PCI-8134

4 Axes Servo / Stepper
Motion Control Card

Sample Application / ISaGRAF Library
Programming Guide

@Copyright 1999 ADLink Technology Inc.
All Rights Reserved.

Manual Rev. 1.00: January 25, 2000

The information in this document is subject to change without prior notice in
order to improve reliability, design and function and does not represent a
commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special,
incidental, or consequential damages arising out of the use or inability to use
the product or documentation, even if advised of the possibility of such
damages.

This document contains proprietary information protected by copyright. All
rights are reserved. No part of this manual may ke reproduced by any
mechanical, electronic, or other means in any form without prior written
permission of the manufacturer.

Trademarks

NuDAQ, PCI-8134 are registered trademarks of ADLink Technology Inc, MS-
DOS & Windows 95, Windows 98, Windows NT, Visual Baisc, Visual C++ are
registered trademarks of Microsoft Corporation, Borland C++ is a registered
trademark of Borland International, Inc. Other product names mentioned
herein are used for identification purposes only and may be trademarks and/or
registered trademarks of their respective companies.

Getting service from ADLink

Customer Satisfaction is always the most important thing for ADLink
Tech Inc. If you need any help or service, please contact us and get it.

ADLink Technology Inc.

Web Site http://www.adlink.com.tw
Sales & Service |service@adlink.com.tw
Technical NuDAQ nudaq@adlink.com.tw
Support NuDAM nudam@adlink.com.tw
NulPC nuipc@adlink.com.tw
NuPRO nupro@adlink.com.tw
Software sw@adlink.com.tw
AMB amb@adlink.com.tw
TEL +886-2-82265877 FAX [+886-2-82265717
Address 9F, No. 166, Jian Yi Road, Chungho City, Taipei, 235 Taiwan, R.O.C.

Please inform or FAX us of your detailed information for a prompt,
satisfactory and constant service.

Detailed Company Information

Company/Organization

Contact Person

E-mail Address

Address
Country
TEL [FAX |
Web Site
Questions
Product Model
Environment to Use JOS :
OComputer Brand :
OM/B : OCPU:
OChipset : [OBios :
[Video Card :
[ONetwork Interface Card :
OOther :

Challenge Description

Suggestions for ADLink

Contents

INTRODUCTION .. 1
CHAPTER ONE: QUICK-REFERENCE GUIDE......... 3
Example 2-1: PCI-8134 Configurationcoooiviiiiiiiiiii e, 3
Example 2-2: Use Configuration Utilityc.ccoveiiiiiiiiin e, 3
Example 2-3: Simple Function Testccovviiiiiiiiiiiiec e, 3
Example 2-4: Motion Done Status & I/O Status Monitoring........... 3
Example 2-5: Interrupt Handling under Windows 95/98 by Visual
BasiC 5.0 i 3
Example 2-6: Interrupt Handling under Windows 95/98 by Visual
Gt B0 i 4
Example 2-7: Interrupt Handling under DOS with C...................... 4
Example 2-8: Position Control by various types of Velocity
Profiles. ..o 4
Example 2-9: HOMING roUtinesS........coooviiiiiiiiii e 4
Example 2-10: Multiple Axes Synchronized Motion...................... 4
Example 2-11: Linear and Circular Interpolation........................... 5
EX@MPIE 2-12: JOQ .uoiveiiiei ittt 5
Example 2-13: Velocity Change On The Fly........ccooeiiiiiniiiinnennnn. 5
CHAPTER TWO: EXAMPLES ... 7
Example 2-1: PCI-8134 Initialization.........c.coovviveiiieiiniiiic e, 7
211 Use 8134.INI t0 CONfiQUIE ..o 7
212 An Example to Load INI file and Configure PCI-8134.......... 9
213 Programming under Windows NTccocooviinineinenncene. 10
Example 2-2: Use Configuration Utilitycc.ccovviiiiiiiiinee, 11

Contents - i

221
222

Example 2-3:

231

Example 2-4;

24.1
24.2
243
24.4

Example 2-5:

Config.eXe ULHITY .o 11
Create an Configuration Interface.......cccocvvevvevciesccineennn, 12
Simple Function Testcooiiiiiiiiiiiiceee 13
Simple FUNCLION TeSt ..o 13
Motion Done Status and I/O Monitoring 17
Program organizationccccccoeveevenicieseieseseeieses e 17
Reading Motion Done Statusccccceeeieveiveneeie e 19
Reading /O Statusccccvveiiiiieese e 19
Relative Motion BUttONcoceeiiieierrecene s 20

Interrupt Handling under Windows 95/98 by Visual
BaSIiC5.0 .o

25.1 INTEITUPT EVENT ..ot

252 Create an Event

253 Create a Thread

254 Use WIN32 APLin Visual BaSiCccocvveennnicienreecneneieenes 22

255 A Complete EXamMPIe ... 23
Example 2-6: Interrupt Handling under Windows 95/98 by Visual

Gt B0 i 26

2.6.1 Use PCI-8134 function library in Visual C++....................... 26

2.6.2 Create a Dialog-based MFC projectccocevvvvveenenenennnene. 26
Example 2-7: Interrupt Handling under DOS...........cccoiiiiiiiiennnennn. 29

271 A Skeleton Program for Interrupt Handlingc.cceeene. 29

2.7.2 Other Empty ISR fUNCLIONS ..o 31
Example 2-8: Position Control by various types of Velocity

Profiles. ... 31

2.8.1 VeloCity Profil€ ... 31

2.8.2 Various types of Velocity Profile for Position Control.....32
Example 2-9: HOMIiNg roUtiNesS.........coovviiiiiiiiiieie e

29.1 Basic Homing Styles.............

2.9.2 Advanced Homing Styles

293 Implement HOming Programccoeceorvneenneeienneenenenes 40
Example 2-10: Multiple Axes Synchronized Motion..................... 45

2.10.1 How to use start_move_all()....cccomenrrriinnreererreeeeee 45

2.10.2 Implement Multiple Axes Synchronized Motion................ 45

ii - Contents

Example 2-11: Linear and Circular Interpolation.......................... 48

2.11.1 How to use Linear Interpolation Functionsc.cccccceeueee. 48
2.11.2 How to use Circular Interpolation Functions...........cccc....... 49
2.11.3 Coordinate System in Microsoft Windows®...................... 49
2.11.4 DC (Device Context).........
2115 Animation ...
2.11.6 Implement 2-D example...

EX@MPIE 2-12: JOQ .iiviiiiii it 59
2.12.1 Create a Thread for JOgQingccveevreieiinereeesre e 60
2.12.2 Create a Scope for Display JOGQingccccovevrenreeninennenne 62

Example 2-13: Velocity Change On The Fly........ccooeeiiiiiiiiinnennn. 63
2.13.1 Velocity Change on the fly ... 63
2.13.2 VelOCity ValUE.....oooueeiiiceeeceriee e 63
2.13.3 Velocity Change on the Fly Demo results ... 63
2.13.4 Limitation of Velocity Change onthe Flyccccocovvvevinnens 66
2135 REPEALMOUE ... 67

CHAPTER THREE: THE ISAGRAF LIBRARY FOR

PCI-8134 ... 69
3.1 Installation of PCI-8134 ISaGRAF Librarycccocccovviinnennnnn. 69
3.1.1 PCI-8134 1ISaGRAF Library Installationccccccvvvevveeneee. 69
3.1.2 PCI-8134 ISaGRAF Library Un-installation.............cccueueueee. 70
3.2 Restore PCI-8134 ISaGRAF Library C Function Objects in

the ISaGRAF Workbench ... 70

321 With ADLink’ s “PCI-8134 ISaGRAF C function Object”
QISKEIEES .. 70
3.2.2 With “ADLink All-In-One Compact DiSC” :......cccoveerirernnne. 70
3.3 Restore PCI-8134 ISaGRAF Sample Programs...................... 71

3.3.1 With ADLink’ s “PCI-8134 ISaGRAF Sample Program”
AISKEILES ... 71
332 With “ADLink All-In-One Compact DiSC”:......cccccovinrernnne 71
3.4 The definition of PCIS-ISG 8134 ISaGRAF Library 72
34.1 Initialization fuNCtioN group ..o e 72
3.4.2 Pulse Input /Output Configuration function group........... 74

Contents - iii

3.4.3
34.4
345
3.4.6
3.4.7
3.4.8
3.4.9
3.4.10
3.4.11
3.4.12
3.4.13
3.4.14

Continuously Motion Move function groupcccccceveeenne. 75
Trapezoidal Motion Mode function groupc.ccceveveeeienene 76
S-Curve Profile Motion function groupc.cccceeveievevneeneen 78

Linear and Circular Interpolated Motion function group.80
Interpolation Parameters Configuring function group82
Interpolation Parameters Configuring function group 83

Manual Pulser Motion function groupc.cccceeveeeenreenene. 84
Motion Status funCtion groupcceeeeneenennenee e 85
Servo Drive Interface function groupcccccceeereereecneeene 86
I/O Control and Monitoring function groupccceceeeeeeencee 88
Position Control function groupcccceeeevennieneeeseeeee e 89
Interrupt Control funNction groupoccceeeeeeveeenercrcreeene 90

3.5 The mapping between PCIS-8134 NT DLL function and PCI-

8134 ISaGRAF Librarycccooevevieiiiiiiiiicceeeees 92

iv- Contents

Introduction

In addition to the extensive library of standard functions, ADLink provides an
Sample Disk containing a variety of standard applications that you can use as
a starting point for applications development. This manual is a companion to
that disk.

This document is divided into two main sections. The first is a quick reference
that groups the programs into main categories and then lists and describes
the individual programs on the disk that fall into that category. The second
section is a printout of the sample code files. A cross-reference table of all the
files is located at the beginning of this section.

The various application function described here can span a wide variety of
customer applications. Look for examples that may be useful to your particular
motion control application.

The individual files show internals of the features work. Use these examples
as “starter" code to integrate into your development. They will also help you
gain an understanding of how the motion card works and how it implements
the motion functions.

You can also use these functions to debug individual features or function s
and to ensure the motion control subsystem is functioning properly. This can
help isolate problems to specific subsystem level.

Introduction - 1

Chapter One: Quick-Reference
Guide

Example 2-1: PCI-8134 Configuration

Demonstrate how to configure axes by 8134.ini and how to create an
application project in Visual Basic programming environment.

Example 2-2: Use Configuration Utility

Demonstrate how to call the configuration utility by shell command in
user’ s program.

Example 2-3: Simple Function Test

Demonstrate how to make a simple test by using continuous
movement function and by reading position counter feedback.

Example 2-4: Motion Done Status & I/O Status
Monitoring

Demonstrate how to read the motion done status and I/O status of
an axis. Use the color of text box control item as an indicator to
display each status.

Example 2-5: Interrupt Handling under Windows
95/98 by Visual Basic 5.0

Demonstrate how to write a thread to capture the interrupt events
triggered by hardware interrupt in Visual Basic 5.0.

Quick-Peference Guide - 3

Example 2-6: Interrupt Handling under Windows
95/98 by Visual C++ 6.0

Demonstrate how to write a thread to capture the interrupt event
triggered by hardware interrupt in Visual C++ MFC.

Example 2-7: Interrupt Handling under DOS with C

Demonstrate how to write an ISR to capture the interrupt triggered
by hardware in DOS environment.

Example 2-8: Position Control by various types of
Velocity Profiles

Demonstrate how to write a program for a particular type of position
control by choosing a correct function.

Example 2-9: Homing routines

Demonstrate 6 types of homing routines and explain each type’s
hardware setup. These are as follows:

1) Home Mode 0 (provide by PCI-8134 function library)
2) Home Mode 1 (provide by PCI-8134 function library)
3) Home Mode 2 (provide by PCI-8134 function library)
4) Two-stage homing

5) Midpoint Homing between positive and negative limits
6) Auto Home search

Example 2-10: Multiple Axes Synchronized Motion

Demonstrates how to write a program for multiple axes synchronized
motion.

4 . Quick-Reference Guide

Example 2-11: Linear and Circular Interpolation

Demonstrate how to use the interpolation function ses and how to
visualize the 2D motion by creating a dynamic scope. The DC
drawing concept, coordinate transformation, and animation method
are introduced here.

Example 2-12: Jog

Demonstrate how to use software method to make a jogging function.
The jogging path is displayed in a dynamic scope.

Example 2-13: Velocity Change On The Fly

Demonstrate how to use velocity change function and how to display
velocity and position data graphically. The position profile and
velocity profile are displayed by a software dynamic scope. User can
use other motion types and see the differences from each type of
position control profiles.

The repeat mode by software is introduced here, too.

Quick-Peference Guide - 5

Chapter Two: Examples

Example 2-1: PCI-8134 Initialization

2.1.1 Use 8134.INI to Configure

We provide a very convenient way to modify your configuration from
a Windows®standard INI file. You can edit this file directly by any
text editor or use Config.exe from Appendix C to configure this file.
There are several functions and modules need to be added in your
VB project before programming.

Please check:

1. PCI-8134 card has been inserted in one PCI slot properly

2. Make sure that 8134.DLL does exist in your Windows system
directory.

3. Add two files in your project: Initial. BAS & Def8134.BAS from
Appendix A and B

Note: Initial. BAS provides several functions to deal with 8134.INI and
Def8134.BAS contents all 8134-function library declarations.

After Add these two files, your project window in VB IDE is like as
follows

Project - Frojectl B
==

E‘@ Projectl {Projectl vbp)
- t:l Forms

«& Tnitial ﬂmual hss}

Examples - 7

These two files are very important for 8134 application programming.
The source codes of these two files are listed in appendix A & B

An example of 8134.INlI files is as follows:

[Axis 0]
PLS_OUTMODE= 0
PLS_| PTMODE= 0
CNT_SRC= 0
RATI O= 1
HOME_MODE= 0
ORG LOGI C= 1
ORG_LATCH= 0
EZ_LOG C= 0

| PT_MODE= 0
OP_MODE= 0
ALM LOGI C= 0
ALM_MODE= 0
INP_LOGI C= 0

| NP_ENABLE= 0
SD LOGI C= 1
SD_LATCH= 1
SD_ENABLE= 1
ERC_ENABLE= 0
| NT_FACTOR= 0

[Axis 1]
PLS_OUTMODE= 0
PLS_| PTMODE= 2
CNT_SRC= 1
RATIO= 2.5
HOME_MODE= 0
ORG LOGI C= 1
ORG_LATCH= 0
EZ LOGI C= 1

| PT_MODE= 0
OP_MODE= 0
ALM LOGI C= 0
ALM_MODE= 0
INP_LOGI C= 0

| NP_ENABLE= 0
SD LOGI C= 1
SD_LATCH= 1
SD_ENABLE= 0
ERC_ENABLE= 0
| NT_FACTOR= 8642799

[Axi s2]

8 - Examples

2.1.2 An Example to Load INI file and Configure PCI-8134

Example 2-1: Step by Step
1) Open a new project.
2) Add two module files: Def8134.BAS and Initial. BAS
3) Write Form_Load Procedure
4) Add the necessary Form variables
5) Add two text boxes and one command button to show IRQ and
base address
6) Run it

When we press the show button, it will display IRQ number and
Base address on text box. This form is like as follows:

E ':-tE'p |:|

RO IN"'I"E" Baze ||N.-".-'1'-. Sh.:.wl

In Step 3) Form_Load Procedure
Private Sub Form Load()

Initialize 8134
If WB8134 Initial(Total Card, MyPCl) Then
MsgBox "You Don't Have any PCl-8134 Card!"
End
End If

"Load INT file and Configure Al Setting
I f LoadConfigFile(Axis, Total Card) Then
MsgBox "You Must Edit an Config File First!"

El se
ConfigAll Axis, Total Card
End | f
End Sub

In Step 4) Add general declaration variables in the Form

Dim Total Card As | nteger
Dim MPCI As PCl _I NFO
Di m Axi s(0 To 4*MAX_PClI _CARDS - 1) As AxisConfig

Examples - 9

In Step 5) Add some additional objects
Add two text boxes and one button to show IRQ and Base Address

Information.

Object Type Attribute Value

Command Button Nam.e Commandi
Caption Show

Text Box Name T_IRQ
Text N/A

Text Box Name T_Base
Text N/A

The codes in Command1 button:

Private Sub Commandl Cli ck()
Di m Car dNo, i rgNo, baseAddr as i nteger

Car dNo=0
' Show | RQ and Base Address
W 8134_Cet _| RQ_Channel CardNo, irgNo
W 8134 _Get _Base_Addr CardNo, baseAddr
T_IRQ Text = Str(irgNo)
T _Base. Text = Hex(baseAddr)

End Sub

After all steps above, run it and you will see the results. If it tells that
you must edit a configuration file first, you should run the config.exe
in the sample disk to create a 8134.INl file.

2.1.3 Programming under Windows NT

There is a little difference when you want to use PCI-8134 library
under NT. The Initializing function parameter is different as follows:
I nt i=0;
Ul6 Total _Car d=0;
For (i =0; i <MAX_PCl _CARDS; i ++) {
If(W8134_ lnitial(i) == 0)
Tot al _Car d++;

You can get the card amounts in Total_Card variable.

Finally, you must close PCI-8134 resources when you exit the
program. The codes are as follows:

int i=0;

for(i=0;i<Total _Card;i++) WZ8134_Cl ose(i);
That’ s all the differences between Win95 and NT programming

10 - Examples

Example 2-2: Use Configuration Utility

221

Sometimes, user needs a configuration interface in his program. We
provide a utility — Config.exe to help user to make it. The config.exe

can be loaded by “Shell” command in user' s program. Use this

program to create or modify 8134.INI and reconfigure PCI-8134

according to this file in user’ s program.

Config.exe Utility

The config.exe file is at Appendix C and it looks like as follows:

Select Card il

IRE [5 Base IECO0

Select Awis S 'AxisU il

Pulse 11O Setting Servo Motor Signal Interrupt
Type
Pulze Output ID t/Dir Mad ,I : ctive L =
Mode ULV 002 Alarm Logic I Clygston I EndLink
;Lglzzlnput |1>< 4B Phase - I Alhibods Ilmmde. Stop vI :: iEM
Feedback: |ntermal Pul =) ctive L = [s1p
S Inerna ulze I INP Logis I chive Law I o
FeedB/Cmd ﬁ_ Disabled = [~ Preset
i INF Erabl
Fiatio ik ™ Interpal.
. : ™ Wstop
Home Singal Slow Down Singal =l
— [~ STA start
Haome Mode IHDmB Mods 0 jv 50 Logic I"ﬁ‘d'\"'e High jv [&ccEnd
— [DecStart
ORG Logic IActlve High v I 5D Latch IUSE Latch vI ~ Ry
0BG Latch IDon't Latch v I 5D Erable iEnabIed j
Ezloge fotelow FI - ERCEnabe [Pt =]
;ulzef Input [1X AR Phase v - —
ode ave oa .
Config Config AdLink

Pler Output Ilndependent - I
Mode

Examples - 11

2.2.2 Create an Configuration Interface

Example 2-2: Step by Step
1) Open a new project.
2) Add two module files: Def8134.BAS and Initial. BAS
3) Write Form_Load Procedure
4) Add the necessary Form variables
5) Add two command buttons and one frame
6) Write command button procedure
7) Run it

When user press “Edit Config” button, the config.exe will be started.
After configure all parameters of each axis, press “Save Config”
button in config.exe to save 8134.INI. Finally, press “ReConfig”
button in this program to update new parameters from 8134.INI file.

Edit Config |

In Step 3) & 4) Please refer to 2.1.2
In Step 5) Add some additional objects

Object Type Attribute Value

Command Button Nam.e C—_ShINI _
Caption Edit Config

Command Button Nam.e C_RCfg.
Caption ReConfig

In Step 6) The codes for these two buttons are as follows:

Private Sub C _RCfg_Click()
LoadConfigFile Axis, Total Card
ConfigAll Axis, Total Card

End Sub

Private Sub C_ShI N _Click()
Shell App.Path & "\" & "Config.exe", vbNormal Focus
End Sub

12 - Examples

Notice that there is a Shell function. It loads an executable file in
your application’ s path. So you must copy config.exe file to a correct
location or your program won’ t find this file to load.

The source code of config.exe is in Appendix C

Example 2-3: Simple Function Test

23.1

In this section, we will show how to combine the stuffs we have
learned in previous sections and add some new features in the
program. For example: display position, set continuous movement
parameters, and stop button. You can simulate this movement by
setting feedback source as command input(Internal Pulse type)
instead of connecting any real encoder.

Simple Function Test

When you press forward or backward button, you will see the
number increased or decreased in current position text box. You can
press stop button at any moment when you want to stop motion.

Example 2-3: Step by Step

1) Open a new project.

2) Add two module files: Def8134.BAS and Initial. BAS
3) Write Form_Load Procedure

4) Add the necessary Form variables

5) Add buttons and text Boxes

6) Write forward/backward procedure

7) Write stop button procedure

8) Create a timer to get position

9) Run it

When user press forward or backward button, the desired axis will move
continuously. When user press stop button, the axis will stop immediately.
There is a text box to display current pulse amount (current position).
There are two text boxes for user to enter the desired card number and
axis number. There are also two text boxes for user to enter moving
parameters. This program looks like as follows:

Examples - 13

-i. Ei.'l'ﬂp 1E: TE::E:t

- Card Mo. I i

Edit Conhig |
- Az Mo, I i
Current position | 0

Start Speed I 1000~ PPs
Max Speed | BO00 - PRE
’—-\F_Huve

= [_>|‘

In Step 1) to 4) please refer to previous sections

In Step 5) Add buttons and text boxes

Object Type Attribute Value
Form* Name Form1l
Caption Simple Test
Command Button* Nam.e C—_ShINI _
Caption Edit Config
Name C_RCfg
* —
Command Button Caption ReConfig
Command Button Nam.e B_Forward
Caption <-
Command Button Name B_Backward
Caption ->
Name B_Stop
Command Button Caption Stop
Name T_CardNo
Text B =
ext Box Toxt 0
Text Box Name T_AxisNo
Text 0
Name T VStr
TextBox Text 1000
Name T_VMax
Text Box Text 5000
Name T CurPos
Text Box Toxt i)
. Name Timerl
Timer Interval 10

14 . Examples

In Step 6) Write Move Forward/Backward procedure

Private Sub B _Backward_Click()
Di m Axi sNo As | nteger

Di m CardNo As | nteger

Di m Channel As Integer

Axi sNo Cl nt (T_Axi sNo. Text)
Car dNo Cl nt (T_Car dNo. Text)
Channel = 4 * CardNo + Axi sNo

v_nove Channel, -CDbl (T_VStr. Text),-Dbl (T_VMax. Text),
0.1
End Sub

Private Sub B_Forward_Click()
Di m Axi sNo As | nteger

Di m CardNo As | nteger

Di m Channel As |nteger

Axi sNo = Clnt (T_Axi sNo. Text)
CardNo = Clnt(T_CardNo. Text)
Channel = 4 * CardNo + Axi sNo
v_nove Channel, CDbl (T_VStr. Text), CDbl (T_VMax. Text),
0.1
End Sub

In Step 7) Write Stop button procedure

Private Sub B Stop_Click()
Di m Axi sNo As | nteger

Di m CardNo As | nteger

Di m Channel As I nteger

Axi sNo Cl nt (T_Axi sNo. Text)
Car dNo Cl nt (T_Car dNo. Text)
Channel = 4 * CardNo + AxisNo

v_stop Channel, 0.1
End Sub

Examples - 15

In Step 8) Create a Timer for Displaying position

Private Sub Timerl Timer()
Di m Axi sNo As | nteger

Di m CardNo As | nteger

Di m Channel As | nteger

Di m Pos As Doubl e

Axi sNo Cl nt (T_Axi sNo. Text)
Car dNo Cl nt (T_Car dNo. Text)
Channel = 4 * CardNo + Axi sNo

get _position Channel, Pos
T_Cur Pos. Text = Str(Pos)
End Sub

Note: If these programs don’t work, try to check your parameter
settings by using Config.exe or to check your hardware.

16 - Examples

Example 2-4: Motion Done Status and 1/O
Monitoring

24.1

Motion status or motion done status is an integer value from 0 to 5
which is returned from PCI-8134. It tells user the motion status of
one axis. Please refer to the table in section 2.4.2

There are 12 1/O statuses in each axis. PCI-8134 will return an
integer value to represent these statuses. Please refer to the table
in section 2.4.3

Program organization

We add a relative movement function and two rows of text boxes to
indicate 1/0O and motion status. When the specific 1/O status is active,
the color of the respective text box turns to green. User can test
hardware 1/0 point by this program.

Please refer to EX2-4 directory for the complete source codes.

Example 2-4: Step by Step

1) Open a new project.

2) Add two module files: Def8134.BAS and Initial. BAS
3) Write Form_Load Procedure

4) Add the necessary Form variables and objects

5) Add two text boxes array to indicate these statuses
6) Create a timer

7) Read motion done status

8) Read /O status

9) Relative motion button

10) Create a timer to get position

11) Runiit

This program looks like as follows:

: tar;l Ng | 0 Relative Move |

Auiz Mo, | i =Setting————————
Diztance | BO00

Start Speed I 2500
Currentpusitiunl I | MaxSpeed | 5000

10 Status [SEED EEN S 5 e E2 0 570 [[s
Motoin Done Status [NEURGA Vv SIS SINMED SISAE [SUAI

Edit Config ReConfig |

Examples - 17

In Step 4) Add objects of the form
Other control items are as follows:

Object Type Attribute Value
Name Form1

Form - -

° Caption Simple Test

Name C_ShINI

Command Button Caption Edit Config
Name C_RCfg

Command Button Caption ReConfig

Command Button Nam_e C_RMove
Caption Relative Move
Name T Dist

TextBox Caption 5000
Name T_SVel

Text B - =

ext Box Caption 2500

Text Box Name T_MVel
Text 500

Text Box Name T_CardNo
Text 0

Text Box Name T_AxisNo
Text 0

Text Box Name T _VStr
Text 1000

Text Box Name T_VMax
Text 5000

Text Box Name T_CurPos
Text 0

Timer Name Timerl
Interval 10

In Step 5) Add Text box array

Object Name Index

TextBox [T_IOState 0~11

TextBox |T_MotionState 0~5

In Step 7) Read Motion Done Status

18 - Examples

2.4.2 Reading Motion Done Status

If you want to know the stopping reason of an axis, using
motion_done() is an easy way to achieve it. The motion done status
table is as follows:

Return value Axis Status

Busy

Movement Finished

Stops at Positive Limit Switch
Stops at Negative Limit Switch
Stops as Origin Switch

Stops by Alarm Signal

QI | W[N|~|O

The following program must be placed in timer section in order to
read the status and display it constantly.

'Di splay Motion Status
Mot i onSt atus = noti on_done(Channel)

For i = 0 To 5
If MotionStatus = i Then
T _ModtionState(i).BackCol or = &HFF00&
El se
T _ModtionState(i).BackCol or = &HFF&
End I f
Next |

In Step 8) Read I/O Status

2.4.3 Reading I/O Status

If you want to know the 1/O status of an axis, using get_io_status() is
an easy way to do this. Each bit in I/O status value stands for one
I/O status. The details of these bits are as follows:

Bit Name Description

0 +EL Positive Limit Switch

1 -EL Negative Limit Switch

2 +SD Positive Slow Down Point
3 -SD Negative Slow Down Point
4 ORG Origin Switch

5 EZ Index Signal

6 ALM Alarm Signal

7 SVON SVON of PCL5023 pin output
8 RDY RDY pin input

9 INT Interrupt Status

10 ERC ERC pin output

11 INP In-Position signal input

Examples - 19

In order to read I/O state and display it constantly, the following
program must be placed in timer section.

"Display 1/ 0O Status
get _io_status Channel, |COState
For TestBit = 0 To 11
If 2 ~ TestBit And | OState Then
T_IOState(TestBit).BackCol or = &HFFO0&
El se
T_I OState(TestBit).BackCol or
End | f
Next TestBit

In Step 9) Relative motion button

&HFF&

2.4.4 Relative Motion Button
There is a relative motion button in the form. When it is pressed, the
axis will move for a distance. The program is as follows:

" Relative Button Click
Private Sub C _RMove_Click()
start _r_nove Channel, CDbl (T_Di st. Text),
CDbl (T_SVel . Text), CDbl (T_MVel.Text), 0.5
End Sub

20 - Examples

Example 2-5: Interrupt Handling under Windows

251

2.5.2

95/98 by Visual Basic 5.0

Interrupt Event

In config.exe utility, user can choose the interrupt types in the check
boxes. If any one of the interrupt factors is active, the utility will
automatically enable the interrupt service by set_int_control()
function. If you want to use interrupts in 32bits Windows® system,
you must set up an event by W_8134 Set_ INT_Enable() function too.
Set up an event for each axis to handle the interrupts under
Windows®is the main topic in this section.

Create an Event

In Form_Load Procedure, user can setup an event by
W_8134_INT_Enable(). Remember that every axis must has its own
event handle. The program for setting events is as follows:

Public hEvent (4* MAX_PCI _CARDS-1) As Long
For i = 0 To TotalCard - 1

W 8134_| NT_Enabl e i, hEvent(4*i)
Next

Note: hEventis a global array. We assign it to a maximum number of

total cards for convenient. The first parameter of
W_8134 INT_Enable function is card humber and the second
parameter is the first event address of each card.

253

Create a Thread

After setting events, you must create a thread to receive this event
which is triggered by hardware interrupt. We suggest that you must
create a thread and use WaitForSingleObject() WIN32 API to do this
for every axis in order to get the best performance o receiving
interrupts. You can also create only one thread to receive all the
interrupt events and use WaitForMultipleObjects() WIN32 API to do
this.

The following program tells you how to create an thread and receive
interrupt events.

hl nt Thread = CreateThread(0, 0, AddressOf IntThread, O,
0, Threadl D)
There is a function name in above function. It is the thread’ s name.

Examples - 21

Its definition is as follows:

Function I nt Thread(ByVal Tenp As Long) As Long
DimlIntCard As Long

Do
Wai t For Si ngl eObj ect (hEvent (Axi sNo), &HFFFFFFFF)
get _int_status AxisNo, |ntStatus

' you can do something here

Reset Event (hEvent (Axi sNo))
Loop Wil e ThreadKey = True
End Function

Notice that if you use WaitForSingleObject(), you must assign the
axis number in event array. There is one global varaible,” ThreadKey”,
for control this thread. When it is ture, the thread will constantly
remain in PC and when it is false, the thread will end naturally.

2.5.4 Use WIN32 APl in Visual Basic

In order to use WIN32 API, you must add a new module in the
project to place WIN32 API declerations there.

Public Declare Function CreateThread Lib "kernel 32"
(ByVal |pThreadAttributes As Long, ByVal
dwst ackSi ze As Long, ByVal |pStartAddress As Long,
ByVal | pParanmeter As Long, ByVal dwCreationFl ags
As Long, ByRef |pThreadld As Long) As Long

Public Declare Function WaitForMiltipleObjects Lib
"kernel 32" (ByVal nCount As Long, | pHandles As
Long, ByVal bwWaitAll As Long, ByVal
dwM | i seconds As Long) As Long

Publ i c Decl are Function Wit ForSingleObject Lib
"kernel 32" (ByVal hHandl e As Long, ByVal
dwM | | i seconds As Long) As Long

Publ i c Decl are Function Cl oseHandl e Lib "kernel 32"
(Byval hObject As Long) As Long

Public Decl are Function ResetEvent Lib "kernel 32"
(ByVal hEvent As Long) As Long

22 - Examples

255 A Complete Example

We use the same concept in last example to display interrupt status
by a text box array. If interrupt comes, the thread function will receive
it and decode this value. Then it will display the interrupt status on
the text box array. We use WaitForMultipleObjects() in stead of
WaitForSingleObject() to do this for demonstration.

In order to test interrupt signal, we design some buttons to generate
it. The interrupt factors must enable properly in order to receive the
signal. You must set the interrupt factor bit 5,6,13,16,17 enable
because the following example will demonstrate these signals. Don’ t
enable bit6 and bit 7 at the same time.

Example 2-5: Step by Step
1) Open a new project and add Def8134.BAS and Initial. BAS
2) Add an global module, Global.BAS, and place function decleration
3) Write Form_Load Procedure to initialize card and thread
4) Add the test buttons and objects
5) Decode Interrupt status
6) Run it

This program looks like as follows:

i, Forml

Configuration [

A e Card f;lo. | 0
Edit Config| ReConfig |
<—| Stop | o | Asiz Mo, |—1
Mode 0 Hame Mave | Current pnsitinn I]

| Start Speed 2000 AP
Relative FresetMove I
Matpest 2000 PP

Preset Amount | 50000 - RS

INT Status
[EL [EL [+5D [50 [ALH [STF [Ston Home [P [EA/E [F&/B [STA [DecE [DecS [RDY.
INT Yalue | 0

INT Channel |_u

Examples - 23

In Step 2) Place function declaration in Global.BAS

WIN32 APIs must be placed in this module. Please refer to 2.5.4 to
insert it.
The thread is defined as follows:
Function I ntThread(ByVal Tenp As Long) As Long
Do
IntAxis = Wait ForMul tipl eCbjects(4 * Total Card,
hEvent (0), 0, &HFFFFFFFF)
get _int_status IntAxis, I|ntStatus

' you can do sonething here
Reset Event (hEvent (I nt Axi s))

Loop Wil e ThreadKey = True
End Function

Note: WaitForMultipleObjects() will return an axis number. It means
that the axis’ s interrupt is triggered and the axis’ corresponding
event is active. In the first parameter of this function, you must
put the total amount of events here. In second parameter of this
function, you must put the first event address here.

In Step3) Write Form_Load Procedure to initialize card and thread

Except for Initialization and configuration, you must create events
and a thread here. The program is like as follows:

For i = 0 To Total Card - 1
W 8134_|I NT_Enable i, hEvent(4 * i)
Next

Thr eadKey = True
hi nt Thread = CreateThread(0, 0, AddressO |ntThread, O,
0, Threadl D)

The Boolean value, ThreadKey, can be controlled by another object
in order to end this thread.

In Step 4) Add the test buttons and objects

In order to test the interrupt signal, we must use some functions to
generate it. For example: Use forward or backward moving button to
generate interrupt status bit 16 and bit 17. Use relative movement
function to generate interrupt status bit 11. Use home function to
generate interrupt status bit 9. Use stop function to generate
interrupts status hit8. Please refer to example 2-5 source codes to
create them.

24 . Examples

In Step 5) Decode Interrupt Status

In order to decode interrupt status more effectively, we define a INT
status array: IntArray(14). The INT status array is a continuos array
from O to 14 but the interrupt status returned by get_int_status() is
not in the same order with INT status array. So you must build a
mapping table to deal it. The mapping table is as follows:

"I NT state mapping table
ntArray(0) =
nt Array(1)
nt Array(2)
nt Array(3)
nt Array(4)
nt Array(5)
nt Array(6)
ntArray(7)
nt Array(8)
nt Array(9)
nt Array(10)
nt Array(11)
nt Array(12)
nt Array(13)
nt Array(14)

o n
[E
[¢]

The left side is INT status array and the right side is actual interrupt
status bits defined by get_int_status().

In order to display INT status array, you must create a corresponding
text box array. The name of text box array is INTState(0 to 14). The
program for decoding interrupt status and displaying on text box is
as follows:

For TestBit = 0 To 14
If 2 A~ IntArray(TestBit) And |IntStatus Then
Forml. | NTSt at e(TestBit). BackCol or = &HFFO0&

El se
Formil. | NTSt at e(Test Bi t) . BackCol or = &HFF&
End If
Next

This program is placed in thread function.

Examples - 25

Example 2-6: Interrupt Handling under Windows
95/98 by Visual C++ 6.0

2.6.1 Use PCI-8134 function library in Visual C++

There are two files need to be added in Visual C++ IDE if you wan to
build a application under Visual C++. One is header file, pci_8134.h
and the other is library file, 8134.lib. There is no configuration utility
provided like VB yet so you must use function library to configure
PCI-8134’ s parameters one by one.

2.6.2 Create a Dialog-based MFC project

We use a simple program to demonstrate interrupt function under
Visual C++. First, you must create a dialog-based MFC project. The
dialog resource is like as follows:

& Int |
Exit

Int Value [~ 20000R
Position | 74530

: ove |

When you press Move button, axisO will run for 10,000 pulses.
During this operation, you will see the interrupt value will become
20000h when it starts. At the end if this moving, interrupt value will
become 10000h and then 800h. If you press stop button, the
interrupt value will become 100h.
Example 2-6: Step by Step
1) Create a dialog-based MFC project and include pci_8134.h and
8134.lib
2) Write Initial function and configure functions
3) Add Global variables
4) Create athread in initial section
5) Define thread procedure in global section
6) Add the test buttons and objects
7) Create atimer and write its procedure
8) Runiit

26 - Examples

In Step 2) Initialize PCI-8134 and configuration
Add the following program in dialog initial section.

W 8134 Initial (&existCards, &pcilnfo);
set_cnt_src(0,0);

set _pls_iptmode(0, 2);

set _pl s_out node(0, 0);

set _hone_config(0,0,1,0,1);

set _inp_logic(0,1,1);

set _alm.logic(0,0,0);

set _nmove_ratio(0,1);

set _int_factor (0, 0x832040);

W 8134_Set _I NT_Control (0, 1);

In Step 3) Add Global Variable

PCI _I NFO pci | nfo;
Ul6 exi st Cards;

bool ThreadOn=fal se;
U32 I nt St at e=0;
HANDLE hEvent =0;

In Step 4) Create Thread In Initial Section

W 8134 _| NT_Enabl e(0, & Event);

Thr eadOn=t r ue;

Af xBegi nThread(| nt Thr eadPr oc, Get Saf eHwnd(), THREAD_ PRI ORI
TY_NORMAL) ;

In Step 5) Define Thread Procedure in Global Section
Ul NT | nt ThreadProc(LPVO D pParam
{

whi | e(ThreadOn)

{
::Wai t For Si ngl eObj ect (hEvent, | NFI NI TE) ;

get _int_status(0, & ntState);
:: Reset Event (hEvent);

}

return true;

Examples - 27

In Step 6) Add Move Function and Stop Function

In Stop button click event :
v_stop(0,0.1);

In Move button click event :
start_r_rmove(0, 10000, 100, 5000, 0. 1);

In Step 7) Create atimer and write its procedure

In initial section, we create a timer :
Set Ti mer (1, 100, NULL) ;

In Timer event procedure : get current command pulses and show
interrupt value and position.

doubl e P;

get _position(0, &P);

m_Pos. For mat (" %10. 1f", P);

m_| nt Val ue. Format (" %h", I nt State);
Updat eDat a(f al se);

CDi al og: : OnTi mer (nl DEvent) ;

28 - Examples

Example 2-7: Interrupt Handling under DOS

2.7.1 A Skeleton Program for Interrupt Handling

PCI-8134 Library provides an easy way to use interrupts under DOS
because it handles most of the routine works during initialization.
You just need to follow the example in this section and to fill out the
blank block in each procedure. The skeleton program of interrupt
handling is as follows:

1) In main procedure
void main(void)

Ul6 i, bn=0, axis_no=0, c_no=0;

[/ Initialization of PCI-8134 card --------
_8134_Initial(&bn, &info);

J/REEe Put Other Setting for PCI-8134
set_pls_outmode(axis_no, 0); // Pulse output mode to OUT/DIR
set_cnt_src(axis_no, 0); /I Command as Input Counter
set_pls_iptmode(axis_no, 2); // 4x AB phase pulse input
set_move_ratio(axis_no, 1); // Set Move Ration as 1

N - Set Interrupt Factor for Axis 0 ---------
set_int_factor(axis_no, 0x65); // +-EL, ALM, Home, Move

I/ - Enable Interrupt for card 0 -------------
_8134_Set_INT_Enable(cno, 1); // Enable Int

do {
while(int_flag)
{
int_flag = 0;
I === You can write other codes here ---------------
}

Examples - 29

} while (.)

N —mmemeeeee Close all resource used by PCI-8134 -------------
for(i=0; i<bn; i++)
_8134_Close(i);
}

2) In ISR definition function
void interrupt _8134_isrO(void)
{
Ul6 int_axis;
Ul6 irq_status;

disable();
_8134 Get_IRQ_Status(0, &irq_status);
if(irg_status)
{
get_int_axis(&int_axis);
int_flag = 1;
irg_axs = int_axis;
get_int_status(int_axis, &irg_sts);

else
_chain_intr(pcinfo.old_isr[0]);

outportb(0x20, 0x20);
outportb(0xA0, 0x20);
enable();

30 - Examples

2.7.2 Other Empty ISR functions
No matter how many cards you use in your system, you must define
12 ISR functions in any PCI-8134 DOS program even the ISR
function is empty. The function name of these 12 ISR routines must
follow the styles below:

void interrupt _8134_isrO(void){ }
void interrupt _8134_isrl(void){}

void interrﬁpt 8134 _isr9(void){ }
void interrupt _8134_isra(void){ }
void interrupt _8134_isrb(void){ }

A complete example for interrupt handling is in EX2-7.

Example 2-8: Position Control by various types of
Velocity Profiles

2.8.1 Velocity Profile

PCI-8134 supports 14 function types for position control in function
library. The following table is the summary:

Trapezoidal S-Curve
Symmetrical |Absolute |start_a_move |a_move |[Start_s_move [s_move
Relative |start r move |r_move |Start rs_move [rs_move
Non- Absolute |start_ta_move |ta_move [Start_tas_move [tas_move
Symmetrical |Relative |start_ t move [t_move [*N/A *N/A

* |t can be achieved by using absolute movement function with some

tricks.

Each function has at least the following parameters:
1) Moving axis
2) Moving position or distance (depends on absolute or relative

mode)
3) Starting Velocity
4) Maximum Velocity

Examples - 31

Besides, The parameters of acceleration time depends on what
velocity profile you choose. For example, a Non-Symmetrical S
Curve motion must set the following acceleration and deceleration
time parameters:

1) Linear and S-curve acceleration time

2) Linear and S-curve deceleration time

2.8.2 Various types of Velocity Profile for Position Control
Example 2-8 : Step by Step
1) Open anew project and add Def8134.BAS and Initial. BAS
2) Add necessary control objects and write the codes

3) Write Position 1 and Position 2 procedure
4) Runit

There are 3 control items: Current Axis, Configuration, and Current
Position, which have discussed in previous examples. The “Option
Button” control object must be placed in a frame container for a

group.

In absolute mode, when “ Position1” or “ Position 2” button is pressed,
the axis will move to the desired position absolutely.

In relative mode, when “Position 1” or “Position 2” button is pressed,
the axis will move for a desired distance.

You can change the velocity profile setting by click the “Option
Button” in “Velocity Profile” frame and “ Symmetric Velocity” frame.

For each type, the corresponding parameters must be filled in the
text box. You can refer to the manual for details.

32 . Examples

This program looks like as follows:

. Velocitr Pofile

In Step 1) and 2)

Please refer to the source codes in the diskette or previous
examples.
In Step 3)

Write the procedure for “ Position 1”
Private Sub C P1_Click()

Sel ect Case Acti onMbde
' Absol ute Mode

Case 0
Sel ect Case Profile
'T_Curve
Case 0
Sel ect Case SynOn
"Symmetric
Case True

Examples - 33

start_a_nove Channel, CDbl (T_P1),
CDbl (T_VStr. Text), CDbl (T_VMax. Text),
CDbl (T_Tacc. Text)
"Non- Symmetric
Case Fal se
start_ta_nove Channel, CDbl(T_P1),
CDbl (T_VStr. Text), CDbl (T_VMax. Text),
CDbl (T_Tacc. Text), CDbl (T_Tdec. Text)
End Sel ect
'S_Curve
Case 1
Sel ect Case SynOn
"Symmetric
Case True
start_tas_move Channel, CDbl (T_P1),
CDbl (T_VStr. Text), CDbl (T_VMax. Text),
CDbl (T_Tacc. Text), CDbl (T_TSacc. Text),
CDbl (T_Tacc. Text), CDbl (T_TSacc. Text)
" Non- Symmetric
Case Fal se
start_tas_move Channel, CDbl (T_P1),
CDbl (T_VStr. Text), CDbl (T_VMax. Text),
CDbl (T_Tacc. Text), CDbl (T_TSacc. Text),
CDbl (T_Tdec. Text), CDbl (T_TSdec. Text)

End Sel ect

End Sel ect

Rel ati ve Mode
Case 1

Sel ect Case Profile

"T_Curve

Case 0
Sel ect Case SynOn
"Synmmetric
Case True

start_r_nove Channel, CDbl (T_P1),
CDbl (T_VStr. Text), CDbl (T_VMax. Text),
CDbl (T_Tacc. Text)
"Non- Symmetric
Case Fal se
start_t_nove Channel, CDbl (T_P1),
CDbl (T_VStr. Text), CDbl (T_VMax. Text),
CDbl (T_Tacc. Text), CDbl (T_Tdec. Text)
End Sel ect
'S _Curve
Case 1
Sel ect Case SynOn
"Symmetric
Case True
start_rs_move Channel, CDbl (T_P1),
CDbl (T_VStr. Text), CDbl (T_VMax. Text),
CDbl (T_Tacc. Text), CDbl (T_TSacc. Text)

34 . Examples

"Non- Symmetric
Case Fal se
start _tas_nove Channel, CDbl (T_P1l) +

CDbl (T_Cur Pos. Text), CDbl (T_VStr. Text),
CDbl (T_VMax. Text), CDbl (T_Tacc. Text),
CDbl (T_TSacc. Text), CDbl (T_Tdec. Text),
CDbl (T_TSdec. Text)

End Sel ect

End Sel ect
End Sel ect

End Sub

Note: The Procedure of “Position 2" is similar with “Position 1”.
Please refer to programming guide diskette.

Examples - 35

Example 2-9: Homing routines

Home return is very important in any coordinate motion applications.
Before any operations, user or program must know where is the
origin point. In this section, we will show you how to find a home
position in various hardware types of home input signal placement.

2.9.1 Basic Homing Styles

PCI-8134 function library supports 3 types of homing. It is home
mode0, 1 and 2. Using which homing function depends on what
types of your home input signal is arranged.

Type 0 use Home mode 0: Only one ORG input signal (ex. orgin limit
switch).

Moving
Guide direction
Way

T --gg
\ Origin
Switch

The Table moves to the right and touches the origin switch. Once it
touches the origin switch, PCI-8134 will clear the position counter
and stop the table.

36 - Examples

Type 1 use Home mode 1: One ORG input signal and EZ input signal.

Moving
Guide direction

Way >
Table . Table .
h\._f:é ‘-....n'
TOrigin TEZ Signal

Switch Stop
Prepare

Stop

The table moves to the right and touches the origin switch. Once it
touches the origin switch, PCI-8134 latches ORG signal and wait for
EZ coming.

When the table moves to the EZ’ s trigger point, PCI-8134 will clear
the position counter and stop the table.

Sometimes the EZ signal of servo motor is in its encoder. You can
wire this signal without another EZ switch to PCI-8134 as EZ input.

Type 2 use mode 2: One ORG input signal and EZ input signal.

Moving
Guide direction
Way —_——— .-

Table. Table l

;._::2 L :'I
TOrigin TEZ Signal
Switch

Decelerate Stop

The table moves to the right and touches the origin switch. Once it
touches the origin switch, PCI-8134 latches ORG signal and wait for
EZ coming. At the same time, the speed of the table will decrease to
the starting speed. When the table moves to the EZ’ s trigger point,
PCI-8134 will clear the position counter and stop the table.

Notice that if your starting velocity is 0 or a very small value, the
second procedure of homing will not move to the EZ position and the
homing procedure will not end either.

Examples - 37

Compare to these three methods, home mode 2 has the best
accuracy on home return. But if you don’t have EZ signal and you
can move the table in a very slow speed when it approaches to the
origin. The accuracy of homing will be guarantee too.

2.9.2 Advanced Homing Styles
We supply three other choices for home return in programming guide:
1) Two-stage homing
2) Midpoint Homing between positive and negative limits
3) Home return search
1) Two-Stage Homing
The figure below explains what is the two stages homing. The first

stage is the same with home mode 0. But it won't stop when it
touches the origin switch.

Moving
direction
stage 1
(Faster)
Guide >
Way

Table Table

—
< — \ Origin
Moving " Switch
direction
stage 2
(Slowly)

After first time it touches the origin switch, it will move off the home
for a distance then move toward to the home again very slowly.
When it touches the origin switch again, PCI-8134 will clear the
position and stop the axis.

38 .- Examples

2) Midpoint Homing between positive and negative limits

The figure above explains midpoint homing return. After searching

Guide
Way
I Table Table Table
== =
Positive/ . R \ Negative
Limit P v > n Limit
Switch —_—) Switch

Moving direction

the negative and positive limit switch, you can calculate the midpoint.
Finally move the table to the midpoint and clear the position counter.
The method can be applied to a non-origin switch system.

3) Home return search
Start
) Position
Guide
Way
Table - Table

g

TOngm TEZ Signal \ Negative

Switch Limit
Switch
3 >
< 7
B ——
Moving
direction

Examples - 39

The figure above demonstrates the situation that the table is at
between origin switch and negative limit switch. None of the basic
home search in previous section will find the origin. This mode can
solve this problem by move off negative limit switch for a distance
and re-run the home mode search again.

2.9.3 Implement Homing Program

We have discussed three basic home return modes support by
function library and three advanced home return modes in
programming guide. In this section, we will demonstrate how to use
these six modes in your application.

There are 6 types of home return modes in this example. Home
Type 1, 3, and 4 in this program are the corresponding basic home
mode 0,1 and 2. Home Type 2, 4, and 6 in this program are the
corresponding advanced home mode 1,2 and 3.

Each time you click the home type button, the home type
descriptions will list in the ListBox.

Example: 2-9 Step by Step
1) Open a new project and add Def8134.BAS and Initial. BAS
2) Add necessary control objects and write the codes
3) Write Run procedure
4) Run it

When you press Run button, the axis will start homing according to
your home type. Remember to setup your hardware before starting.
This program looks like as follows:

40 - Examples

&, Home Demo

~Home Type —

f+ Homel fiun Siop E dit Eunfigi ReConfig |

" Homez

" Home3 Home Direction —

" Homed " Forward Current Axis ———

Card Mo,

g :ume: &+ Backward - I_E

e Bz Mo, I 1

Start Speed I 000 PR3
Max Speed I 0000 Pps ‘:_l _}l

Home Type Description Current PDSiﬁDnI o

* Simple_homing demo wzing home input [home mode O

1] Velocity move towards the home input
2] Stop at the home zengor
3] Zero the pogition

10 Status [HED RN RSE S60 [6RE £ [BIE-oN Fo
Motoin Done Status [JESHN [FMfinish [SOEED SOMED EI0EE EREIN

In Step 1) and 2)

Please refer to the source codes in the diskette or previous
examples.

In Step 3)
Write the procedure for “Run”

The Homing process will start when you press the Run command
button. Home search direction must also be set before running.

The three basic home search method can be implement as follows:
Private Sub C Run_Click()

' Sel ect Home Type

Examples - 41

Sel ect Case ltem
' Home Mode O
Case 1
set _hone_config Channel, 0, 1, 0, 1
If MoveDir = 1 Then
honme_nove Channel, CDbl (T_SVel . Text),
CDbl (T_MVvel . Text), 0.1
El se
home_nove Channel, -CDbl (T_Svel.Text), -
CDbl (T_MVel . Text), 0.1
End | f
wait _for_done (Channel)
set _position Channel, O
' Home Mode 1
Case 3
set _hone_config Channel, 1, 1, 1, 1
If MoveDir = 1 Then
home_nove Channel, CDbl (T_SVel. Text),
CDbl (T_MVel . Text), 0.1
El se
hone_nove Channel, -CDbl (T_SVel.Text), -
CDbl (T_MVel . Text), 0.1
End |f
wai t _for_done (Channel)
set _position Channel, O
‘clear latch
set _hone_config Channel, 2, 1, 0, 1
' Home Mode 2
Case 4
set _hone_config Channel, 2, 1, 1, 1
If MwveDir = 1 Then
home_nove Channel, CDbl (T_SVel. Text),
CDbl (T_MVel . Text), 0.1
El se
home_nove Channel, -CDbl (T_Svel.Text), -
CDbl (T_MVel . Text), 0.1
End If
wai t _for_done (Channel)
set _position Channel, O
‘clear latch
set _hone_config Channel, 2, 1, 0, 1
End Sel ect

End Sub

Notice that the home function’ s parameters (Channel, Start Velocity,
Maximum Velocity) are access from the TextBox on the form. For
each home type procedure, you must choose a moving direction too.

42 - Examples

The most important thing is clearing the latch. Home mode 1 & 2
needs to latch the origin signal when the axis touches the home
switch. If the latch is not cleared after home mode 1 and 2, the
motion done status will become “Stop by origin” when the next
movement finished. Be sure to clear the latch if you don’ t want it.

The three-advanced home search method can be implement as
follows:
These codes are in the same section with the basic homing method.

Private Sub C_Run_Click()
Dim Sta As |nteger

Dimi As Long

Di m Posl, Pos2 As Doubl e

i =0
Sel ect Case ltem
' Two Stages home return
Case 2
set _hone_config Channel, 0, 1, 0, 1
If MoveDir = 1 Then
home_nove Channel, CDbl (T_SVel. Text),
CDbl (T_MVel . Text), 0.1
wai t _for_done (Channel)
v_nove Channel, -CDbl(T_SVel.Text), -
CDbl (T_MVel . Text), 0.1
Sl eep 500
home_nove Channel, 1000, 10000, 0.1
El se
home_nove Channel, -CDbl (T_Svel. Text),
CDbl (T_MVel . Text), 0.1
wai t _for_done (Channel)
v_nove Channel, CDbl (T_SVel. Text),
CDbl (T_MVel . Text), 0.1

Sl eep 500

home_nove Channel, -1000, -10000, 0.1
End | f
wai t _for_done (Channel)
set _position Channel, O End If

wai t _for_done (Channel)
set _position Channel, O

"M dpoint hone return
Case 5
If MoveDir = 1 Then
v_move Channel, CDbl (T_SVel. Text),
CDbl (T_MVel . Text), 0.1
El se
v_nove Channel, -CDbl(T_SVel.Text), -
CDbl (T_MVel . Text), 0.1

Examples - 43

End

End | f
wait _for_done (Channel)
get _position Channel, Posl
If MoveDir = 1 Then
v_nove Channel, -CDbl(T_SVel.Text), -
CDbl (T_MVel . Text), 0.1
El se
v_nove Channel, CDbl (T_SVel. Text),
CDbl (T_MVvel . Text), 0.1
End | f
wai t _for_done (Channel)
get _position Channel, Pos2
Get M d Point
Pos2 = (Pos2 - Posl) / 2
set _position Channel, Pos2
start_a_nove Channel, 0, CDbl (T_SVel. Text),
CDbl (T_MVel . Text), 0.1
wait _for_done (Channel)
set _position Channel, O

"Auto Search hone return
Case 6
set _hone_config Channel, 2, 1, 1, 1
If MoveDir = 1 Then
home_nove Channel, CDbl (T_SVel . Text),
CDbl (T_MVel . Text), 0.1
El se
home_nove Channel, -CDbl (T_Svel.Text), -
CDbl (T_MVel . Text), 0.1
End If
wai t _for_done (Channel)
Sta = notion_done(Channel)
' Sta=3 neans stop by negative linmt switch
If Sta = 3 Then
"clear latch
set _home_config Channel, 2, 1, 0, 1
start _r_nmove Channel, 80000,
CDbl (T_SVel . Text), CDbl (T_Mvel.Text), 0.1
wai t _for_done (Channel)
set _home_config Channel, 2, 1, 1, 1
home_nove Channel, -CDbl (T_Svel.Text), -
CDbl (T_MVel . Text), 0.1
wai t _for_done (Channel)
End | f
set _position Channel, O
"clear latch
set _hone_config Channel, 2, 1, 0, 1
End Sel ect

Sub

44 . Examples

Example 2-10: Multiple Axes Synchronized Motion

Multiple axes synchronized motion is different from linear
interpolation motion. The multiple axes motion is point to point
motion so it doesn’ t guarantee if all the axes arrive at the same time
but it guarantees they will start to move at the same time. Here is
the example for this function.

2.10.1 How to use start_move_all()

The definition of start_move_all() is similar with start_a_move().
Each parameter in start_ move_all() is an array. It represents the
corresponding axis’ motion parameters. Like axis number, position,
start velocity, maximum velocity and acceleration time. You must
form this parameters in an array according to its axis. For example,
we have two axes for synchronized motion. Their motion parameters
are as follows:

Postion | Start velocity | Max. velocity| Acc. Time

Axis 0 150,000 1,000 25,000 0.1
Axis 3 200,000 200 30,000 0.2

We define 5 arrays to store these parameters:

AxisNo(0)=0, AxisNo(1)=3

Pos(0)=150,000 Pos(1)=200,000

Svel(0)=1,000 Svel(1)=200

Mvel(0)=25,000 Mvel(1)=30,000

Tacc(0)=0.1 Tacc(1)=0.2

The command line is as follows:
start_move_all(2,AxisNo(0),Pos(0),Svel(0),Mvel(0), Tacc(0))

2.10.2 Implement Multiple Axes Synchronized Motion

Example: 2-10 Step by Step
1) Open a new project and add Def8134.BAS and Initial. BAS
2) Add necessary control objects and write the codes
3) The start_move_all() parameters array
4) Deal the check box selection
5) Write Go procedure
6) Run it

Examples - 45

i, Multiplefxes
Card No. I i
Edit Config | y
Biz Mo, i i
-Current Position
Axis 0 Axis 1 Axis 2 Axis 3
| o | o | | 0
Distance I 15000 Distance I 28000 |7 .é.«l:-l:is D i
Start Speed I 0 Start Speed I il v Az 1
Aiz 2
tax Speed I 2R00 fdax 5peed I 9000 I'; .&::z 5
A, Time I n3 A Tinme I 0z
Distance I 6000 Distance I -B0000 Go |
Start Speed I 2800 Start Speed I il Stop All I
tlax Speed I 12000 tdax Speed | 10000
Ace. Time I 04 A, Time I 0.1

In this example, we show one card, 4 axes synchronized motion. If
you wish to use this function between different cards, you must refer
to user manual of PCI-8134 to cascade the corresponding pins of
CN4.

Notice that start_move_all() function uses absolute position value. In
this example we make some change for it to move in relative position.

After you entering the corresponding parameters of every axis and
choose synchronizing motion axes. Just press Go button and the
axes you choose will go for a distance then stop.

46 - Examples

In Step 1) and 2)

Please refer to the source codes in the diskette or previous
examples.

In Step 3) The Start_Move_All() parameters array

Di m Axi sMap(3) As Integer
Di m PosMap(3) As Doubl e

Di m SVel Map(3) As Doubl e
Di m Mel Map(3) As Doubl e
Di m TaccMap(3) As Doubl e

In Step 4) Deal with check box selection

For i =0 To 3
get _position 4 * CardNo + i, CurPos(i)
Axi sMap(i) =i
'"If the relative axis nunber is checked, fill it

into a distance or let it stay in original place
I f Check(i).Value = 1 Then
PosMap(i) = CDbl (T_Dist(i).Text) + CurPos(i)
SVel Map(i) = CDbl (T_SVel (i). Text)
Mvel Map(i) = CDbl (T_MVel (i). Text)
TaccMap(i) = CDbl (T_Tacc(i). Text)
El se
"If the relative axis nunber is not checked, fill
it into a original position
PosMap(i) = CurPos(i)
End If

Next
In Step 5) Write Go Procedure

start_nmove_all 4, AxisMap(0), PosMap(0), SVel Map(0),
Mvel Map(0), TaccMap(0)

Examples - 47

Example 2-11: Linear and Circular Interpolation

We will separate this section into three parts: First and second parts
give the simple codes for implementing linear and circular
interpolation motion. You can add this codes into your application
and show the position counter just the same with several pervious
examples.

Basically, the functions move_xy(), arc_xy() map to any cards’ axisO
and axisl. Also, the functions move_zu(), arc_zu() map to any cards’
axis2 and axis3. Be sure that by which two axes you want to do
interpolation motion before you start.

In the final part, a more complicated example is introduced here by
presenting the graphics result of interpolation motion. Many WIN32
API will be applied in this example and many DC concepts will be
applied too. There also has a coordinate transformation module
needs to be included.

2.11.1 How to use Linear Interpolation Functions

A simple code for x-y linear interpolation is as follows

1) Create a two-axes mapping array
MapArray(0) = 4 * CardNo
MapArray(l) = 4 * CardNo + 1
map_axes 2, MapArray(0)

2) Set specific moving speed for the mapping array
set _nmove_speed StartVel, MaxVel

3) Set specific moving acceleration for the mapping array
set _move_accel Tacc

4) Start motion
move_xy CardNo, Px, Py

Note: In every card of interpolation motion, move_xy() means axisO
and axisl ,move_zu() means axis2 and axis3. You can’ use
axisl, axis 3 or axis0, axis 2 for interpolation.

48 -

Examples

2.11.2 How to use Circular Interpolation Functions

A simple code for x-y circular interpolation is as follows:

1) Create a two axes mapping array
MapArray(0) = 4 * CardNo
MapArray(1l) = 4 * CardNo + 1
map_axes 2, MapArray(0)

2) Set specific moving speed for the mapping array
set _nove_speed StartVel, MaxVel

3) Set specific moving acceleration for the mapping array
set _nove_accel Tacc

4) Set arc division resolution
set _arc_division DAxis, DivDegree

5) Set arc optimization on/off
arc_optim zation Optim ze

6) Start motion
arc_xy CardNo, CenterPx, CenterPy, MpveDegree

Note: In every card of interpolation motion, arc_xy() means axis0O and
axisl ,arc_zu() means axis2 and axis3. You can’ use axisl,
axis 3 or axis0, axis 2 for interpolation.

2.11.3 Coordinate System in Microsoft Windows®

Remember that the interpolation command we set is position counter
or pulses. The scale of position counter coordinate is different from
the scale of computer’ s coordinate system. In Windows system, the
coordinate in scale mode of pixel is as follows: (ex. in an picture box
control object)

The scale unit of this picture box is pixel. In the real position counter
coordinate system, the scale unit is in counter pulse. Between these
two unit systems, we define a scale number:

"Pul ses(Position counters) per pixel
XScal e 125
YScal e 125

It represents that there are 125 pulses for each pixel on the picture
box,

Examples - 49

2.11.3.1 Coordinate Transformation

The coordinate system of the position counter in picture box is as
follows:

| v+
Oy
L "
@]
Picture Box
OX —m ’.,

The origin point relative to pixel mode picture box coordinate system
is (Ox, Qy). In the example, we set this as follows:
Type POl NTAPI
Px As Long
Py As Long
End Type

Di m POrg As PO NTAPI

POr g. Px
POrg. Py

I nt (Scope. Scal ewWdth / 10)
I nt (Scope. Scal eHei ght * 2 / 3)

The scope is the name of picture box.

Define an position counter point type
Type PO NTREAL
Px As Doubl e
Py As Doubl e
End Type
Publ i c PReal As PO NTREAL

PReal stands for position counter point.

If we wantto show position counter on the picture box in the position
counter coordinate, we must use the function as follows to transfer a
real position to picture box screen position.

50 - Examples

Function Real 2Scr (Pnt As PO NTREAL, POrg As PO NTAPI,
ByVal XScal e As Doubl e, ByVal YScale As Double) As

POl NTAPI
Real 2Scr. Px = Pnt.Px / XScal e + Abs(POrg. Px)
Real 2Scr. Py = Abs(POrg.Py) - Pnt.Py / YScale

End Function
Also, transfer a picture box position to a real position

Function Scr2Real (Pnt As PO NTAPI, POrg As PO NTAPI,
ByVal XScal e As Doubl e, ByVal YScale As Double) As

POl NTREAL
Scr2Real . Px = Int((Pnt.Px - Abs(POrg.Px)) * XScal e)
Scr2Real . Py = Int((Abs(POrg.Py) - Pnt.Py) * YScal e)

End Function

These two functions are in Scope.BAS in Appendix D
2.11.3.2 Draw a 2-D coordinate on picture box
Further, drawing a coordinate on the picture box

hDC is a destinative drawi ng DC

' POrg is the real systemis origin relative to picture
box

" Wdth is picture box's scalew dth

' Height is picture box's scal ehei ght

Sub Pl ot Scal e(ByVal hDC As Long, POrg As PO NTAPI, ByVal
XScal e As Doubl e, ByVal YScal e As Doubl e, ByVal
W dth As Long, ByVal Height As Long)

Di m Po As POl NTAPI

Dim I ncr As Long

‘Draw two cross line
MoveToEx hDC, 0, POrg.Py, Po
LineTo hDC, W dth, POrg. Py
MoveToEx hDC, POrg.Px, 0, Po
Li neTo hDC, POrg.Px, Height

"X+ main scale
Incr = Abs(POrg. Px)
Do
Incr = Incr + XScal e
MoveToEx hDC, Incr, POrg.Py - 2, Po
Li neTo hDC, Incr, POrg.Py + 2
Loop While Incr < Wdth
'X- main scale
I ncr = Abs(POrg. Px)
Do
Incr = Incr - XScal e
MoveToEx hDC, Incr, POrg.Py - 2, Po

Examples - 51

LineTo hDC, Incr, POrg.Py + 2
Loop Wiile Incr > 0

"Y- main scale

Incr = Abs(POrg. Py)

Do
Incr = Incr + YScale
MoveToEx hDC, POrg.Px - 2, Incr, Po
LineTo hDC, POrg.Px + 2, Incr

Loop Wiile Incr < Height

'Y+ main scale

I ncr = Abs(POrg. Py)

Do
Incr = Incr - YScale
MoveToEx hDC, POrg.Px - 2, Incr, Po
Li neTo hDC, POrg.Px + 2, Incr

Loop Wiile Incr > 0

MoveToEx hDC, POrg. Px, POrg. Py, Po
End Sub

This function is in Scope.BAS in Appendix D

2.11.4 DC (Device Context)

DC(Device Context) is the basic drawing object in Windows system.
Besides, you must create a Bitmap object in DC before use any
drawing function. You can image DC as a drawing paper. This
procedure is expressed as follows:

Di m hScopeDC, hScopeBMP As Long

' Scope Initial

hScopeDC = Creat eConpati bl eDC(Scope. hDC)

hScopeBMP = Creat eConpati bl eBi t map(Scope. hDC,
Scope. Scal eW dt h, Scope. Scal eHei ght)

Sel ect Obj ect hScopeDC, hScopeBMP

By now, you can use hScopeDC as your drawing paper and do any
drawing function like this:

Li neTo hScopeDC, Px, Py

You must delete these object before leave the program (notice the
delete order)

Del et eObj ect hScopeDC
Del et eObj ect hScopeBMP

52 . Examples

2.11.5 Animation

In order to achieve a motion graph, sometimes making an animation
mechanism is an important thing. This concept is expressed as

follows:
Other DC
Add
Blank DC 3 in Destinative DC
copy ° copy. | °
(N L -
4 Background DC
update

2.11.5.1 Create DCs for animation

This drawing loop in previous section is done in Timer procedure. To
complete this procedure, we must create at least 3 DCs as follows:

1) Scope DC (Destinative DC)

hScopeDC = Creat eConpati bl eDC(Scope. hDC)

hScopeBMP = Creat eConpati bl eBi t map(Scope. hDC,
Scope. Scal eW dt h, Scope. Scal eHei ght)

Sel ect Obj ect hScopeDC, hScopeBMP

2) Path DC (Background DC)

hLayer DC = Creat eConpati bl eDC(Scope. hDC)

hLayer BMP = Creat eConpati bl eBi t map(Scope. hDC,
Scope. Scal eW dt h, Scope. Scal eHei ght)

Sel ect Obj ect hLayer DC, hLayer BMP

Examples - 53

3) Blank DC (As Eraser)
This Blank DC must be created in picture box Paint Procedure:

hScopeBackDC = Creat eConpati bl eDC(Scope. hDC)

hScopeBackBMP = Creat eConpati bl eBi t map(Scope. hDC,
Scope. Scal eW dt h, Scope. Scal eHei ght)

Sel ect Obj ect hScopeBackDC, hScopeBackBMP

BitBlt hScopeBackDC, 0, 0, Scope. Scal eW dth,
Scope. Scal eHei ght, Scope. hDC, 0, 0, vbSrcCopy

Notice that there has a BitBlIt function, it is veryimportant for moving
DC data to another DC. Copy or add action in DC is done by this
function.

2.11.5.2 Create pens for DCs

Create two pens for DC: Black pen and White pen.
"Build two pen
hWi t ePen = OreatePen(vbSolid, 1, RGB(255, 255, 255))
hBl ackPen = CreatePen(vbSolid, 1, RGB(0, 0, 0))

' Sel ect Pen for each DC
Sel ect Obj ect hLayer DC, hBI ackPen
Sel ect Obj ect hScopeDC, hBI ackPen

Select object means select an drawing tool for a DC paper.

We make a new mouse pointer for this picture box. It will show up if
the mouse is moved to the region of picture box. So we must create
a mouse pointer DC by loading a BMP file.

"Build CrossSign Cursor and its DC

Set Cross = LoadPicture(App.Path & "\" &
"cursor. bmp")

Get Obj ect Cross. Handl e, LenB(BMP), BMP

hCur sor DC = Creat eConpati bl eDC(Scope. hDC)

Sel ect Obj ect hCursorDC, Cross. Handl e

The BMP structure is as follows:

Type BI TMAP
bmType As Long
bmW dt h As Long
bmHei ght As Long
bmW dt hBytes As Long
bmPl anes As | nt eger
bmBi t sPi xel As |nteger
bmBits As Long

End Type

54 . Examples

2.11.5.3 Animation Starts in Timer

We use timer to control the speed of animation. The codes are as
follows:

' Clear DC
BitBlt hScopeDC, 0, 0, Scope. Scal eW dt h,
Scope. Scal eHei ght, hScopeBackDC, 0, 0, vbSrcCopy

" Mark command position
El | i pse hScopeDC, PCnd.Px - 4, POw. Py - 4, PQw. Px
+ 4, PCnd.Py + 4

'Set path start point on path DC & draw a line to
run time position on path DC

MoveToEx hLayer DC, PLast.Px, PLast.Py, Po

Li neTo hLayerDC, PScr.Px, PScr. Py

' Paint Cross sign cursor
I f CursorShow = Fal se Then
BitBlt hScopeDC, Cursor.Px, Cursor. Py,
Scope. Scal eW dt h, Scope. Scal eHei ght, hCursorDC, O,
0, vbSrcCopy
End If

Pl ot Scal e
Pl ot Scal e hScopeDC, POrg, XDiv, YDiv,
Scope. Scal eW dt h, Scope. Scal eHei ght

Add path DC
BitBlt hScopeDC, 0, 0, Scope. Scal eW dt h,
Scope. Scal eHei ght, hLayerDC, 0, 0, vbSrcAnd

' Show total drawing materials on scope

BitBlt Scope.hDC, 0, 0, Scope. Scal eW dt h,

Scope. Scal eHei ght, hScopeDC, 0, 0, vbSrcCopy
All WIN32 API declarations and self-defined functions are in
Scope.Bas in Appendix D

Examples - 55

2.11.6 Implement 2-D example
You can refer to the complete source codes or previous section for
making this example. The results for this example is as follows:
Example: 2-11
1) Linear interpolation result:

Parameters | Motion Graph I Configuration—————

Edit Canfig ReCanfig

~Interpolation Mode —
Y3 & Linear
2500pps « Circular

® IT 2500pps Arc Degree 180
Cammatd Current Poz. Cursaor
S S %[s %[24T
i 5375 ¥ 5376 i BE25

CardMo I_D

56 - Examples

2) Thecircular interpolation result

E Interpolation Demo

Examples - 57

3) Parameters Setting Page

| . Interpolation Demo

58 - Examples

Example 2-12: Jog

The Jogging feature can be achieved by r_move function. Generally ,
there are two types of jogging. One is incremental jogging and the
other is continuous jogging.

Incremental jogging means that for every times you press the
jogging button, the axis will step for a distance. Continuous jogging
means that when you press the jogging button and don’ t release it,
the axis will move continuously and speed up increasingly depends
on how long you press.

We combine these two types of jogging in one program. The speed
increasing is proportional to the time your press the button. This
feature is also can achieve by software. The changeable speed
function is controlled by a seed number i. The function is defined as
follows:

JogMaxVel * i ~ 2
i=i+1 for each step

Example: 2-13

There are eight button in this example for 8 directions in 2D
coordinate system. This program is look like as follows:

Edit Config | ReConfig

_ii va _li Step Size:50

- X

_Si Y- _4] Clear Pos.l

Cument X : I i
r~Current Axis—— —X-Y Pair Select Current Y : I_‘D-
Card Mo, I_D_ 0 HA [0.1] ‘

Az Mo, I_D o 22,3

Jog Status I il

Examples - 59

2.12.1 Create a Thread for Jogging

You can do jogging function without any graphical presentation. Just
add the following sample codes to complete it.

The codes for press the X+ direction buttons are as follows:

Private Sub C XB MouseDown(Button As |nteger, Shift As
Integer, X As Single, Y As Single)
If hJogThread <> 0 Then Cl oseHandl e (hJogThread)
Jog = 7
hJogThread = CreateThread(0, O, AddressO JogThread,
0, 0, Threadl D)
End Sub

Please refer to section 2.5 for creating a thread.
The codes for unpress X+ direction buttons are as follows:

Private Sub C XF_MouseUP(Button As | nteger, Shift As
Integer, X As Single, Y As Single)
Jog = 0

End Sub

Notice that the Jog variable can tell the thread which button is
pressed. Jog=0 means no button is pressed.

Because interpolation functions are only used in absolute mode, we
use some tricks by increamental method to achieve the relative
motion.

Please refer to example 212 for complete codes. Some part of
thread for Jog Thread are as follows:

" Interpolation jogging
Sel ect Case Jog
Case 1
If Pair = 0 Then
nove_xy CardNo, LastX + Step, LastY +

Step
El se
nove_zu CardNo, LastX + Step, LastY +
Step
End If
Last X = LastX + Step
LastY = LastY + Step

60 - Examples

' Single axis jogging

Sel ect Case Jog

Case 5
r_move 4 * CardNo + 2 * Pair, Step, JogSvel,

JogMWvel * i ~ 2, JogTacc

Case 6
r_nove 4 * CardNo + 2 * Pair + 1, Step,

JogSVel, JogMWel * i ~ 2, JogTacc

Case 7
r_move 4 * CardNo + 2 * Pair, -Step, JogSvel,

JogWel * i ~ 2, JogTacc

Case 8
r_nove 4 * CardNo + 2 * Pair + 1, -Step,

JogSVel , JogWel * i ~ 2, JogTacc

End Sel ect
"Increase Speed Seed
If i <100 Theni =i + 1
"add this delay will raise the performnce

Sl eep (100)

Examples - 61

The Setting Page for jogging is as follows:

i, Jog Demo

T Motion Grpah]

Edit Config | ReConfig
—Jog Yalue Setting
Jog Start Speed |_12€ _
Jog Max Speed 500 Step Size:
Jog Ace, Time I_ﬁ _i " Li I 3

]
i 5cale Setting 3] v | 4] Clear Pos. |
Pulzes per Pixel I 10

Pixels per Scale I 20
Cumrent X : | 2E7
Current Axzis —— X7 Pair Select Curmrent ¥ : | .20
’7Eard Mo, I il ’7 A (0]
Az Mo, I i] @ 2 [23)
Jog Slalusl il

2.12.2 Create a Scope for Display Jogging

In order to make a dynamic scope for displaying jog motion, you
must create a DC for drawing. In the module Scope.BAS, there are
some several functions for doing this. You can combine these three
functions — CreateCompatibleDC(), CreateCompatibleBitmap(),
SelectObject() into one function. For example: Creating and BMP DC,
you must write:

hScopeDC = Cr eat eBmpDC(Scope. hDC, Scope. Scal eW dt h,
Scope. Scal eHei ght, hScopeBnp)
In stead of

' Scope DC (Destinative DC)

hScopeDC = Creat eConpati bl eDC(Scope. hDC)

hScopeBMP = Creat eConpati bl eBi t map(Scope. hDC,
Scope. Scal eW dt h, Scope. Scal eHei ght)

Sel ect Obj ect hScopeDC, hScopeBMP

The source codes for Scope.BAS are in Appendix D.

The following figure shows the result of jogging. Notice that The step
size is 3.

62 - Examples

Example 2-13: Velocity Change On The Fly

2.13.1 Velocity Change on the fly

There is a v_change function in PCI-8134 library. It makes the axis
change speed during continuous motion or position control motion.
User can easily change speed value by pressing a Velocity Change
command button during motion. The codes are as follows:

v_change Channel, CDbl (T_Vchg. Text), CDbl (T _Tacc. Text)

It also can changes the speed at the desired position or condition.
The codes are as follows:

If Position > VChagnePos Then
v_change Channel, VChageVal ue, AccTi ne
End |f

2.13.2 Velocity Value

In order to see the velocity value without any tachometer, we use an
simple way to get the velocity value by ignore the time factor. That' s
Measured Velocity=Current Position — LastPosition

This instruction is placed in Timer procedure. The Timer in Windows
System is not accurate, so we ignore it. Besides, by using this
method, there must be a high frequency noise. The results may look
not very good. But at least, it is the most direct way to measure it. Or
you can get the velocity by another clock or use analog input to read
tachometers.

2.13.3 Velocity Change on the Fly Demo results

We test this function by setting a non-symmetric s_curve absolute
mode. The demo procedure as follows:

1) Set the position to —100000

2) Start go to position 1 (100000)

3) Press V_Change command button during the axis is moving
4) Finally, the axis stops at exactly 100000

Examples - 63

Example: 2-13

You can see the position profile (in black line) and velocity profile (in
red line)in the figure.

[FII 1

L N

' 10000
i -100000

64 - Examples

The parameters setting are as follows:

i,)

100000

fion 2 100000
| 100000

This program can test many other velocity combinations by clicking
the option button in the form. Because the velocity alue is getting
from difference value, it may has some noise on it. For better display,
you can tune the timer interval to improve it.

Examples - 65

2.13.4 Limitation of Velocity Change on the Fly

We strongly recommend that the function fix_max_speed() must be
set before every move function if you want to do velocity change
during this moving command.

Due to the hardware limitation, user can’'t change axis’ speed
unlimitly in every moving operation. You must give PCI-8134 a
maximum speed that the axis may reach first.

For example, assume that you start a moving function by setting a
maximum speed of 100,000 pps and you want to change its speed to
200,000 pps when it reach some point. At this example, you must
use fix_max_speed() to set the speed higher than 200,000 before
start_a_move(). The codes are as follows:

fix_max_speed(0, 250000);
start_a_move(0, 100000, 100, 100000, 0.1);

when the axis reaches 50000, change the speed to 200000

i f(Position > 50000) v_change(0, 200000,0.1);

66 - Examples

2.13.5 Repeat Mode

Some applications need to run the axis cyclicly between a desired
position. Making a repeat motion is necessary to introduce. The
repeat motion in this program is implemented in a thread so the axis
can be stopped at any moment.

The results of this motion is in the following figure.

i, Forml

Maotion Parameters T

A Current position 33630
¥ Absolute) Relative

R T Paosition 1 | 100000

Stop
= T_Curve ¢ 5_Curve =
Fosition 2 I 100000

— Symmetnic Yelocity—— W_Change I I 10000
i~ Yes = No Home Rec -
Clear Pozition | I -100000

The following program is a part of repeat mode. Please refer to EX2-
13 for complete codes.

"Button Position 1 Pressed
Case 1

Sel ect Case ActionMode
' Absol ute node
Case O

Examples - 67

Sel ect Case Profile
"T_Curve
Case O
' Enter the repeat notion | oop
Do While RepeatOn = True
I f Repeat SW = True Then
a_nove Channel, P1, Svel, Mel, Tacc
Repeat SW = Fal se
El se
a_nove Channel, P2, S\Vel, Mel, Tacc
Repeat SW = True
End | f
Loop
'S_Curve
Case 1
' Enter the repeat notion | oop
Do While RepeatOn = True
| f Repeat SW = True Then
s_nove Channel, P1, SVel, Mel, Tacc

Tacc
Repeat SW = Fal se
El se
s_nove Channel, P2, Svel, Mel, Tacc
Tacc
Repeat SW = True
End | f
Loop
End Sel ect

Repeat motion loop is control by a Boolean value, RepeatOn. And it
is controlled by stop button.

Private Sub C_Stop_Click()
v_stop Channel, CDbl (T_Tacc. Text)
Repeat On = Fal se

End Sub

68 - Examples

Chapter Three: The ISaGRAF
Library for PCI-8134

3.1

3.1.1

Installation of PCI-8134 ISaGRAF Library

PCI-8134 ISaGRAF Library Installation

The Setup program provided by PCI-8134 I1SaGRAF library
performs all tasks necessary for installing the software.

With ADLink’ s “PCI-8134 ISaGRAF Library Disk” diskette :

step 1.

step 2.
step 3.
step 4.

Place the “PCI-8134 ISaGRAF Library” diskette in the 3.5"
floppy drive A:.

If Windows NT is loaded, choose Run from the taskbar.
Type ANSETUP in the Run dialog box.

When the software component installation process is
complete, user has to copy the “8134isg.dll” and
“ISauUSP.dII’ files from the “A:\LIB” directory to “x:\

Isawin\Target\cmds” directory. (x:\\Ilsawin indicates the
directory which install the ISaGRAF software).

With “ADLink All-in-one Compact Disc”:

step 1.
step 2.
step 3.

step 4.

Place “ ADLink Al-ine-one Compact Disc” in the CD-ROM
drive.

If autorun setup program is not invoked, execute
x\setup.exe(x indicates the CD-ROM drive).

Select Software Package-> PCI-8134 1SaGRAF Library to
install the software.

When the software component installation process is
complete, user has to copy the “8134isg.dll” and
“ISauUsSP.dIl’ files from the “x:\Software\PCI-8134
ISaGRAF Library (x indicates the CD-ROM drive).”
directory to “y\ Isawin\Target\cmds” directory. (y:\Isawin
indicates the directory which install the ISaGRAF
software).

The Isagraf Library For PCI-8134 - 69

3.1.2 PCI-8134 ISaGRAF Library Un-installation
PCI-8134 1SaGRAF Library has the capability of automatic un-
installation. To un-install PCI-8134 ISaGRAF Library, open the
“Control Panel”, double-click “Add/Remove Programs”, select “PCI-
8134 ISaGRAF Library” to un-install it.

3.2 Restore PCI-8134 1SaGRAF Library C
Function Objects in the ISaGRAF Workbench

3.2.1 With ADLink’ s “PCI-8134 ISaGRAF C function Object”
diskettes

step 1. Place the diskette “PCI-8134 1SaGRAF C Function
Object” diskette in the 3.5" floppy drive A:.

step 2. Open the ISaGRAF Archive Manager Utility for “c
functions”.

step 3. Change the “Archive Location” to “a:)\ Function Definition”
directory.

step 4. Click the Restore button, then PCI-8134 1SaGRAF library
¢ function objects will copy to the ISaGRAF Workbench.
When the copy operation finish, user click the Close
button and exit this tool.

3.2.2 With “ADLink All-In-One Compact Disc”:

step 1. Place “ADLink All-In-One Compact Disc” in the CD-ROM
drive.

step 2. Open the ISaGRAF Archive Manager Utility for “c
functions”.

step 3. Because in the “ADLink All-In-One Compact Disc”, the
PCIS-ISG 8134 I1SaGRAF library c function objects are
located in the “Software\PCI-8134 ISaGRAF Libranh
Function Definition” directory, so user have to click the
“Browser” button, then assign the correct directory in the
“ADLink All-In-One Compact Disc”.

step 4. Click the Restore button, then PCI-8134 ISaGRAF library
¢ function objects will copy to the ISaGRAF Workbench.
When the copy operation finish, user click the Close
button and exit this tool.

70 - The Isagraf Library For PCI-8134

3.3

3.31

Restore PCI-8134 ISaGRAF Sample Programs

There are only one sample programs provided in this diskette. they
could help you to program your own applications by using PCI-8134
ISaGRAF sample program more easily. The brief descriptions of
these programs are specified as follows:

Pci8134: The introduction about use ISaGRAF with PCI-

8134 card (Using SFC and ST language)

With ADLink’ s “PCI-8134 ISaGRAF Sample Program”
diskettes

step 1. Place the diskette “PCIS-ISG 8134 ISaGRAF Sample
Program” in the 3.5" floppy drive A:.

step 2. Open the ISaGRAF Archive Manager Utility for Project.

step 3. Change the “Archive Location” to “a:\ Project” directory.

step 4. Select the sample program user want to use, then click the
Restore button, then the project will copy to the ISaGRAF

Workbench. When the copy operation finish, user click the
Close button and exit this tool.

3.3.2 With “ADLink All-In-One Compact Disc”:

step 1. Place “ADLink All-In-One Compact Disc” in the CD-ROM
drive.

step 2. Open the ISaGRAF Archive Manager Utility for Project.

step 3. Because in the “ADLink All-In-One Compact Disc”, the
PCI-8134 1SaGRAF Sample program are located in the
“Software\PCI-8134 1SaGRAF Libran\Project” directory,
so user have to click the “Browser” button, then assign the
correct directory in the “ ADLink All-In-One Compact Disc”.

step 4. Click the Restore button, then PCI-8134 ISaGRAF sample
program will copy to the ISaGRAF Workbench. When the
copy operation finishes, user clicks the Close button and
exits this tool.

The Isagraf Library For PCI-8134 - 71

3.4

34.1

The definition of PCIS-ISG 8134 1SaGRAF

Library
There are almost 60 functions in the PCI-8134 ISaGRAF library. Use
can use these functions directly in ST or FBD languages on

ISaGRAF environment. In order to let user can use these functions
more easy. These functions be described as below:

Initialization function group

Function item:

p8134ini — Software Initialization for PCI-8134

p8134clo — Software release resources of PCI-8134
s_config —Configure PCI-8134 according to Motion Creator
g_irq_ch —Get the PCI-8134 card’ s IRQ number

g_addres —Get the PCI-8134 card’ s base address

Function description :

p8134ini:This function is used to initialize PCI-8134 card. Every PCI-
8134 card has to be initialized by this function before
calling other functions.

p8134clo:This function is used to close PCI-8134 card and release
the PCI-8134 related resources(This function just suport
WindowNT platform).

s_config:This function is used to configure PCI-8134 card. All the 1/O
configurations and some operating modes appeared on
“ Axis Configuration Window” of Motion Creator will be set to
PCI-8134. Click “Save Configuration” button on the “Axis
Configuration Window” if you want to use this function in
the application program. Click “Save Configuration” button
will save all the configurations to a file call “8134.cfg”. This
file will appear in the “WINDOWS\SYSTEM\” directory.

g_irg_ch:This function is used to get the PCI-8134 card’s IRQ
number. (This function just suport Window 95 and Window
NT platform only).

g_addres:This function is used to get the PCI-8134 card’ s base
address.

72 - The Isagraf Library For PCI-8134

Syntax
Anal og result
Anal og result

p8134i ni (Anal og cardNo)
p8134cl o (Anal og cardNo)
Anal og result s_config (Message file)
Anal og irqg_no g_irqg_ch(Anal og car dNo)
Anal og base_addr = g_addres (Anal og cardNo)

Input parameter :
card_no : The PCI-8134 card index number
file : The name of PCI-8134 card configuration file created by
Motion Creator

Output parameter :
base_addr: The PCI-8134 card’ s base address.
irg_no: The PCI-8134 card’ s IRQ number.
Result: 0—No Error, >0-Error

The Isagraf Library For PCI-8134 - 73

3.4.2 Pulse Input /Output Configuration function group

Function item :
s_PIsOut — Set the configuration for pulse command output.
s_PlIslpt — Set the configuration for feedback pulse input.
s_CntSrc —Enable/Disable the external feedback pulse input

Function description :

s_PIsOut : Configure the output modes of command pulse. There are
two modes for command pulse output..

s_PlIslp : Configure the input modes of external feedback pulse.
There are four types for feedback pulse input. Note that
this function makes sense only when cnt_src parameter in
set_cnt_src() function is enabled.

s_CntSrc : If external encoder feedback is available in the pulse
system, set the cnt_src parameter in this function to
Enabled state. Then internal 28-bit up/down counter will
count according configuration of set_pls_iptmode() function.
Or the counter will count the command pulse output.

Syntax
Analog result = s _PlsOut (Analog axis, Analog
pl s_out node)
Analog result = s_Plslpt (Analog axis,
Anal og pl s_i pt node)
Analog result = s_config (Analog axis, Analog
cnt_src)

Input parameter :

axis : axis number designated to configure pulse Input/Output.

pl s_outmode : setting of command pul se out put node for
OUT and DI R pins.
pl s_out nnde=0, OUT/DI R type pul se output.
pl s_out node=1, CW CCW type pul se out put.

pl s_inpnode : setting of encoder feedback pul se
i nput mode for EA and EB pins.
pl s_i pt nrode=0, 1X AB phase type pul se input.
pl s_i pt nrode=1, 2X AB phase type pul se input.
pl s_i pt rode=2, 4X AB phase type pul se input.
pl s_i pt node=3, CW CCW type pul se input.
cnt_src : Counter source
cnt _src=0, counter source from conmand pul se
cnt_src=1, counter source fromexternal input EA
EB

Output parameter :
Result : 0—No Error, >0—Error

74 - The Isagraf Library For PCI-8134

3.4.3 Continuously Motion Move function group

Function item :

v_move — Accelerate an axis to a constant velocity with trapezoidal
profile

sv_move — Accelerate an axis to a constant velocity with S-curve
profile

v_change — Change speed on the fly

v_stop —Decelerate to stop

Function description :

v_move : This function is used to accelerate an axis to the specified
constant velocity. The axis will continue to travel at a
constant velocity until the velocity is changed or the axis is
commanded to stop. The direction is determined by the
sign of velocity parameter..

sv_move: This function is similar to v_stop() but accelerating with S-
curve.

v_change : You can change the velocity profile of command pulse
ouput during operation by this function. This function
changes the maximum velocity setting during operation.
However, if you operate under “Preset Mode” (like
start_a_move(),.), you are not allowed to change the
acceleration parameter during operation because the
deceleration point is pre-determined. But changing the
acceleration parameter when operating under “Constant
Velocity Mode” is valid.

v_stop : This function is used to decelerate an axis to stop. This
function is also useful when preset move(both trapezoidal
and S-curve motion), manual move or home return function
is performed.

Syntax

Anal og result = v_nove (Analog axis, Real str_vel,
Real max_vel, Real accel)

Analog result = sv_npbve (Analog axis, Real str_vel,
Real max_vel, Real tlacc, Real tsacc)

Anal og result = v_change (Analog axis, Real max_vel,
Real accel)
Anal og result = v_stop (Analog axis, Real decel)

Input parameter :

axis : axis number designated to move or stop.

str_vel : starting velocity in unit of pulse per second
max_vel : maxi mumvelocity in unit of pulse per second
accel, tlacc : specified acceleration tine in unit of

The Isagraf Library For PCI-8134 - 75

second
decel, tsacc : specified acceleration timein unit of second

Output parameter :
Result : 0—No Error, >0—Error

3.4.4 Trapezoidal Motion Mode function group

Function item:
s_a_mov-Begin an absolute trapezoidal profile motion
s_r_mov—Begin a relative trapezoidal profile motion
s_t_mov-Begin a hon-symmetrical relative trapezoidal profile motion
s_ta_mov— Begin a non-symmetrical absolute trapezoidal profile

motion

a_move— Begin an absolute trapezoidal profile motion and wait for
completion

r_move— Begin a relative trapezoidal profile motion and wait for
completion

t_move— Begin a non-symmetrical relative trapezoidal profile motion
and wait for completion

ta_move— Begin a non-symmetrical absolute trapezoidal profile
motion and wait for completion

Function description:

s_a_mov : This function causes the axis to accelerate from a starting
velocity, slew at constant velocity, and decelerate to stop at
the specified absolute position, immediately returning
control to the program. The acceleration rate is equal to the
deceleration rate. a_move() starts an absolute coordinate
move and waits for completion...

s_r_mov : This function causes the axis to accelerate from a starting
velocity, slew at constant velocity, and decelerate to stop at
the relative distance, immediately returning control to the
program. The acceleration rate is equal to the deceleration
rate. r_move() starts a relative move and waits for
completion.

s_t_mov : This function causes the axis to accelerate from a starting
velocity, slew at constant velocity, and decelerate to stop at
the relative distance, immediately returning control to the
program.. t_move() starts a relative coordinate move and
waits for completion.

s_ta_mov : This function causes the axis to accelerate from a
starting velocity, slew at constant velocity, and decelerate
to stop at the specified absolute position, immediately

76 - The Isagraf Library For PCI-8134

returning control to the program.. ta_move() starts an
absolute coordinate move and waits for completion.

The moving direction is determined by the sign of pos or dist
parameter.If the moving distance is too short to reach the specified
velocity, the controller will accelerate for the first half of the distance

and decelerate for the second half (triangular profile). wait_for_done()
waits for the motion to complete.

Syntax

Analog result = s_a nove (Analog axis, Real pos, Real
str_vel, Real max_vel, Real accel)

Analog result = s_r_nove (Analog axis, Real distance,
Real str_vel, Real max_vel, Real accel)
Analog result = s_t_nove (Analog axis, Real distance,
Real str_vel, Real max_vel, Real accel, Real

decel)

Analog result = s_ta nov (Analog axis, Real pos, Real
str_vel, Real max_vel, Real tacc, Real tdec)

Analog result = a_nove (Analog axis, Real pos, Real
str_vel, Real max_vel, Real accel)

Analog result = r_nove (Analog axis, Real distance,
Real str_vel, Real max_vel, Real accel)

Analog result =t_nove (Analog axis, Real distance,
Real str_vel, Real max_vel, Real accel, Real
decel)

Analog result = ta_nove (Analog axis, Real pos, Real
str_vel, Real max_vel, Real tacc, Real tdec)

Input parameter :
axis : axis number designated to move or stop.

pos : specified absolute position to move
distance : specified relative distance to move

str_vel : starting velocity in unit of pulse per second

max_vel : maxi mumvelocity in unit of pul se per second

accel, tacc : specified acceleration tine in unit of
second

decel, tdec : specified acceleration tine in unit of
second

Output parameter :
Result: 0—No Error, >0—Error

The Isagraf Library For PCI-8134 - 77

3.4.5 S-Curve Profile Motion function group

Function item:
S_s_move —Begin a S-Curve profile motion

s_move —Begin a S-Curve profile motion and wait for completion

s_rs_move—Begin a relative S-Curve profile motion

rs_move— Begin a relative SCurve profile motion and wait for
completion

s_tas_mow Begin a non-symmetrical absolute S-curve profile
motion

tas_move— Begin a non-symmetrical absolute S-curve profile motion
and wait for completion

Function description :

s_s_move : This function causes the axis to accelerate from a
starting velocity, slew at constant velocity, and decelerate
to stop at the specified absolute position, immediately
returning control to the program. The acceleration rate is
equal to the deceleration rate. s_move() starts an absolute
coordinate move and waits for completion.

s_rs_mov : This function causes the axis to accelerate from a
starting velocity, slew at constant velocity, and decelerate
to stop at the relative distance, immediately returning
control to the program. The acceleration rate is equal to the
deceleration rate. rs_move() starts a relative move and
waits for completion.move and waits for completion.
s_tas_mo : This function causes the axis to accelerate from a
starting velocity, slew at constant velocity, and decelerate
to stop at the specified absolute position, immediately
returning control to the program.. tas_move() starts an
absolute coordinate move and waits for completion.

Syntax

Analog result = s_s _nove (Analog axis, Real pos, Real
str_vel, Real max_vel, Real tlacc, Real tsacc)

Anal og result = s_nove (Analog axis, Real pos, Real
str_vel, Real max_vel, Real tlacc, Real tsacc)

Analog result = s_rs_nov (Analog axis, Real distance,
Real str_vel, Real max_vel, Real tlacc, Real
t sacc)

Analog result = rs_nove (Analog axis, Real distance,
Real str_vel, Real max_vel, Real tlacc, Real
t sacc)

Analog result = s_tas_npo (Analog axis, Real pos, Real
str_vel, Real max_vel, Real tlacc, Real tsacc,
Real tldec, Real tsdec)

78 - The Isagraf Library For PCI-8134

Analog result = tas_nove (Analog axis, Real pos, Rea
str_vel, Real max_vel, Real tlacc, Real tsacc
Real tldec, Real tsdec)

Input parameter :

axis : axis number designated to move.
pos : specified absolute position to move
distance : specified relative distance to move

str_vel : starting velocity in unit of pulse per second

max_vel : maxi mumvelocity in unit of pulse per second

tlacc : specified linear acceleration tine in unit of
second

tsacc : specified S-curve acceleration tinme in unit of
second

tldec : specified linear deceleration tine in unit of
second

tsdec : specified S-curve deceleration tinme in unit of
second

Output parameter :

Result: 0—No Error, >0—Error

The Isagraf Library For PCI-8134 - 79

3.4.6 Linear and Circular Interpolated Motion function group

Function item :
move_xy — Perform a 2-axes linear interpolated motion between X &

Y

move_zu — Perform a 2-axes linear interpolated motion between Z &
U

arc_xy — Perform a 2-axes circular interpolated motion between X &
Y

arc_xy — Perform a 2-axes circular interpolated motion between Z &

U

Function description :

move_xy : These two functions cause a linear interpolation motion
between two axes and wait for completion. The moving
speed should be set before performing these functions.

Move_zu : These two functions cause a linear interpolation motion
between two axes and wait for completion. The moving
speed should be set before performing these functions.

Arc_xy : These two functions cause the axes to move along a
circular arc and wait for completion. The arc starts from
origin and continues through the specified angle. A positive
value for angle produces clockwise arcs and a negative
value produces counter-clockwise arcs. The center of the
arc is specified by the parameters x_center and y_center.
set_arc_division() function specifies the maximum angle(in
degrees) between successive points along the arc. The
default angle is 5 degrees. The moving speed should be
set before performing these functions.

Arc_zu : These two functions cause the axes to move along a
circular arc and wait for completion. The arc starts from
origin and continues through the specified angle. A positive
value for angle produces clockwise arcs and a negative
value produces counter-clockwise arcs. The center of the
arc is specified by the parameters x_center and y_center.
set_arc_division() function specifies the maximum angle(in
degrees) between successive points along the arc. The
default angle is 5 degrees. The moving speed should be
set before performing these functions.

Syntax
Anal og result = nmove_xy (Analog card_no, Real X, Real
y)
Analog result = nove_zu (Analog card_no, Real 2z, Real
u)

Analog result = arc_xy (Analog card_no, Real x_center,

80 - The Isagraf Library For PCI-8134

Real y_center, Real angle)
Analog result = arc_zu (Analog card_no, Real z_center,
Real u_center, Real angle)

Input parameter :
card_no : card number designated to perform interpolating function.
X,Y, Z, u : absolute target position of linear interpolation motion
X_center, y_center, z_center, u_center : center position of an arc
angle : specified angle for an arc

Output parameter :
Result: 0—No Error, >0-Error

The Isagraf Library For PCI-8134 - 81

3.4.7 Interpolation Parameters Configuring function group

Function item :
s_m_sped — Set the vector velocity
s_m_accl — Set the vector acceleration time
s_ArcDiv — Set the interpolation arc segment length
arc_opti — Enable/Disable optimum acceleration calculations for arcs
S_mratio — Set the axis resolution ratios

Function description :

S_m_sped : The vector velocity and vector acceleration can be
specified for coordinated motion by this two functions.

S_m_accl : The vector velocity and vector acceleration can be
specified for coordinated motion by this two functions.

S_arcdiv : This function specifies the maximum angle (in degrees)
between successive points along the arc. The default is 5
degrees..

Arc_opti : This function enables (optimize = TRUE) or disable
(optimize = FALSE) the automatic calculation of the
optimum acceleration for an arc. The default state for arc
optimization is enabled..

S_mratio : This function configures scale factors for the specified
axis. Usually, the axes only need scale factors if their
mechanical resolutions are different. For example, if the
resolution of feedback sensors is two times resolution of
command pulse, then ratio = 2..

Syntax
Analog result = s_msped (Real str_vel, Real max_vel)
Anal og result = s_maccl (Real accel)
Analog result = s_arcdiv (Analog aixs, Real degr ee)
Anal og result = arc_opti (Analog optim ze)
Analog result = s_nratio (Analog axis, Real ratio)

Input parameter :

axis : axis number designated to configure

str_vel : starting velocity in unit of pulse per second

max_vel : maximum velocity in unit of pulse per second

accel : specified acceleration time in unit of second

optimize : enables fptimize = 1) or disable (Eptimize = 0) the
automatic calculation of the optimum acceleration for an arc.

degree : maximum angle between successive points along the arc.

Ratio : ratio of (feedback resolution)/(command resolution)

Output parameter :
Result: 0—No Error, >0-—Error

82 . The Isagraf Library For PCI-8134

3.4.8

Interpolation Parameters Configuring function group

Function item :

s_h_cofg —Set the configuration for home return.
home_mov —Perform a home return move.

Function description :

s_h_cofg : Configure the logic of origin switch and index signal
needed for home_move() function. If you need to stop the
axis after EZ signal is active(home_mode=1 or 2), you
should keep placing ORG signal in the ON status until the
axis stop. If the pulse width of ORG signal is too short to
keep it at ON status till EZ goes ON, you should select the
org_latch as enable. The latched condition is cancelled by
the next start or by disabling the org_latch.

home_mov : This function will cause the axis to perform a home
return move according to the setting of set_home_config()
function. The direction of moving is determined by the sign
of velocity parameter(svel, mvel). Since the stopping
condition of this function is determined by home_mode
setting, user should take care to select the initial moving
direction. Or user should take care to handle the condition
when limit switch is touched or other conditions that is
possible causing the axis to stop. Executing v_stop()
function during home_move() can also cause the axis to

Syntax

stop.

Analog result = s_h_cofg (Anal og axi s, Anal og
home_node, Anal og org_l ogic, Anal og
org_l atch, Anal og ez_|I ogic)

Anal og result = home_mov (Anal og axis , Real

str_vel, Real max_vel, Real accel)

Input parameter :

axis : axis number designated to configure and perform home
returning

home_node : stopping nodes for home return. honme
mode=0, ORG active only. hone node=1, ORG
active and then EZ active to stop, high speed all

the way. home_node =2, ORG active and then EZ
active to stop, high speed till ORG active then
| ow speed till EZ active.

org_logic : Action logic configuration for ORG signal

org_l ogic=0, active low, org_logic=1, active high
org_latch : Latch state control for ORG signal

org_latch=0, latch input; org_|latch=1, latch input.

The Isagraf Library For PCI-8134 - 83

ez_logic : Action logic configuration for EZ signa
EZ_ | ogi c=0, active low, EZ | ogic=1, active high.
str_vel : starting velocity in unit of pulse per second
max_vel : maximum velocity in unit of pulse per second
accel : specified acceleration time in unit of second

Output parameter :
Result : 0—No Error, >0—Error

3.4.9 Manual Pulser Motion function group

Function item :
s_mauipt —Set pulser input mode and operation mode.
manu_mov —Begin a manual pulser movement

Function description :

s_mauipt : Four types of pulse input modes can be available for
pulser or hand wheel. User can also move two axes
simultaneously with one pulser by selecting the operation
mode to common mode. Or move the axes independently
by selecting the operation mode to independent mode.

maun_mov : Begin to move the axis according to manual pulser input
as this command is written. The maximum moving velocity
is limited by mvel parameter. Not until the v_stop()
command is written won’t system end the manual move

mode.
Syntax
Analog result = s_maui pt (Anal og axi s, Anal og
manu_i pt mode, Anal og op_node)
Anal og result = manu_nmov (Anal og axi s , Real
max_vel ,)

Input parameter :
axis : axis number designated to start manual move
manu_i pt rode : setting of manual pul ser input node from

PA and PB pi ns. i pt _mde=0, 1X AB phase type
pul se input. i pt_nmode=1, 2X AB phase type
pul se input. i pt_mde=2, 4X AB phase type
pul se input. i pt_nmode =3, CWCCWtype pul se
i nput .

op_mode : conmmon or independent node sel ection
op_node=0, |ndependent for each axis
op_node=1, PAX, PBX conmon for PAY, PBY or PAZ, PBZ
common for PAU, PBU.

max_vel : maximum velocity in unit of pulse per second

84 - The Isagraf Library For PCI-8134

Output parameter :
Result: 0—No Error, >0—Error

3.4.10 Motion Status function group

Function item :
mot_done —Return the status when a motion is done.

Function description :
mot_done : Return the motion status of PCI-8134. position.
Definition of return value is as following:
0 : the axis is busying.
1: a movement is finished
2: the axis stops at positive limit switch
3: the axis stops at negative limit switch
4: the axis stops at origin switch
5: the axis stops because the ALARM signal is active

Syntax
Anal og result = not_done (Anal og axi s)

Input parameter :
axis : axis number designated to start manual move

Output parameter :
Result :

0 : the axis is busying.
1: a movement is finished
2: the axis stops at positive limit switch
3: the axis stops at negative limit switch
4: the axis stops at origin switch
5: the axis stops because the ALARM signal isactive

The Isagraf Library For PCI-8134 -

85

3.4.11 Servo Drive Interface function group

Function item :
s_AlmLog -Set alarm logic and alarm mode
s_InpLog —Set In-Position logic and enable/disable
s_SdLog -Set slow down point logic and enable/disable
s_ErcEnl —Set ERC pin output enable/disable

Function description :

s_AlmLog : Set the active logic of ALARM signal input from servo
driver. Two reacting modes are available when ALARM signal
is active.

S_InpLog : Set the active logic of In-Position signal input from servo
driver. U sers can select whether they want to enable this
function. Default state is disabled.

s_SdLog : Set the active logic and latch control of SD signal input
from mechanical system. Users can select whether they want
to enable this function. Default state is disabled.

S_ErcEnl : You can set ERC pin output enable/disable by this
function. Default state is enabled.

Syntax
Anal og result = s_AlnLog (Anal og axis, Anal og
al m | ogi c, Anal og al m_node)
Anal og result = s_InpLog (Anal og axis, Anal og
i np_l ogi c, Anal og i np_enabl e)

Anal og result = s_SdLog (Anal og axi s, Anal og sd_| ogi c,
Anal og sd_l atch, Anal og sd_enabl e)

Anal og result = s_ErcEnl (Anal og axis, Anal og
erc_enabl e)

Input parameter :
axis : axis number designated to configure
almlogic : setting of active logic for ALARM si gnal
al m | ogi c=0, active LOW
al m | ogi c=1, active HI GH
al m_node : reacting mpdes when receiving ALARM
si gnal
al m_node=0, motor i medi ately stops.
al m_node=1, notor decel erates then stops.
inp_enable : INP function enabl e/ di sabl e
i np_enabl e=0, Di sabl ed
i np_enabl e=1, Enabl ed

inp_logic : setting of active logic for INP signal
inp_l ogi c=0, active LOW

inp_logic=1, active HI GH.

sd_logic : setting of active logic for SD signal

86 - The Isagraf Library For PCI-8134

sd_l ogi c=0, active LOW

sd_l ogi c=1, active HI GH

sd_enabl e : Sl ow down point function enabl e/ disable
sd_enabl e=0, Di sabl ed

sd_enabl e=1, Enabl ed

sd_latch : setting of latch control for SD signa
sd_l ogi c=0, do not latch

sd_l ogi c=1, latch

Erc_enabl e : ERC pin output enabl e/ disable
erc_enabl e=0, Di sabl ed

erc_enabl e=1, Enabl ed

Output parameter :
Result: 0—No Error, >0-Error

The Isagraf Library For PCI-8134 - 87

3.4.12 1/0 Control and Monitoring function group

Function item :
set_svon —Set state of general purpose output pin
g_iostus —Get all the 1/O status of PCI-8134

Function description :
set_svon : Set the High/Low output state of general purpose output
pin SVON.
g_iostus : Get all the I/O status for each axis. The definition for each
bit is as following:

Bit [Name Description
0 +EL Positive Limit Switch
1 -EL Negative Limit Switch
2 +SD Positive Slow Down Point
3 -SD Negative Slow Down Point
4 ORG Origin Switch
5 EZ Index signal
6 ALM Alarm Signal
7 | SVON SVON of PCL5023 pin output
8 RDY RDY pin input
9 INT Interrupt status
10 | ERC ERC pin output
11 INP In-Position signal input
Syntax
Analog result = set_svon (Anal og axi s, Anal og
on_of f)
Analog io_sts = g_iostus (Anal og axi s)

Input parameter :
axis : axis number for I/O control and monitoring

on_off : setting for SVON pin digital output .on_off=0,
SVON is LOW on_of f=1, SVON is HI GH

Output parameter :
result : 0—No Error, >0—Error
io_stus : I/O status word. Where “1’ is ON and “0” is OFF.

88 - The Isagraf Library For PCI-8134

3.4.13 Position Control function group

Function item :
set_pos —Set the actual position.
get_pos —Get the actual position.
set_comd —Set the current command position.
get_comd —Get the current command position.

Function description :

set_pos : changes the current actual position to the specified position

get_pos : reads the current actual position. Note that when feedback
signals is not available in the system, thus external encoder
feedback is Disabled in set_cnt_src() function, the value
gotten from this function is command position..

set_ comd : changes the command position to the specified
command position.

get_comd : reads the current command position.

Syntax

Anal og result = set_pos (Anal og axi s, Real Spos)
Anal og gpos = get_pos (Anal og axi s)

Anal og result = set_cond (Anal og axi s, Real sSpos)
Anal og gpos = get_comd (Anal og axi s)

Input parameter :
axis : axis number designated to set and get position.

spos : actual position or command position

Output parameter :
Result : 0—No Error, >0—Error
gpos : actual position or command position

The Isagraf Library For PCI-8134 - 89

3.4.14 Interrupt Control function group

Function item :
s_IntCor —Set interrupt control status
s_IntFac —Set interrupt generating factors
r_int_ax —Get the axis which generates interrupt
r_int_st —Get the interrupting status of axis

Function description :
s_IntCor : This function is used to enable/disable INT control
s_IntFac : This function allows users to select factors to initiate the
INT signal. Enter 1 in each bit to output INT signal to host PC
according to the factor set.
The definition for each bit is as following:

Bit Interrupt Factor

0 Stop with the EL signal

1 Stop with the SD signal

2 Stop with the ALM signal

3 Stop with the STP signal

4 x (should be set to 0)

5 Completion of home return

6 Completion of preset movement

7 Completion of interpolating motion for two axes: (X & Y)

or (Z&U)

8~12 x (should be set to 0)

13 when v_stop() function stop the axis

14 EA/EB, PA/PB encoder input error

15 start with STA signal

16 Completion of Acceleration

17 Start of Deceleration
18~22 Should be 0

23 RDY active (AP3 of PCL5023 change from 1 to 0)
24~31 x (should be set to 0)

Bit 14:When pins EA and EB, or PA and PB change simultaneously,
it will result in an encoder input error, with these pins made
valid.

r_int_ax : This function can be used inside the Interrupting Service
Routine(ISR) to identify which axis generates the INT signal to
host PC.

r_int_st : This function is also used inside ISR. When knowing the
interrupt requested axis by

get_int_axis(), user should read the interrupt factor by this function.

90 - The Isagraf Library For PCI-8134

The definition of each bit for *int_status is as following:

Bit Interrupt Factor
0 Stop with the +EL signal
1 Stop with the —EL signal
2 Stop with the +SD signal
3 Stop with the —SD signal
4 Stop with the ALM signal
5 Stop with the STP signal
6 0
7 0
8 Stop with v_stop() command
9 Stop with home return completed
10 0
11 Stop with preset movement completed
12 Stop with EA/EB input error
13 0
14 Stop with PA/PB input error
15 Start with STA signal
16 Deceleration Completed
17 Acceleration Starting
18~22 Should be 0
23 RDY active(AP3 of PCL5023 change from 1 to 0)
24~31 0
Syntax
Anal og result = s_IntCor (Anal og card_no, Anal og
i ni flag)
Anal og gpos = s_IntFac (Anal og axi s, Anal og
int_factor)
Analog int_axis = r_int_ax (Anal og card_no)
Anal og int_status = r_int_st (Analog card_no)

Input parameter :
card_no : card nunber wanting to enable interrupt
generating
axis : axis number wanting to set and read interrupt factor.
Iniflag : the init flag(1 : enable, o : disable)
int_factor : interrupting factor to set

Output parameter :
Result: 0—No Error, >0-Error
int_axis : axis number which generates interrupt
int_status : interrupt factor monitor

The Isagraf Library For PCI-8134 - 91

3.5

The mapping between PCIS-8134 NT DLL

function and PCI-8134 1SaGRAF Library

PCI-8134 NT DLL function

PCIS-ISG 8134 ISaGRAF Library

W_8134_Initial p8134ini
W_8134_Close p8134clo
W_8134 Set SVON set_svon
W_8134_Get_IRQ_Status Not implementation
W_ 8134 Get IRQ_ Channel g_irg_ch
W_8134_Get_Base_ Addr g_addres
W_8134 Set INT_Control s_IntCor
W_8134_Set_Config s_config
start_a_move S_a_move
a_move a_move
start_r_move S_r_move
r_move r_move
start_t move s_t__move
t_move t_move
wait_for_done Not implementation
set_move_ratio s_MRatio
get_position get_pos
set_position set_pos
get_command get_comd
set_command set_comd
v_move v_move
SV_move SV_move
v_change v_chang
V_stop v_stop
get_io_status g_liostus
motion_done mot_done

map_axes

not implementation

set_move_mode

not implementation

set_move_pos

not implementation

set_move_speed

s_m_sped

set_move_accel

s m_acel

set_move_saccel

not implementation

start_motion

not implementation

stop_motion

not implementation

set_sync_mode

not implementation

set_arc_division s_ArcDiv
arc_optimization arc_opti
move_xy move_Xxy

92 - The Isagraf Library For PCI-8134

move_zu move_zu
arc_xy arc_xy
arc_zu arc_zu
set_home_config s_h_confg
home_move home_mov
set_manu_iptmode s_Maulpt
manu_move manu_mov
set_pls_outmode s_PlIsOut
set_pls_iptmode s_Plslipt
set_cnt_src s_CntSrc
set_alm_logic s_AlmLog
set_inp_logic s_InpLog
set_erc_enable s_ErcEnl
set_sd_logic s_SdLog
set_int_factor s_IntFac
Read_Int Axis r_int_ax
Read_Int_Status r_ints_st

W 8134 INT_Enable

not implementation

W_8134_INT_Disable

not implementation

start_ta_move s_ta_mov

ta_move ta_move
start_s_move S_S_move

S_move S_move
start_rs_move S_rs_mov

rs_move rs_move
start_tas_move s_tas_mov
tas_move tas_move
start_move_all not implementation
move_all not implementation
wait_for_all not implementation

The Isagraf Library For PCI-8134 -

93

