set the current command position.
get_position – Get the current command position.

@ Description
set_position()

changes the current actual position to the specified position.
get_position()

reads the current actual position. Note that when feedback signals is not
available in the system, thus external encoder feedback is Disabled in
set_cnt_src() function, the value gotten from this function is command
position.

set_command()
changes the command position to the specified command position.

get_command()
reads the current command position.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 set_position(I16 axis, F64 pos)
U16 get_position(I16 axis, F64 *pos)
U16 set_command(I16 axis, F64 pos)
U16 get_command(I16 axis, F64 *pos)

Visual Basic (Windows 95/NT)
get_position (ByVal axis As Integer, pos As Double) As

Integer
set_position (ByVal axis As Integer, ByVal pos As Double)

As Integer
get_command (ByVal axis As Integer, pos As Double) As

Integer
set_command (ByVal axis As Integer, ByVal pos As Double)

As Integer

@ Argument
axis: axis number designated to set and get position.
pos: actual position or command position

@ Return Code
 ERR_NoError

Function Library • 95

6.17 Interrupt Control

@ Name
_8134_Set_INT_ENABLE – Set interrupt enable
W_8134_INT_Enable – Set interrupt enable
W_8134_INT_Disable – Set interrupt disable
W_8134_Set_INT_Control – Set interrupt event handle
set_int_factor – Set interrupt generating factors
get_int_axis – Get the axis which generates interrupt
get_int_status – Get the interrupting status of axis

@ Description
_8134_Set_INT_ENABLE:

This function is used to enable interrupt generating to host PC. .(This
function just support DOS only.)

W_8134_INT_Enable:
This function is used to enable interrupt generating to host PC.(This
function just support Window 95 and Window NT only.)

W_8134_INT_Disable:
This function is used to disable interrupt generating to host PC.(This
function just support Window 95 and Window NT only.)

W_8134_Set_INT_Control :
This function is used to assign the window INT event.(This function just
support Window 95 and Window NT only.)

set_int_factor:
This function allows users to select factors to initiate the INT signal.
PCI-8134 can generate INT signal to host PC by setting the relative bit
as 1. The definition for each bit is as following:

Bit Interrupt Factor
0 Stop with the EL signal
1 Stop with the SD signal
2 Stop with the ALM signal
3 Stop with the STP signal
4 Should be set to 0
5 Completion of home return
6 Completion of preset movement

7 Completion of interpolating motion for two axes: (X
& Y) or (Z & U)

8~12 ×(should be set to 0)
13 when v_stop() function stop the axis
14 EA/EB, PA/PB encoder input error
15 start with STA signal
16 Completion of acceleration

96 • Function Library

17 Start of deceleration
18~22 Should be Set to 0

23 RDY active (AP3 of PCL5023 change from 1 to 0)
24~31 Should be set to 0

Note: Bit 14: The interrupt is generated when pins EA and EB, or PA
and PB change simultaneously. It means there has an encoder input
error.

get_int_axis:
This function allows user to identify which axis generates the INT signal
to host PC. (This function is for DOS only)

get_int_status:
This function allows user to identify what kinds of interrupt is generated.
After user gets this value, the status register will be cleared to 0. The
return value is a 32 bits unsigned integer and the definition for each bit
is as following:

Bit Interrupt Type
0 Stop with the +EL signal
1 Stop with the –EL signal
2 Stop with the +SD signal
3 Stop with the –SD signal
4 Stop with the ALM signal
5 Stop with the STP signal
6 Always 0
7 Always 0
8 Stop with v_stop() command
9 Stop with home return completed
10 Always 0
11 Stop with preset movement completed
12 Stop with EA/EB input error
13 Always 0
14 Stop with PA/PB input error
15 Start with STA signal
16 Acceleration Completed
17 Deceleration Started

18~22 Always 0
23 RDY active(AP3 of PCL5023 change from 1 to 0)

24~31 Always 0

@ Syntax
C/C++ (DOS)

U16 _8134_Set_INT_ENABLE(U16 cardNo, U16 intFlag)

Function Library • 97

U16 set_int_factor(U16 axis, U32 int_factor)
U16 get_int_axis(U16 *int_axis)
U16 get_int_status(U16 axis, U32 *int_status)

C/C++ (Windows 95/NT)
U16 W_8134_INT_Enable (I16 cardNo, HANDLE *phEvent)
U16 W_8134_INT_Disable (I16 cardNo)
W_8134_Set_INT_Control(U16 cardNo, U16 intFlag)
U16 set_int_factor(U16 axis, U32 int_factor)
U16 get_int_status(I16 axis, U32 *int_status)

Visual Basic (Windows 95/NT)
W_8134_INT_Enable (ByVal cardNo As Long, phEvent As Long)
W_8134_INT_Disable (ByVal cardNo As Long) As Integer
W_8134_Set_INT_Control (ByVal cardno As Integer, ByVal

intFlag As Integer)
set_int_factor (ByVal axis As Integer, ByVal int_factor

As Long) As Integer
get_int_status (ByVal axis As Long, int_status As Long)

As Integer

@ Argument
cardNo: card number 0,1,2,3…
axis: axis number 0,1,2,3,4…
intFlag: int flag, 0 or 1
phEvent: event or event array for interrupt axis (Windows)
int_factor: interrupt factor, refer to previous interrupt

factor table
int_axis: interrupt axis number (the return value)
int_status: interrupt factor (the return value), refer to

previous interrupt type table

@ Return Code

 ERR_NoError

Connection Example • 99

7

Connection Example

This chapter shows some connection examples between PCI-8134 and
servo drivers and stepping drivers.

7.1 General Description of Wiring

Figure 7.1 is a general description of all the connectors of PCI-8134. Only
connection of one of 4 axes is shown.

CN1: Receives +24V power from external power supply.
CN2 :Main connection between PCI-8134 and pulse input servo driver

or stepping driver.
CN3: Receive pulse command from manual pulser.
CN4: Connector for simultaneously start or stop multiple PCI-8134

cards.

Figure 7.2 shows how to integrate PCI-8134 with a physical system.

100 • Connection Example

Figure 7.1 General Description of Wiring

Description of PCI-8134 Indexer Pinouts

To other
PCI_8134 Cards

From Manual
Pulse Generator

From external
Power Supply

To Axis
1 ~ 4

PCI_8134
Terminal Block

3

4

5

6

98

99

7

8

9

10

13

14

15

16

17

18

20

37

38

39

40

41

OUT1 +

OUT1 -

DIR +

DIR -

EX GND

EX +24V

SVON 1

ERC 1

ALM 1

INP 1

EA1 +

EA1 -

EB1 +

EB1 -

EZ1 +

EZ1 -

EX GND

PEL1

MEL1

PSD1

MSD1

ORG1

RDY 1

EX GND

11

12

EX +5V19

CN 2
AXIS

CN 3
MPG

CN 4
START

CN 1
POWER

24 V
GND

P A
P B

GND

STP
STA
STP
STA

1

2

3

4

Machine
DI / DO

Pulse
Output

Pulse
Input

Machine
DI / DO

Pulse
Output

Pulse
Input

Driver
DI / DO

Machine
DI / DO

Pulse
Output

Pulse
Input

Driver
DI / DO

Machine
DI / DO

Pulse
Output

Pulse
Input

Driver
DI / DO

Driver
DI / DO

Only Axis 1
is indicated.

Connection Example • 101

Figure 7.2 System Integration with PCI-8134

 Wiring of PCI-8134 with Servo Driver

3
4
5
6
98
99
7
8
9
10

13
14
15
16
17
18

20
37
38
39
40
41

OUT1 +
OUT1 -
DIR +
DIR -

EX GND
EX +24V
SVON 1
ERC 1
ALM 1
INP 1

EA1 +
EA1 -
EB1 +
EB1 -
EZ1 +
EZ1 -

EX GND
PEL1
MEL1
PSD1
MSD1
ORG1

RDY 1
EX GND

11
12

EX +5V19

CN 2
AXIS

CN 1
POWER

24 V
GND

1
Machine
DI / DO

Pulse
Output

Pulse
Input

Driver
DI / DO

2

3

4

Motion
Creator

8134.dll

Win95/Win98/WinNT

ME

Linear Encoder with EA/EB/EZ Output

Driver with
Pulse Input

1

2

3

A

B

1

2

3

A

B

PCI_8134 to Driver

Encoder to PCI_8134

PCI_8134 to Machine I/O

Rotary Encoder

Linear Encoder

102 • Connection Example

7.2 Connection Example with Servo Driver

In this section, we use Panasonic Servo Driver as an example to show
how to connect it with PCI-8134. Figure 7.3 show the wiring.

Note that:
1. For convenience’ sake , the drawing shows connections for one axis

only.
2. Default pulse output mode is OUT/DIR mode; default input mode is 4X

AB phase mode. Anyway, user can set to other mode by software
function.

3. Since most general purpose servomotor driver can operates in Torque
Mode; Velocity Mode; Position mode. For linking with PCI-8134, user
should set the operating mode to Position Mode. By setting servo driver
to this mode, user can use PCI-8134 to perform either Position
Control or Velocity Control.

4. The Deviation Counter Clear input for Panasonic Driver is line drive
type where ERC output of PCI-8134 is open collector type. So a little
circuit is required for interfacing.

Figure 7.4 Interface circuit between ERC and (CL+, CL-)

EX+5V

26LS32

Inside PCI-8134 Inside Panasonic Driver

CL+

390 2.2K

2.2K

CL-

ERC

EXGND

Connection Example • 103

Figure 7.3 Connection of PCI-8134 with Panasonic Driver

Wiring of PCI-8134 with Panasonic MSD

3
4
5
6

98
99
7
8
9

10

13
14
15
16
17
18

20
37
38
39
40
41

OUT1 +
OUT1 -
DIR +
DIR -

EX GND
EX +24V
SVON 1
ERC 1
ALM 1
INP 1

EA1 +
EA1 -
EB1 +
EB1 -
EZ1 +
EZ1 -

EX GND
PEL1
MEL1
PSD1
MSD1
ORG1

RDY 1
EX GND

11
12

EX +5V19

PCI_8134 Axis 1 Servo Driver

Panasonic
MSC CNI/F
(50-200 W)

Table

MEL ORG MSD PSD PEL

E

M

6
5
8
7

PULS +
PULS -
SIGN +
SIGN -

28
11
12

COM -
COM +

SRV-ON

26
25

ALM
COIN

27SRDY
3

19
GND
OA +

20OA -
21
22

OB +
OB -

1OZ +
2OZ -

13CL

Product Warranty/Service • 105

Product Warranty/Service

Seller warrants that equipment furnished will be free form defects in
material and workmanship for a period of one year from the confirmed date
of purchase of the original buyer and that upon written notice of any such
defect, Seller will, at its option, repair or replace the defective item under
the terms of this warranty, subject to the provisions and specific exclusions
listed herein.

This warranty shall not apply to equipment that has been previously
repaired or altered outside our plant in any way as to, in the judgment of the
manufacturer, affect its reliability. Nor will it apply if the equipment has been
used in a manner exceeding its specifications or if the serial number has
been removed.

Seller does not assume any liability for consequential damages as a result
from our products uses, and in any event our liability shall not exceed the
original selling price of the equipment.

The equipment warranty shall constitute the sole and exclusive remedy of
any Buyer of Seller equipment and the sole and exclusive liability of the
Seller, its successors or assigns, in connection with equipment purchased
and in lieu of all other warranties expressed implied or statutory, including,
but not limited to, any implied warranty of merchant ability or fitness and all
other obligations or liabilities of seller, its successors or assigns.

The equipment must be returned postage-prepaid. Package it securely and
insure it. You will be charged for parts and labor if you lack proof of date of
purchase, or if the warranty period is expired.

