

PCI-8134

4 Axes Servo / Stepper
Motion Control Card

Sample Application / ISaGRAF Library
Programming Guide

@Copyright 1999 ADLink Technology Inc.
All Rights Reserved.

Manual Rev. 1.00: January 25, 2000

The information in this document is subject to change without prior notice in
order to improve reliability, design and function and does not represent a
commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special,
incidental, or consequential damages arising out of the use or inability to use
the product or documentation, even if advised of the possibility of such
damages.

This document contains proprietary information protected by copyright. All
rights are reserved. No part of this manual may be reproduced by any
mechanical, electronic, or other means in any form without prior written
permission of the manufacturer.

Trademarks
NuDAQ, PCI-8134 are registered trademarks of ADLink Technology Inc, MS-
DOS & Windows 95, Windows 98, Windows NT, Visual Baisc, Visual C++ are
registered trademarks of Microsoft Corporation, Borland C++ is a registered
trademark of Borland International, Inc. Other product names mentioned
herein are used for identification purposes only and may be trademarks and/or
registered trademarks of their respective companies.

Getting service from ADLink
♦ Customer Satisfaction is always the most important thing for ADLink

Tech Inc. If you need any help or service, please contact us and get it.
ADLink Technology Inc.

Web Site http://www.adlink.com.tw
Sales & Service service@adlink.com.tw
Technical NuDAQ nudaq@adlink.com.tw
Support NuDAM nudam@adlink.com.tw
 NuIPC nuipc@adlink.com.tw
 NuPRO nupro@adlink.com.tw
 Software sw@adlink.com.tw
 AMB amb@adlink.com.tw
TEL +886-2-82265877 FAX +886-2-82265717
Address 9F, No. 166, Jian Yi Road, Chungho City, Taipei, 235 Taiwan, R.O.C.

♦ Please inform or FAX us of your detailed information for a prompt,
satisfactory and constant service.

Detailed Company Information
Company/Organization
Contact Person
E-mail Address
Address
Country
TEL FAX
Web Site

Questions
Product Model

¨OS :
¨Computer Brand :

Environment to Use

¨M/B : ¨CPU :
¨Chipset : ¨Bios :
¨Video Card :
¨Network Interface Card :
¨Other :

Challenge Description

Suggestions for ADLink

Contents • i

Contents

INTRODUCTION ...1

CHAPTER ONE: QUICK-REFERENCE GUIDE.........3

Example 2-1: PCI-8134 Configuration ... 3
Example 2-2: Use Configuration Utility ... 3

Example 2-3: Simple Function Test .. 3
Example 2-4: Motion Done Status & I/O Status Monitoring 3
Example 2-5: Interrupt Handling under Windows 95/98 by Visual

Basic 5.0 ... 3
Example 2-6: Interrupt Handling under Windows 95/98 by Visual

C++ 6.0.. 4

Example 2-7: Interrupt Handling under DOS with C...................... 4
Example 2-8: Position Control by various types of Velocity

Profiles.. 4

Example 2-9: Homing routines.. 4
Example 2-10: Multiple Axes Synchronized Motion 4
Example 2-11: Linear and Circular Interpolation........................... 5

Example 2-12: Jog .. 5
Example 2-13: Velocity Change On The Fly.................................. 5

CHAPTER TWO: EXAMPLES7

Example 2-1: PCI-8134 Initialization.. 7
2.1.1 Use 8134.INI to Configure ...7
2.1.2 An Example to Load INI file and Configure PCI-8134..........9
2.1.3 Programming under Windows NT... 10

Example 2-2: Use Configuration Utility ..11

ii • Contents

2.2.1 Config.exe Utility .. 11
2.2.2 Create an Configuration Interface... 12

Example 2-3: Simple Function Test ...13
2.3.1 Simple Function Test .. 13

Example 2-4: Motion Done Status and I/O Monitoring17
2.4.1 Program organization ... 17
2.4.2 Reading Motion Done Status .. 19
2.4.3 Reading I/O Status ... 19
2.4.4 Relative Motion Button... 20

Example 2-5: Interrupt Handling under Windows 95/98 by Visual
Basic 5.0 ..21

2.5.1 Interrupt Event .. 21
2.5.2 Create an Event .. 21
2.5.3 Create a Thread.. 21
2.5.4 Use WIN32 API in Visual Basic ... 22
2.5.5 A Complete Example ... 23

Example 2-6: Interrupt Handling under Windows 95/98 by Visual
C++ 6.0...26

2.6.1 Use PCI-8134 function library in Visual C++....................... 26
2.6.2 Create a Dialog-based MFC project 26

Example 2-7: Interrupt Handling under DOS29
2.7.1 A Skeleton Program for Interrupt Handling 29
2.7.2 Other Empty ISR functions .. 31

Example 2-8: Position Control by various types of Velocity
Profiles...31

2.8.1 Velocity Profile.. 31
2.8.2 Various types of Velocity Profile for Position Control..... 32

Example 2-9: Homing routines...36
2.9.1 Basic Homing Styles ... 36
2.9.2 Advanced Homing Styles... 38
2.9.3 Implement Homing Program... 40

Example 2-10: Multiple Axes Synchronized Motion45
2.10.1 How to use start_move_all().. 45
2.10.2 Implement Multiple Axes Synchronized Motion................ 45

Contents • iii

Example 2-11: Linear and Circular Interpolation..........................48
2.11.1 How to use Linear Interpolation Functions 48
2.11.2 How to use Circular Interpolation Functions...................... 49
2.11.3 Coordinate System in Microsoft Windows®....................... 49
2.11.4 DC (Device Context) .. 52
2.11.5 Animation ... 53
2.11.6 Implement 2-D example .. 56

Example 2-12: Jog ...59
2.12.1 Create a Thread for Jogging ... 60
2.12.2 Create a Scope for Display Jogging 62

Example 2-13: Velocity Change On The Fly.................................63
2.13.1 Velocity Change on the fly ... 63
2.13.2 Velocity Value.. 63
2.13.3 Velocity Change on the Fly Demo results........................... 63
2.13.4 Limitation of Velocity Change on the Fly 66
2.13.5 Repeat Mode.. 67

CHAPTER THREE: THE ISAGRAF LIBRARY FOR
PCI-8134.................................69

3.1 Installation of PCI-8134 ISaGRAF Library69
3.1.1 PCI-8134 ISaGRAF Library Installation 69
3.1.2 PCI-8134 ISaGRAF Library Un-installation.......................... 70

3.2 Restore PCI-8134 ISaGRAF Library C Function Objects in
the ISaGRAF Workbench70

3.2.1 With ADLink’s “PCI-8134 ISaGRAF C function Object”
diskettes... 70

3.2.2 With “ADLink All-In-One Compact Disc”:............................ 70
3.3 Restore PCI-8134 ISaGRAF Sample Programs......................71

3.3.1 With ADLink’s “PCI-8134 ISaGRAF Sample Program”
diskettes... 71

3.3.2 With “ADLink All-In-One Compact Disc”:............................ 71
3.4 The definition of PCIS-ISG 8134 ISaGRAF Library72

3.4.1 Initialization function group .. 72
3.4.2 Pulse Input /Output Configuration function group........... 74

iv • Contents

3.4.3 Continuously Motion Move function group 75
3.4.4 Trapezoidal Motion Mode function group 76
3.4.5 S-Curve Profile Motion function group 78
3.4.6 Linear and Circular Interpolated Motion function group.80
3.4.7 Interpolation Parameters Configuring function group 82
3.4.8 Interpolation Parameters Configuring function group 83
3.4.9 Manual Pulser Motion function group 84
3.4.10 Motion Status function group ... 85
3.4.11 Servo Drive Interface function group 86
3.4.12 I/O Control and Monitoring function group......................... 88
3.4.13 Position Control function group .. 89
3.4.14 Interrupt Control function group.. 90

3.5 The mapping between PCIS-8134 NT DLL function and PCI-
8134 ISaGRAF Library ..92

Introduction • 1

Introduction

In addition to the extensive library of standard functions, ADLink provides an
Sample Disk containing a variety of standard applications that you can use as
a starting point for applications development. This manual is a companion to
that disk.

This document is divided into two main sections. The first is a quick reference
that groups the programs into main categories and then lists and describes
the individual programs on the disk that fall into that category. The second
section is a printout of the sample code files. A cross-reference table of all the
files is located at the beginning of this section.

The various application function described here can span a wide variety of
customer applications. Look for examples that may be useful to your particular
motion control application.

The individual files show internals of the features work. Use these examples
as “starter" code to integrate into your development. They will also help you
gain an understanding of how the motion card works and how it implements
the motion functions.

You can also use these functions to debug individual features or function s
and to ensure the motion control subsystem is functioning properly. This can
help isolate problems to specific subsystem level.

Quick-Peference Guide • 3

Chapter One: Quick-Reference
Guide

Example 2-1: PCI-8134 Configuration
Demonstrate how to configure axes by 8134.ini and how to create an
application project in Visual Basic programming environment.

Example 2-2: Use Configuration Utility
Demonstrate how to call the configuration utility by shell command in
user’s program.

Example 2-3: Simple Function Test
Demonstrate how to make a simple test by using continuous
movement function and by reading position counter feedback.

Example 2-4: Motion Done Status & I/O Status
Monitoring

Demonstrate how to read the motion done status and I/O status of
an axis. Use the color of text box control item as an indicator to
display each status.

Example 2-5: Interrupt Handling under Windows
95/98 by Visual Basic 5.0

Demonstrate how to write a thread to capture the interrupt events
triggered by hardware interrupt in Visual Basic 5.0.

4 • Quick-Reference Guide

Example 2-6: Interrupt Handling under Windows
95/98 by Visual C++ 6.0

Demonstrate how to write a thread to capture the interrupt event
triggered by hardware interrupt in Visual C++ MFC.

Example 2-7: Interrupt Handling under DOS with C
Demonstrate how to write an ISR to capture the interrupt triggered
by hardware in DOS environment.

Example 2-8: Position Control by various types of
Velocity Profiles

Demonstrate how to write a program for a particular type of position
control by choosing a correct function.

Example 2-9: Homing routines
Demonstrate 6 types of homing routines and explain each type’s
hardware setup. These are as follows:

1) Home Mode 0 (provide by PCI-8134 function library)
2) Home Mode 1 (provide by PCI-8134 function library)
3) Home Mode 2 (provide by PCI-8134 function library)
4) Two-stage homing
5) Midpoint Homing between positive and negative limits
6) Auto Home search

Example 2-10: Multiple Axes Synchronized Motion
Demonstrates how to write a program for multiple axes synchronized
motion.

Quick-Peference Guide • 5

Example 2-11: Linear and Circular Interpolation
Demonstrate how to use the interpolation function sets and how to
visualize the 2-D motion by creating a dynamic scope. The DC
drawing concept, coordinate transformation, and animation method
are introduced here.

Example 2-12: Jog
Demonstrate how to use software method to make a jogging function.
The jogging path is displayed in a dynamic scope.

Example 2-13: Velocity Change On The Fly
Demonstrate how to use velocity change function and how to display
velocity and position data graphically. The position profile and
velocity profile are displayed by a software dynamic scope. User can
use other motion types and see the differences from each type of
position control profiles.
The repeat mode by software is introduced here, too.

Examples • 7

Chapter Two: Examples

Example 2-1: PCI-8134 Initialization

2.1.1 Use 8134.INI to Configure
We provide a very convenient way to modify your configuration from
a Windows® standard INI file. You can edit this file directly by any
text editor or use Config.exe from Appendix C to configure this file.
There are several functions and modules need to be added in your
VB project before programming.

Please check:
1. PCI-8134 card has been inserted in one PCI slot properly
2. Make sure that 8134.DLL does exist in your Windows system

directory.
3. Add two files in your project: Initial.BAS & Def8134.BAS from

Appendix A and B

Note: Initial.BAS provides several functions to deal with 8134.INI and
Def8134.BAS contents all 8134-function library declarations.

After Add these two files, your project window in VB IDE is like as
follows

8 • Examples

These two files are very important for 8134 application programming.
The source codes of these two files are listed in appendix A & B

An example of 8134.INI files is as follows:

[Axis 0]
PLS_OUTMODE= 0
PLS_IPTMODE= 0
CNT_SRC= 0
RATIO= 1
HOME_MODE= 0
ORG_LOGIC= 1
ORG_LATCH= 0
EZ_LOGIC= 0
IPT_MODE= 0
OP_MODE= 0
ALM_LOGIC= 0
ALM_MODE= 0
INP_LOGIC= 0
INP_ENABLE= 0
SD_LOGIC= 1
SD_LATCH= 1
SD_ENABLE= 1
ERC_ENABLE= 0
INT_FACTOR= 0

[Axis 1]
PLS_OUTMODE= 0
PLS_IPTMODE= 2
CNT_SRC= 1
RATIO= 2.5
HOME_MODE= 0
ORG_LOGIC= 1
ORG_LATCH= 0
EZ_LOGIC= 1
IPT_MODE= 0
OP_MODE= 0
ALM_LOGIC= 0
ALM_MODE= 0
INP_LOGIC= 0
INP_ENABLE= 0
SD_LOGIC= 1
SD_LATCH= 1
SD_ENABLE= 0
ERC_ENABLE= 0
INT_FACTOR= 8642799

[Axis2]
.
.
.

Examples • 9

2.1.2 An Example to Load INI file and Configure PCI-8134

Example 2-1: Step by Step
1) Open a new project.
2) Add two module files: Def8134.BAS and Initial.BAS
3) Write Form_Load Procedure
4) Add the necessary Form variables
5) Add two text boxes and one command button to show IRQ and

base address
6) Run it

When we press the show button, it will display IRQ number and
Base address on text box. This form is like as follows:

In Step 3) Form_Load Procedure

Private Sub Form_Load()

' Initialize 8134
 If W_8134_Initial(TotalCard, MyPCI) Then
 MsgBox "You Don't Have any PCI-8134 Card!"
 End
 End If

'Load INT file and Configure All Setting
 If LoadConfigFile(Axis, TotalCard) Then
 MsgBox "You Must Edit an Config File First!"
 Else
 ConfigAll Axis, TotalCard
 End If
End Sub

In Step 4) Add general declaration variables in the Form

Dim TotalCard As Integer
Dim MyPCI As PCI_INFO
Dim Axis(0 To 4*MAX_PCI_CARDS - 1) As AxisConfig

10 • Examples

In Step 5) Add some additional objects
Add two text boxes and one button to show IRQ and Base Address
Information.

Object Type Attribute Value

Name Command1 Command Button
Caption Show
Name T_IRQ Text Box
Text N/A
Name T_Base Text Box
Text N/A

The codes in Command1 button:

Private Sub Command1_Click()
Dim CardNo,irqNo,baseAddr as integer

 CardNo=0
 'Show IRQ and Base Address
 W_8134_Get_IRQ_Channel CardNo, irqNo
 W_8134_Get_Base_Addr CardNo, baseAddr
 T_IRQ.Text = Str(irqNo)
 T_Base.Text = Hex(baseAddr)
End Sub

After all steps above, run it and you will see the results. If it tells that
you must edit a configuration file first, you should run the config.exe
in the sample disk to create a 8134.INI file.

2.1.3 Programming under Windows NT
There is a little difference when you want to use PCI-8134 library
under NT. The Initializing function parameter is different as follows:
Int i=0;
U16 Total_Card=0;
For(i=0;i<MAX_PCI_CARDS;i++) {
 If(W_8134_Initial(i) == 0)
 Total_Card++;
}

You can get the card amounts in Total_Card variable.

Finally, you must close PCI-8134 resources when you exit the
program. The codes are as follows:
int i=0;
for(i=0;i<Total_Card;i++) W_8134_Close(i);

That’s all the differences between Win95 and NT programming

Examples • 11

Example 2-2: Use Configuration Utility
Sometimes, user needs a configuration interface in his program. We
provide a utility – Config.exe to help user to make it. The config.exe
can be loaded by “Shell” command in user’s program. Use this
program to create or modify 8134.INI and reconfigure PCI-8134
according to this file in user’s program.

2.2.1 Config.exe Utility
 The config.exe file is at Appendix C and it looks like as follows:

12 • Examples

2.2.2 Create an Configuration Interface

Example 2-2: Step by Step
1) Open a new project.
2) Add two module files: Def8134.BAS and Initial.BAS
3) Write Form_Load Procedure
4) Add the necessary Form variables
5) Add two command buttons and one frame
6) Write command button procedure
7) Run it

When user press “Edit Config” button, the config.exe will be started.
After configure all parameters of each axis, press “Save Config”
button in config.exe to save 8134.INI. Finally, press “ReConfig”
button in this program to update new parameters from 8134.INI file.

In Step 3) & 4) Please refer to 2.1.2

In Step 5) Add some additional objects

Object Type Attribute Value
Name C_ShINI Command Button
Caption Edit Config
Name C_RCfg Command Button
Caption ReConfig

In Step 6) The codes for these two buttons are as follows:

Private Sub C_RCfg_Click()
 LoadConfigFile Axis, TotalCard
 ConfigAll Axis, TotalCard
End Sub

Private Sub C_ShINI_Click()
 Shell App.Path & "\" & "Config.exe", vbNormalFocus
End Sub

Examples • 13

Notice that there is a Shell function. It loads an executable file in
your application’s path. So you must copy config.exe file to a correct
location or your program won’t find this file to load.

The source code of config.exe is in Appendix C

Example 2-3: Simple Function Test
In this section, we will show how to combine the stuffs we have
learned in previous sections and add some new features in the
program. For example: display position, set continuous movement
parameters, and stop button. You can simulate this movement by
setting feedback source as command input(Internal Pulse type)
instead of connecting any real encoder.

2.3.1 Simple Function Test
When you press forward or backward button, you will see the
number increased or decreased in current position text box. You can
press stop button at any moment when you want to stop motion.

Example 2-3: Step by Step
1) Open a new project.
2) Add two module files: Def8134.BAS and Initial.BAS
3) Write Form_Load Procedure
4) Add the necessary Form variables
5) Add buttons and text Boxes
6) Write forward/backward procedure
7) Write stop button procedure
8) Create a timer to get position
9) Run it

When user press forward or backward button, the desired axis will move
continuously. When user press stop button, the axis will stop immediately.
There is a text box to display current pulse amount (current position).
There are two text boxes for user to enter the desired card number and
axis number. There are also two text boxes for user to enter moving
parameters. This program looks like as follows:

14 • Examples

In Step 1) to 4) please refer to previous sections

In Step 5) Add buttons and text boxes

Object Type Attribute Value
Name Form1 Form*
Caption Simple Test
Name C_ShINI Command Button*
Caption Edit Config
Name C_RCfg Command Button*
Caption ReConfig
Name B_Forward Command Button
Caption <-
Name B_Backward Command Button
Caption ->
Name B_Stop Command Button
Caption Stop
Name T_CardNo Text Box
Text 0
Name T_AxisNo Text Box
Text 0
Name T_VStr Text Box
Text 1000
Name T_VMax Text Box
Text 5000
Name T_CurPos Text Box
Text 0
Name Timer1 Timer
Interval 10

Examples • 15

In Step 6) Write Move Forward/Backward procedure

Private Sub B_Backward_Click()
Dim AxisNo As Integer
Dim CardNo As Integer
Dim Channel As Integer

 AxisNo = CInt(T_AxisNo.Text)
 CardNo = CInt(T_CardNo.Text)
 Channel = 4 * CardNo + AxisNo

 v_move Channel, -CDbl(T_VStr.Text),-Dbl(T_VMax.Text),

0.1
End Sub

Private Sub B_Forward_Click()
Dim AxisNo As Integer
Dim CardNo As Integer
Dim Channel As Integer

 AxisNo = CInt(T_AxisNo.Text)
 CardNo = CInt(T_CardNo.Text)
 Channel = 4 * CardNo + AxisNo

 v_move Channel, CDbl(T_VStr.Text), CDbl(T_VMax.Text),

0.1
End Sub

In Step 7) Write Stop button procedure

Private Sub B_Stop_Click()
Dim AxisNo As Integer
Dim CardNo As Integer
Dim Channel As Integer

 AxisNo = CInt(T_AxisNo.Text)
 CardNo = CInt(T_CardNo.Text)
 Channel = 4 * CardNo + AxisNo

 v_stop Channel, 0.1
End Sub

16 • Examples

In Step 8) Create a Timer for Displaying position

Private Sub Timer1_Timer()
Dim AxisNo As Integer
Dim CardNo As Integer
Dim Channel As Integer
Dim Pos As Double

 AxisNo = CInt(T_AxisNo.Text)
 CardNo = CInt(T_CardNo.Text)
 Channel = 4 * CardNo + AxisNo

 get_position Channel, Pos
 T_CurPos.Text = Str(Pos)
End Sub

Note: If these programs don’t work, try to check your parameter
settings by using Config.exe or to check your hardware.

Examples • 17

Example 2-4: Motion Done Status and I/O
Monitoring

Motion status or motion done status is an integer value from 0 to 5
which is returned from PCI-8134. It tells user the motion status of
one axis. Please refer to the table in section 2.4.2
There are 12 I/O statuses in each axis. PCI-8134 will return an
integer value to represent these statuses. Please refer to the table
in section 2.4.3

2.4.1 Program organization
We add a relative movement function and two rows of text boxes to
indicate I/O and motion status. When the specific I/O status is active,
the color of the respective text box turns to green. User can test
hardware I/O point by this program.
Please refer to EX2-4 directory for the complete source codes.

Example 2-4: Step by Step
1) Open a new project.
2) Add two module files: Def8134.BAS and Initial.BAS
3) Write Form_Load Procedure
4) Add the necessary Form variables and objects
5) Add two text boxes array to indicate these statuses
6) Create a timer
7) Read motion done status
8) Read I/O status
9) Relative motion button
10) Create a timer to get position
11) Run it

This program looks like as follows:

18 • Examples

In Step 4) Add objects of the form
Other control items are as follows:
Object Type Attribute Value

Name Form1 Form
Caption Simple Test
Name C_ShINI Command Button
Caption Edit Config
Name C_RCfg Command Button
Caption ReConfig
Name C_RMove Command Button
Caption Relative Move
Name T_Dist Text Box
Caption 5000
Name T_SVel Text Box
Caption 2500
Name T_MVel Text Box
Text 500
Name T_CardNo Text Box
Text 0
Name T_AxisNo Text Box
Text 0
Name T_VStr Text Box
Text 1000
Name T_VMax Text Box
Text 5000
Name T_CurPos Text Box
Text 0
Name Timer1 Timer
Interval 10

In Step 5) Add Text box array
Object Name Index
TextBox T_IOState 0~11
TextBox T_MotionState 0~5

In Step 7) Read Motion Done Status

Examples • 19

2.4.2 Reading Motion Done Status
If you want to know the stopping reason of an axis, using
motion_done() is an easy way to achieve it. The motion done status
table is as follows:

Return value Axis Status
0 Busy
1 Movement Finished
2 Stops at Positive Limit Switch
3 Stops at Negative Limit Switch
4 Stops as Origin Switch
5 Stops by Alarm Signal

The following program must be placed in timer section in order to
read the status and display it constantly.

 'Display Motion Status
 MotionStatus = motion_done(Channel)
 For i = 0 To 5
 If MotionStatus = i Then
 T_MotionState(i).BackColor = &HFF00&
 Else
 T_MotionState(i).BackColor = &HFF&
 End If
 Next I

In Step 8) Read I/O Status

2.4.3 Reading I/O Status
If you want to know the I/O status of an axis, using get_io_status() is
an easy way to do this. Each bit in I/O status value stands for one
I/O status. The details of these bits are as follows:

Bit Name Description
0 +EL Positive Limit Switch
1 -EL Negative Limit Switch
2 +SD Positive Slow Down Point
3 -SD Negative Slow Down Point
4 ORG Origin Switch
5 EZ Index Signal
6 ALM Alarm Signal
7 SVON SVON of PCL5023 pin output
8 RDY RDY pin input
9 INT Interrupt Status

10 ERC ERC pin output
11 INP In-Position signal input

20 • Examples

In order to read I/O state and display it constantly, the following
program must be placed in timer section.

 'Display I/O Status
 get_io_status Channel, IOState
 For TestBit = 0 To 11
 If 2 ^ TestBit And IOState Then
 T_IOState(TestBit).BackColor = &HFF00&
 Else
 T_IOState(TestBit).BackColor = &HFF&
 End If
 Next TestBit

In Step 9) Relative motion button

2.4.4 Relative Motion Button
There is a relative motion button in the form. When it is pressed, the
axis will move for a distance. The program is as follows:

' Relative Button Click
Private Sub C_RMove_Click()
 start_r_move Channel, CDbl(T_Dist.Text),

CDbl(T_SVel.Text), CDbl(T_MVel.Text), 0.5
End Sub

Examples • 21

Example 2-5: Interrupt Handling under Windows
95/98 by Visual Basic 5.0

2.5.1 Interrupt Event
In config.exe utility, user can choose the interrupt types in the check
boxes. If any one of the interrupt factors is active, the utility will
automatically enable the interrupt service by set_int_control()
function. If you want to use interrupts in 32bits Windows® system,
you must set up an event by W_8134_Set_INT_Enable() function too.
Set up an event for each axis to handle the interrupts under
Windows® is the main topic in this section.

2.5.2 Create an Event
In Form_Load Procedure, user can setup an event by
W_8134_INT_Enable(). Remember that every axis must has its own
event handle. The program for setting events is as follows:

Public hEvent(4*MAX_PCI_CARDS-1) As Long

For i = 0 To TotalCard - 1
 W_8134_INT_Enable i, hEvent(4*i)
Next

Note: hEvent is a global array. We assign it to a maximum number of
total cards for convenient. The first parameter of
W_8134_INT_Enable function is card number and the second
parameter is the first event address of each card.

2.5.3 Create a Thread
After setting events, you must create a thread to receive this event
which is triggered by hardware interrupt. We suggest that you must
create a thread and use WaitForSingleObject() WIN32 API to do this
for every axis in order to get the best performance of receiving
interrupts. You can also create only one thread to receive all the
interrupt events and use WaitForMultipleObjects() WIN32 API to do
this.

The following program tells you how to create an thread and receive
interrupt events.

hIntThread = CreateThread(0, 0, AddressOf IntThread, 0,

0, ThreadID)
There is a function name in above function. It is the thread’s name.

22 • Examples

Its definition is as follows:

Function IntThread(ByVal Temp As Long) As Long
Dim IntCard As Long

 Do
 WaitForSingleObject(hEvent(AxisNo), &HFFFFFFFF)
 get_int_status AxisNo, IntStatus

 ' you can do something here

 ResetEvent (hEvent(AxisNo))
 Loop While ThreadKey = True
End Function

Notice that if you use WaitForSingleObject(), you must assign the
axis number in event array. There is one global varaible,“ThreadKey”,
for control this thread. When it is ture, the thread will constantly
remain in PC and when it is false, the thread will end naturally.

2.5.4 Use WIN32 API in Visual Basic
In order to use WIN32 API, you must add a new module in the
project to place WIN32 API declerations there.

Public Declare Function CreateThread Lib "kernel32"

(ByVal lpThreadAttributes As Long, ByVal
dwStackSize As Long, ByVal lpStartAddress As Long,
ByVal lpParameter As Long, ByVal dwCreationFlags
As Long, ByRef lpThreadId As Long) As Long

Public Declare Function WaitForMultipleObjects Lib
"kernel32" (ByVal nCount As Long, lpHandles As
Long, ByVal bWaitAll As Long, ByVal
dwMilliseconds As Long) As Long

Public Declare Function WaitForSingleObject Lib
"kernel32" (ByVal hHandle As Long, ByVal
dwMilliseconds As Long) As Long

Public Declare Function CloseHandle Lib "kernel32"
(ByVal hObject As Long) As Long

Public Declare Function ResetEvent Lib "kernel32"
(ByVal hEvent As Long) As Long

Examples • 23

2.5.5 A Complete Example
We use the same concept in last example to display interrupt status
by a text box array. If interrupt comes, the thread function will receive
it and decode this value. Then it will display the interrupt status on
the text box array. We use WaitForMultipleObjects() in stead of
WaitForSingleObject() to do this for demonstration.
In order to test interrupt signal, we design some buttons to generate
it. The interrupt factors must enable properly in order to receive the
signal. You must set the interrupt factor bit 5,6,13,16,17 enable
because the following example will demonstrate these signals. Don’t
enable bit6 and bit 7 at the same time.

Example 2-5: Step by Step
1) Open a new project and add Def8134.BAS and Initial.BAS
2) Add an global module, Global.BAS, and place function decleration
3) Write Form_Load Procedure to initialize card and thread
4) Add the test buttons and objects
5) Decode Interrupt status
6) Run it

This program looks like as follows:

24 • Examples

In Step 2) Place function declaration in Global.BAS
WIN32 APIs must be placed in this module. Please refer to 2.5.4 to
insert it.
The thread is defined as follows:
Function IntThread(ByVal Temp As Long) As Long
 Do
 IntAxis = WaitForMultipleObjects(4 * TotalCard,

hEvent(0), 0, &HFFFFFFFF)
 get_int_status IntAxis, IntStatus

 ' you can do something here

 ResetEvent (hEvent(IntAxis))
 Loop While ThreadKey = True
End Function

Note: WaitForMultipleObjects() will return an axis number. It means
that the axis’s interrupt is triggered and the axis’ corresponding
event is active. In the first parameter of this function, you must
put the total amount of events here. In second parameter of this
function, you must put the first event address here.

In Step3) Write Form_Load Procedure to initialize card and thread
Except for Initialization and configuration, you must create events
and a thread here. The program is like as follows:

For i = 0 To TotalCard - 1
W_8134_INT_Enable i, hEvent(4 * i)
Next
ThreadKey = True
hIntThread = CreateThread(0, 0, AddressOf IntThread, 0,

0, ThreadID)

The Boolean value, ThreadKey, can be controlled by another object
in order to end this thread.

In Step 4) Add the test buttons and objects

In order to test the interrupt signal, we must use some functions to
generate it. For example: Use forward or backward moving button to
generate interrupt status bit 16 and bit 17. Use relative movement
function to generate interrupt status bit 11. Use home function to
generate interrupt status bit 9. Use stop function to generate
interrupts status bit8. Please refer to example 2-5 source codes to
create them.

Examples • 25

In Step 5) Decode Interrupt Status
In order to decode interrupt status more effectively, we define a INT
status array: IntArray(14). The INT status array is a continuos array
from 0 to 14 but the interrupt status returned by get_int_status() is
not in the same order with INT status array. So you must build a
mapping table to deal it. The mapping table is as follows:

 'INT state mapping table
 IntArray(0) = 0
 IntArray(1) = 1
 IntArray(2) = 2
 IntArray(3) = 3
 IntArray(4) = 4
 IntArray(5) = 5
 IntArray(6) = 8
 IntArray(7) = 9
 IntArray(8) = 11
 IntArray(9) = 12
 IntArray(10) = 14
 IntArray(11) = 15
 IntArray(12) = 16
 IntArray(13) = 17
 IntArray(14) = 23

The left side is INT status array and the right side is actual interrupt
status bits defined by get_int_status().

In order to display INT status array, you must create a corresponding
text box array. The name of text box array is INTState(0 to 14). The
program for decoding interrupt status and displaying on text box is
as follows:

 For TestBit = 0 To 14
 If 2 ^ IntArray(TestBit) And IntStatus Then
 Form1.INTState(TestBit).BackColor = &HFF00&
 Else
 Form1.INTState(TestBit).BackColor = &HFF&
 End If
 Next

This program is placed in thread function.

26 • Examples

Example 2-6: Interrupt Handling under Windows
95/98 by Visual C++ 6.0

2.6.1 Use PCI-8134 function library in Visual C++
There are two files need to be added in Visual C++ IDE if you wan to
build a application under Visual C++. One is header file, pci_8134.h
and the other is library file, 8134.lib. There is no configuration utility
provided like VB yet so you must use function library to configure
PCI-8134’s parameters one by one.

2.6.2 Create a Dialog-based MFC project
We use a simple program to demonstrate interrupt function under
Visual C++. First, you must create a dialog-based MFC project. The
dialog resource is like as follows:

When you press Move button, axis0 will run for 10,000 pulses.
During this operation, you will see the interrupt value will become
20000h when it starts. At the end if this moving, interrupt value will
become 10000h and then 800h. If you press stop button, the
interrupt value will become 100h.

Example 2-6: Step by Step
1) Create a dialog-based MFC project and include pci_8134.h and

8134.lib
2) Write Initial function and configure functions
3) Add Global variables
4) Create a thread in initial section
5) Define thread procedure in global section
6) Add the test buttons and objects
7) Create a timer and write its procedure
8) Run it

Examples • 27

In Step 2) Initialize PCI-8134 and configuration
Add the following program in dialog initial section.

 W_8134_Initial(&existCards, &pciInfo);
 set_cnt_src(0,0);
 set_pls_iptmode(0,2);
 set_pls_outmode(0,0);
 set_home_config(0,0,1,0,1);
 set_inp_logic(0,1,1);
 set_alm_logic(0,0,0);
 set_move_ratio(0,1);
 set_int_factor(0,0x832040);
 W_8134_Set_INT_Control(0,1);

In Step 3) Add Global Variable
 PCI_INFO pciInfo;
 U16 existCards;
 bool ThreadOn=false;
 U32 IntState=0;
 HANDLE hEvent=0;

In Step 4) Create Thread In Initial Section
W_8134_INT_Enable(0,&hEvent);
ThreadOn=true;
AfxBeginThread(IntThreadProc,GetSafeHwnd(),THREAD_PRIORI

TY_NORMAL);

In Step 5) Define Thread Procedure in Global Section
UINT IntThreadProc(LPVOID pParam)
{

 while(ThreadOn)
 {
 ::WaitForSingleObject(hEvent,INFINITE);

 get_int_status(0,&IntState);

 ::ResetEvent(hEvent);
 }
 return true;
}

28 • Examples

In Step 6) Add Move Function and Stop Function

In Stop button click event :
v_stop(0,0.1);

In Move button click event :
start_r_move(0,10000,100,5000,0.1);

In Step 7) Create a timer and write its procedure

In initial section, we create a timer :
 SetTimer(1,100,NULL);

In Timer event procedure : get current command pulses and show
interrupt value and position.

 double P;

 get_position(0,&P);
 m_Pos.Format("%10.1f",P);
 m_IntValue.Format("%xh",IntState);
 UpdateData(false);
 CDialog::OnTimer(nIDEvent);

Examples • 29

Example 2-7: Interrupt Handling under DOS

2.7.1 A Skeleton Program for Interrupt Handling
PCI-8134 Library provides an easy way to use interrupts under DOS
because it handles most of the routine works during initialization.
You just need to follow the example in this section and to fill out the
blank block in each procedure. The skeleton program of interrupt
handling is as follows:

1) In main procedure
void main(void)
{
 U16 i, bn=0, axis_no=0, c_no=0;

// -------- Initialization of PCI-8134 card --------
 _8134_Initial(&bn, &info);

// ------- Put Other Setting for PCI-8134

 set_pls_outmode(axis_no, 0); // Pulse output mode to OUT/DIR
 set_cnt_src(axis_no, 0); // Command as Input Counter
 set_pls_iptmode(axis_no, 2); // 4x AB phase pulse input
 set_move_ratio(axis_no, 1); // Set Move Ration as 1

 .
 .
 .

// --------- Set Interrupt Factor for Axis 0 ---------

 set_int_factor(axis_no, 0x65); // +-EL, ALM, Home, Move

// --------- Enable Interrupt for card 0 -------------

 _8134_Set_INT_Enable(cno, 1); // Enable Int

do {

 while(int_flag)
 {
 int_flag = 0;

// ----------- You can write other codes here ---------------

 }

30 • Examples

} while (…)

// ---------- Close all resource used by PCI-8134 -------------
 for(i=0; i<bn; i++)
 _8134_Close(i);
}

2) In ISR definition function
void interrupt _8134_isr0(void)
{
 U16 int_axis;
 U16 irq_status;

 disable();
 _8134_Get_IRQ_Status(0, &irq_status);
 if(irq_status)
 {
 get_int_axis(&int_axis);
 int_flag = 1;
 irq_axs = int_axis;
 get_int_status(int_axis, &irq_sts);

 // ----------- You can write other codes here ---------------

 }
 else
 _chain_intr(pcinfo.old_isr[0]);

 outportb(0x20, 0x20);
 outportb(0xA0, 0x20);
 enable();

}

Examples • 31

2.7.2 Other Empty ISR functions
No matter how many cards you use in your system, you must define
12 ISR functions in any PCI-8134 DOS program even the ISR
function is empty. The function name of these 12 ISR routines must
follow the styles below:

 void interrupt _8134_isr0(void){ }

void interrupt _8134_isr1(void){ }
 .
 .
 .
void interrupt _8134_isr9(void){ }
void interrupt _8134_isra(void){ }
void interrupt _8134_isrb(void){ }

A complete example for interrupt handling is in EX2-7.

Example 2-8: Position Control by various types of
Velocity Profiles

2.8.1 Velocity Profile
PCI-8134 supports 14 function types for position control in function
library. The following table is the summary:

 Trapezoidal S-Curve
Absolute start_a_move a_move Start_s_move s_move Symmetrical
Relative start_r_move r_move Start_rs_move rs_move
Absolute start_ta_move ta_move Start_tas_move tas_move Non-

Symmetrical Relative start_t_move t_move *N/A *N/A
* It can be achieved by using absolute movement function with some
tricks.

Each function has at least the following parameters:

1) Moving axis
2) Moving position or distance (depends on absolute or relative

mode)
3) Starting Velocity
4) Maximum Velocity

32 • Examples

Besides, The parameters of acceleration time depends on what
velocity profile you choose. For example, a Non-Symmetrical S-
Curve motion must set the following acceleration and deceleration
time parameters:

1) Linear and S-curve acceleration time
2) Linear and S-curve deceleration time

2.8.2 Various types of Velocity Profile for Position Control

Example 2-8 : Step by Step
1) Open a new project and add Def8134.BAS and Initial.BAS
2) Add necessary control objects and write the codes
3) Write Position 1 and Position 2 procedure
4) Run it

There are 3 control items: Current Axis, Configuration, and Current
Position, which have discussed in previous examples. The “Option
Button” control object must be placed in a frame container for a
group.

In absolute mode, when “Position1” or “Position 2” button is pressed,
the axis will move to the desired position absolutely.
In relative mode, when “Position 1” or “Position 2” button is pressed,
the axis will move for a desired distance.

You can change the velocity profile setting by click the “Option
Button” in “Velocity Profile” frame and “Symmetric Velocity” frame.

For each type, the corresponding parameters must be filled in the
text box. You can refer to the manual for details.

Examples • 33

This program looks like as follows:

In Step 1) and 2)

Please refer to the source codes in the diskette or previous
examples.

In Step 3)
Write the procedure for “Position 1”
Private Sub C_P1_Click()

 Select Case ActionMode
 'Absolute Mode
 Case 0
 Select Case Profile
 'T_Curve
 Case 0
 Select Case SymOn
 'Symmetric
 Case True

34 • Examples

 start_a_move Channel, CDbl(T_P1),
CDbl(T_VStr.Text), CDbl(T_VMax.Text),
CDbl(T_Tacc.Text)

 'Non-Symmetric
 Case False
 start_ta_move Channel, CDbl(T_P1),

CDbl(T_VStr.Text), CDbl(T_VMax.Text),
CDbl(T_Tacc.Text), CDbl(T_Tdec.Text)

 End Select
 'S_Curve
 Case 1
 Select Case SymOn
 'Symmetric
 Case True
 start_tas_move Channel, CDbl(T_P1),

CDbl(T_VStr.Text), CDbl(T_VMax.Text),
CDbl(T_Tacc.Text), CDbl(T_TSacc.Text),
CDbl(T_Tacc.Text), CDbl(T_TSacc.Text)

 'Non-Symmetric
 Case False
 start_tas_move Channel, CDbl(T_P1),

CDbl(T_VStr.Text), CDbl(T_VMax.Text),
CDbl(T_Tacc.Text), CDbl(T_TSacc.Text),
CDbl(T_Tdec.Text), CDbl(T_TSdec.Text)

 End Select
 End Select
 ' Relative Mode
 Case 1
 Select Case Profile
 'T_Curve
 Case 0
 Select Case SymOn
 'Symmetric
 Case True
 start_r_move Channel, CDbl(T_P1),

CDbl(T_VStr.Text), CDbl(T_VMax.Text),
CDbl(T_Tacc.Text)

 'Non-Symmetric
 Case False
 start_t_move Channel, CDbl(T_P1),

CDbl(T_VStr.Text), CDbl(T_VMax.Text),
CDbl(T_Tacc.Text), CDbl(T_Tdec.Text)

 End Select
 'S_Curve
 Case 1
 Select Case SymOn
 'Symmetric
 Case True
 start_rs_move Channel, CDbl(T_P1),

CDbl(T_VStr.Text), CDbl(T_VMax.Text),
CDbl(T_Tacc.Text), CDbl(T_TSacc.Text)

Examples • 35

 'Non-Symmetric
 Case False
 start_tas_move Channel, CDbl(T_P1) +

CDbl(T_CurPos.Text), CDbl(T_VStr.Text),
CDbl(T_VMax.Text), CDbl(T_Tacc.Text),
CDbl(T_TSacc.Text), CDbl(T_Tdec.Text),
CDbl(T_TSdec.Text)

 End Select
 End Select
End Select

End Sub

Note: The Procedure of “Position 2” is similar with “Position 1”.
Please refer to programming guide diskette.

36 • Examples

Example 2-9: Homing routines
Home return is very important in any coordinate motion applications.
Before any operations, user or program must know where is the
origin point. In this section, we will show you how to find a home
position in various hardware types of home input signal placement.

2.9.1 Basic Homing Styles
PCI-8134 function library supports 3 types of homing. It is home
mode0, 1 and 2. Using which homing function depends on what
types of your home input signal is arranged.

Type 0 use Home mode 0: Only one ORG input signal (ex. orgin limit
switch).

The Table moves to the right and touches the origin switch. Once it
touches the origin switch, PCI-8134 will clear the position counter
and stop the table.

Table

Origin
Switch

Table

Moving
directionGuide

Way

Examples • 37

Type 1 use Home mode 1: One ORG input signal and EZ input signal.

The table moves to the right and touches the origin switch. Once it
touches the origin switch, PCI-8134 latches ORG signal and wait for
EZ coming.
When the table moves to the EZ’s trigger point, PCI-8134 will clear
the position counter and stop the table.
Sometimes the EZ signal of servo motor is in its encoder. You can
wire this signal without another EZ switch to PCI-8134 as EZ input.

Type 2 use mode 2: One ORG input signal and EZ input signal.

The table moves to the right and touches the origin switch. Once it
touches the origin switch, PCI-8134 latches ORG signal and wait for
EZ coming. At the same time, the speed of the table will decrease to
the starting speed. When the table moves to the EZ’s trigger point,
PCI-8134 will clear the position counter and stop the table.
Notice that if your starting velocity is 0 or a very small value, the
second procedure of homing will not move to the EZ position and the
homing procedure will not end either.

Table

Origin
Switch

Table

Moving
directionGuide

Way

EZ Signal

Table

Decelerate Stop

Table

Origin
Switch

Table

Moving
directionGuide

Way

EZ Signal

Table

Prepare
Stop

Stop

38 • Examples

Compare to these three methods, home mode 2 has the best
accuracy on home return. But if you don’t have EZ signal and you
can move the table in a very slow speed when it approaches to the
origin. The accuracy of homing will be guarantee too.

2.9.2 Advanced Homing Styles
We supply three other choices for home return in programming guide:

1) Two-stage homing
2) Midpoint Homing between positive and negative limits
3) Home return search

1) Two-Stage Homing
The figure below explains what is the two stages homing. The first
stage is the same with home mode 0. But it won’t stop when it
touches the origin switch.

After first time it touches the origin switch, it will move off the home
for a distance then move toward to the home again very slowly.
When it touches the origin switch again, PCI-8134 will clear the
position and stop the axis.

Table

Origin
Switch

Table

Moving
direction
stage 1
(Faster)

Guide
Way

Moving
direction
stage 2
(Slowly)

Examples • 39

 2) Midpoint Homing between positive and negative limits

The figure above explains midpoint homing return. After searching

the negative and positive limit switch, you can calculate the midpoint.
Finally move the table to the midpoint and clear the position counter.
The method can be applied to a non-origin switch system.

 3) Home return search

Table

Negative
Limit
Switch

Table

Guide
Way

Positive
Limit

Switch

Table

1
2

3

Moving direction

Table

Origin
Switch

Table

Moving
direction

Guide
Way

EZ Signal

Table

Start
Position

Negative
Limit
Switch

1
2

3

40 • Examples

The figure above demonstrates the situation that the table is at
between origin switch and negative limit switch. None of the basic
home search in previous section will find the origin. This mode can
solve this problem by move off negative limit switch for a distance
and re-run the home mode search again.

2.9.3 Implement Homing Program
We have discussed three basic home return modes support by
function library and three advanced home return modes in
programming guide. In this section, we will demonstrate how to use
these six modes in your application.

There are 6 types of home return modes in this example. Home
Type 1, 3, and 4 in this program are the corresponding basic home
mode 0,1 and 2. Home Type 2, 4, and 6 in this program are the
corresponding advanced home mode 1,2 and 3.
Each time you click the home type button, the home type
descriptions will list in the ListBox.

Example: 2-9 Step by Step
1) Open a new project and add Def8134.BAS and Initial.BAS
2) Add necessary control objects and write the codes
3) Write Run procedure
4) Run it

When you press Run button, the axis will start homing according to
your home type. Remember to setup your hardware before starting.
This program looks like as follows:

Examples • 41

In Step 1) and 2)

Please refer to the source codes in the diskette or previous
examples.

In Step 3)
Write the procedure for “Run”

The Homing process will start when you press the Run command
button. Home search direction must also be set before running.

The three basic home search method can be implement as follows:

Private Sub C_Run_Click()

 'Select Home Type

42 • Examples

 Select Case Item
 'Home Mode 0
 Case 1
 set_home_config Channel, 0, 1, 0, 1
 If MoveDir = 1 Then
 home_move Channel, CDbl(T_SVel.Text),

CDbl(T_MVel.Text), 0.1
 Else
 home_move Channel, -CDbl(T_SVel.Text), -

CDbl(T_MVel.Text), 0.1
 End If
 wait_for_done (Channel)
 set_position Channel, 0
 'Home Mode 1
 Case 3
 set_home_config Channel, 1, 1, 1, 1
 If MoveDir = 1 Then
 home_move Channel, CDbl(T_SVel.Text),

CDbl(T_MVel.Text), 0.1
 Else
 home_move Channel, -CDbl(T_SVel.Text), -

CDbl(T_MVel.Text), 0.1
 End If
 wait_for_done (Channel)
 set_position Channel, 0
 'clear latch
 set_home_config Channel, 2, 1, 0, 1
 'Home Mode 2
 Case 4
 set_home_config Channel, 2, 1, 1, 1
 If MoveDir = 1 Then
 home_move Channel, CDbl(T_SVel.Text),

CDbl(T_MVel.Text), 0.1
 Else
 home_move Channel, -CDbl(T_SVel.Text), -

CDbl(T_MVel.Text), 0.1
 End If
 wait_for_done (Channel)
 set_position Channel, 0
 'clear latch
 set_home_config Channel, 2, 1, 0, 1
 End Select

End Sub

Notice that the home function’s parameters (Channel, Start Velocity,
Maximum Velocity) are access from the TextBox on the form. For
each home type procedure, you must choose a moving direction too.

Examples • 43

The most important thing is clearing the latch. Home mode 1 & 2
needs to latch the origin signal when the axis touches the home
switch. If the latch is not cleared after home mode 1 and 2, the
motion done status will become “Stop by origin” when the next
movement finished. Be sure to clear the latch if you don’t want it.

The three-advanced home search method can be implement as
follows:
These codes are in the same section with the basic homing method.

Private Sub C_Run_Click()
Dim Sta As Integer
Dim i As Long
Dim Pos1, Pos2 As Double

 i = 0
 Select Case Item
 ' Two Stages home return
 Case 2
 set_home_config Channel, 0, 1, 0, 1
 If MoveDir = 1 Then
 home_move Channel, CDbl(T_SVel.Text),

CDbl(T_MVel.Text), 0.1
 wait_for_done (Channel)
 v_move Channel, -CDbl(T_SVel.Text), -

CDbl(T_MVel.Text), 0.1
 Sleep 500
 home_move Channel, 1000, 10000, 0.1
 Else
 home_move Channel, -CDbl(T_SVel.Text), -

CDbl(T_MVel.Text), 0.1
 wait_for_done (Channel)
 v_move Channel, CDbl(T_SVel.Text),

CDbl(T_MVel.Text), 0.1
 Sleep 500
 home_move Channel, -1000, -10000, 0.1
 End If
 wait_for_done (Channel)
 set_position Channel, 0 End If
 wait_for_done (Channel)
 set_position Channel, 0

 'Midpoint home return
 Case 5
 If MoveDir = 1 Then
 v_move Channel, CDbl(T_SVel.Text),

CDbl(T_MVel.Text), 0.1
 Else
 v_move Channel, -CDbl(T_SVel.Text), -

CDbl(T_MVel.Text), 0.1

44 • Examples

 End If
 wait_for_done (Channel)
 get_position Channel, Pos1
 If MoveDir = 1 Then
 v_move Channel, -CDbl(T_SVel.Text), -

CDbl(T_MVel.Text), 0.1
 Else
 v_move Channel, CDbl(T_SVel.Text),

CDbl(T_MVel.Text), 0.1
 End If
 wait_for_done (Channel)
 get_position Channel, Pos2
 ' Get Mid Point
 Pos2 = (Pos2 - Pos1) / 2
 set_position Channel, Pos2
 start_a_move Channel, 0, CDbl(T_SVel.Text),

CDbl(T_MVel.Text), 0.1
 wait_for_done (Channel)
 set_position Channel, 0

 'Auto Search home return
 Case 6
 set_home_config Channel, 2, 1, 1, 1
 If MoveDir = 1 Then
 home_move Channel, CDbl(T_SVel.Text),

CDbl(T_MVel.Text), 0.1
 Else
 home_move Channel, -CDbl(T_SVel.Text), -

CDbl(T_MVel.Text), 0.1
 End If
 wait_for_done (Channel)
 Sta = motion_done(Channel)
 'Sta=3 means stop by negative limit switch
 If Sta = 3 Then
 'clear latch
 set_home_config Channel, 2, 1, 0, 1
 start_r_move Channel, 80000,

CDbl(T_SVel.Text), CDbl(T_MVel.Text), 0.1
 wait_for_done (Channel)
 set_home_config Channel, 2, 1, 1, 1
 home_move Channel, -CDbl(T_SVel.Text), -

CDbl(T_MVel.Text), 0.1
 wait_for_done (Channel)
 End If
 set_position Channel, 0
 'clear latch
 set_home_config Channel, 2, 1, 0, 1
 End Select

End Sub

Examples • 45

Example 2-10: Multiple Axes Synchronized Motion
Multiple axes synchronized motion is different from linear
interpolation motion. The multiple axes motion is point to point
motion so it doesn’t guarantee if all the axes arrive at the same time
but it guarantees they will start to move at the same time. Here is
the example for this function.

2.10.1 How to use start_move_all()
The definition of start_move_all() is similar with start_a_move().
Each parameter in start_move_all() is an array. It represents the
corresponding axis’ motion parameters. Like axis number, position,
start velocity, maximum velocity and acceleration time. You must
form this parameters in an array according to its axis. For example,
we have two axes for synchronized motion. Their motion parameters
are as follows:

 Postion Start velocity Max. velocity Acc. Time
Axis 0 150,000 1,000 25,000 0.1
Axis 3 200,000 200 30,000 0.2

We define 5 arrays to store these parameters:

AxisNo(0)=0, AxisNo(1)=3
Pos(0)=150,000 Pos(1)=200,000
Svel(0)=1,000 Svel(1)=200
Mvel(0)=25,000 Mvel(1)=30,000
Tacc(0)=0.1 Tacc(1)=0.2

The command line is as follows:
start_move_all(2,AxisNo(0),Pos(0),Svel(0),Mvel(0),Tacc(0))

2.10.2 Implement Multiple Axes Synchronized Motion

Example: 2-10 Step by Step
1) Open a new project and add Def8134.BAS and Initial.BAS
2) Add necessary control objects and write the codes
3) The start_move_all() parameters array
4) Deal the check box selection
5) Write Go procedure
6) Run it

46 • Examples

In this example, we show one card, 4 axes synchronized motion. If
you wish to use this function between different cards, you must refer
to user manual of PCI-8134 to cascade the corresponding pins of
CN4.

Notice that start_move_all() function uses absolute position value. In
this example we make some change for it to move in relative position.

After you entering the corresponding parameters of every axis and
choose synchronizing motion axes. Just press Go button and the
axes you choose will go for a distance then stop.

Examples • 47

In Step 1) and 2)
Please refer to the source codes in the diskette or previous
examples.

In Step 3) The Start_Move_All() parameters array
Dim AxisMap(3) As Integer
Dim PosMap(3) As Double
Dim SVelMap(3) As Double
Dim MVelMap(3) As Double
Dim TaccMap(3) As Double

In Step 4) Deal with check box selection

For i = 0 To 3
 get_position 4 * CardNo + i, CurPos(i)
 AxisMap(i) = i
 'If the relative axis number is checked, fill it

into a distance or let it stay in original place
 If Check(i).Value = 1 Then
 PosMap(i) = CDbl(T_Dist(i).Text) + CurPos(i)
 SVelMap(i) = CDbl(T_SVel(i).Text)
 MVelMap(i) = CDbl(T_MVel(i).Text)
 TaccMap(i) = CDbl(T_Tacc(i).Text)
 Else
 'If the relative axis number is not checked, fill

it into a original position
 PosMap(i) = CurPos(i)
 End If

 Next

In Step 5) Write Go Procedure

start_move_all 4, AxisMap(0), PosMap(0), SVelMap(0),

MVelMap(0), TaccMap(0)

48 • Examples

Example 2-11: Linear and Circular Interpolation
We will separate this section into three parts: First and second parts
give the simple codes for implementing linear and circular
interpolation motion. You can add this codes into your application
and show the position counter just the same with several pervious
examples.

Basically, the functions move_xy(), arc_xy() map to any cards’ axis0
and axis1. Also, the functions move_zu(), arc_zu() map to any cards’
axis2 and axis3. Be sure that by which two axes you want to do
interpolation motion before you start.

In the final part, a more complicated example is introduced here by
presenting the graphics result of interpolation motion. Many WIN32
API will be applied in this example and many DC concepts will be
applied too. There also has a coordinate transformation module
needs to be included.

2.11.1 How to use Linear Interpolation Functions
A simple code for x-y linear interpolation is as follows

1) Create a two-axes mapping array
 MapArray(0) = 4 * CardNo
 MapArray(1) = 4 * CardNo + 1
 map_axes 2, MapArray(0)

2) Set specific moving speed for the mapping array
 set_move_speed StartVel, MaxVel

3) Set specific moving acceleration for the mapping array
 set_move_accel Tacc

4) Start motion
 move_xy CardNo, Px, Py

Note: In every card of interpolation motion, move_xy() means axis0
and axis1 ,move_zu() means axis2 and axis3. You can’ use
axis1, axis 3 or axis0, axis 2 for interpolation.

Examples • 49

2.11.2 How to use Circular Interpolation Functions
A simple code for x-y circular interpolation is as follows:

1) Create a two axes mapping array
 MapArray(0) = 4 * CardNo
 MapArray(1) = 4 * CardNo + 1
 map_axes 2, MapArray(0)

2) Set specific moving speed for the mapping array
 set_move_speed StartVel, MaxVel

3) Set specific moving acceleration for the mapping array
 set_move_accel Tacc

4) Set arc division resolution

 set_arc_division DAxis, DivDegree

5) Set arc optimization on/off
 arc_optimization Optimize

6) Start motion
 arc_xy CardNo, CenterPx, CenterPy, MoveDegree

Note: In every card of interpolation motion, arc_xy() means axis0 and
axis1 ,arc_zu() means axis2 and axis3. You can’ use axis1,
axis 3 or axis0, axis 2 for interpolation.

2.11.3 Coordinate System in Microsoft Windows®
Remember that the interpolation command we set is position counter
or pulses. The scale of position counter coordinate is different from
the scale of computer’s coordinate system. In Windows system, the
coordinate in scale mode of pixel is as follows: (ex. in an picture box
control object)

The scale unit of this picture box is pixel. In the real position counter
coordinate system, the scale unit is in counter pulse. Between these
two unit systems, we define a scale number:

'Pulses(Position counters) per pixel
XScale = 125
YScale = 125

It represents that there are 125 pulses for each pixel on the picture
box,

50 • Examples

2.11.3.1 Coordinate Transformation
The coordinate system of the position counter in picture box is as
follows:

The origin point relative to pixel mode picture box coordinate system
is (Ox, Oy). In the example, we set this as follows:
 Type POINTAPI
 Px As Long
 Py As Long
 End Type

 Dim POrg As POINTAPI

 POrg.Px = Int(Scope.ScaleWidth / 10)
 POrg.Py = Int(Scope.ScaleHeight * 2 / 3)

The scope is the name of picture box.

Define an position counter point type
 Type POINTREAL
 Px As Double
 Py As Double
 End Type
 Public PReal As POINTREAL

PReal stands for position counter point.

If we want to show position counter on the picture box in the position
counter coordinate, we must use the function as follows to transfer a
real position to picture box screen position.

X+

Y+

Ox

Oy

O

Picture Box

Examples • 51

Function Real2Scr(Pnt As POINTREAL, POrg As POINTAPI,

ByVal XScale As Double, ByVal YScale As Double) As
POINTAPI

 Real2Scr.Px = Pnt.Px / XScale + Abs(POrg.Px)
 Real2Scr.Py = Abs(POrg.Py) - Pnt.Py / YScale
End Function

Also, transfer a picture box position to a real position

Function Scr2Real(Pnt As POINTAPI, POrg As POINTAPI,

ByVal XScale As Double, ByVal YScale As Double) As
POINTREAL

 Scr2Real.Px = Int((Pnt.Px - Abs(POrg.Px)) * XScale)
 Scr2Real.Py = Int((Abs(POrg.Py) - Pnt.Py) * YScale)
End Function

These two functions are in Scope.BAS in Appendix D
2.11.3.2 Draw a 2-D coordinate on picture box

Further, drawing a coordinate on the picture box

' hDC is a destinative drawing DC
' POrg is the real system’s origin relative to picture

box
' Width is picture box’s scalewidth
' Height is picture box’s scaleheight
Sub PlotScale(ByVal hDC As Long, POrg As POINTAPI, ByVal

XScale As Double, ByVal YScale As Double, ByVal
Width As Long, ByVal Height As Long)

Dim Po As POINTAPI
Dim Incr As Long

 'Draw two cross line
 MoveToEx hDC, 0, POrg.Py, Po
 LineTo hDC, Width, POrg.Py
 MoveToEx hDC, POrg.Px, 0, Po
 LineTo hDC, POrg.Px, Height

 'X+ main scale
 Incr = Abs(POrg.Px)
 Do
 Incr = Incr + XScale
 MoveToEx hDC, Incr, POrg.Py - 2, Po
 LineTo hDC, Incr, POrg.Py + 2
 Loop While Incr < Width
 'X- main scale
 Incr = Abs(POrg.Px)
 Do
 Incr = Incr - XScale
 MoveToEx hDC, Incr, POrg.Py - 2, Po

52 • Examples

 LineTo hDC, Incr, POrg.Py + 2
 Loop While Incr > 0

 'Y- main scale
 Incr = Abs(POrg.Py)
 Do
 Incr = Incr + YScale
 MoveToEx hDC, POrg.Px - 2, Incr, Po
 LineTo hDC, POrg.Px + 2, Incr
 Loop While Incr < Height

 'Y+ main scale
 Incr = Abs(POrg.Py)
 Do
 Incr = Incr - YScale
 MoveToEx hDC, POrg.Px - 2, Incr, Po
 LineTo hDC, POrg.Px + 2, Incr
 Loop While Incr > 0

 MoveToEx hDC, POrg.Px, POrg.Py, Po

End Sub

This function is in Scope.BAS in Appendix D

2.11.4 DC (Device Context)
DC(Device Context) is the basic drawing object in Windows system.
Besides, you must create a Bitmap object in DC before use any
drawing function. You can image DC as a drawing paper. This
procedure is expressed as follows:
 Dim hScopeDC, hScopeBMP As Long

 'Scope Initial
 hScopeDC = CreateCompatibleDC(Scope.hDC)
 hScopeBMP = CreateCompatibleBitmap(Scope.hDC,

Scope.ScaleWidth, Scope.ScaleHeight)
 SelectObject hScopeDC, hScopeBMP

By now, you can use hScopeDC as your drawing paper and do any
drawing function like this:

 LineTo hScopeDC, Px, Py

You must delete these object before leave the program (notice the
delete order)

 DeleteObject hScopeDC
 DeleteObject hScopeBMP

Examples • 53

2.11.5 Animation
In order to achieve a motion graph, sometimes making an animation
mechanism is an important thing. This concept is expressed as
follows:

2.11.5.1 Create DCs for animation

This drawing loop in previous section is done in Timer procedure. To
complete this procedure, we must create at least 3 DCs as follows:

1) Scope DC (Destinative DC)

 hScopeDC = CreateCompatibleDC(Scope.hDC)
 hScopeBMP = CreateCompatibleBitmap(Scope.hDC,

Scope.ScaleWidth, Scope.ScaleHeight)
 SelectObject hScopeDC, hScopeBMP

2) Path DC (Background DC)

 hLayerDC = CreateCompatibleDC(Scope.hDC)
 hLayerBMP = CreateCompatibleBitmap(Scope.hDC,

Scope.ScaleWidth, Scope.ScaleHeight)
 SelectObject hLayerDC, hLayerBMP

Background DC
update

Blank DC Destinative DC

copy

Other DC

Add
in

copy

54 • Examples

3) Blank DC (As Eraser)
This Blank DC must be created in picture box Paint Procedure:

 hScopeBackDC = CreateCompatibleDC(Scope.hDC)
 hScopeBackBMP = CreateCompatibleBitmap(Scope.hDC,

Scope.ScaleWidth, Scope.ScaleHeight)
 SelectObject hScopeBackDC, hScopeBackBMP
 BitBlt hScopeBackDC, 0, 0, Scope.ScaleWidth,

Scope.ScaleHeight, Scope.hDC, 0, 0, vbSrcCopy

Notice that there has a BitBlt function, it is very important for moving
DC data to another DC. Copy or add action in DC is done by this
function.

2.11.5.2 Create pens for DCs
Create two pens for DC: Black pen and White pen.
 'Build two pen
 hWhitePen = CreatePen(vbSolid, 1, RGB(255, 255, 255))
 hBlackPen = CreatePen(vbSolid, 1, RGB(0, 0, 0))

 'Select Pen for each DC
 SelectObject hLayerDC, hBlackPen
 SelectObject hScopeDC, hBlackPen

Select object means select an drawing tool for a DC paper.

We make a new mouse pointer for this picture box. It will show up if
the mouse is moved to the region of picture box. So we must create
a mouse pointer DC by loading a BMP file.

 'Build CrossSign Cursor and its DC
 Set Cross = LoadPicture(App.Path & "\" &

"cursor.bmp")
 GetObject Cross.Handle, LenB(BMP), BMP
 hCursorDC = CreateCompatibleDC(Scope.hDC)
 SelectObject hCursorDC, Cross.Handle

The BMP structure is as follows:

Type BITMAP
 bmType As Long
 bmWidth As Long
 bmHeight As Long
 bmWidthBytes As Long
 bmPlanes As Integer
 bmBitsPixel As Integer
 bmBits As Long
End Type

Examples • 55

2.11.5.3 Animation Starts in Timer
We use timer to control the speed of animation. The codes are as
follows:

 'Clear DC
 BitBlt hScopeDC, 0, 0, Scope.ScaleWidth,

Scope.ScaleHeight, hScopeBackDC, 0, 0, vbSrcCopy

 'Mark command position
 Ellipse hScopeDC, PCmd.Px - 4, PCmd.Py - 4, PCmd.Px

+ 4, PCmd.Py + 4

 'Set path start point on path DC & draw a line to

run time position on path DC
 MoveToEx hLayerDC, PLast.Px, PLast.Py, Po
 LineTo hLayerDC, PScr.Px, PScr.Py

 ' Paint Cross sign cursor
 If CursorShow = False Then
 BitBlt hScopeDC, Cursor.Px, Cursor.Py,

Scope.ScaleWidth, Scope.ScaleHeight, hCursorDC, 0,
0, vbSrcCopy

 End If

 ' Plot Scale
 PlotScale hScopeDC, POrg, XDiv, YDiv,

Scope.ScaleWidth, Scope.ScaleHeight

 ' Add path DC
 BitBlt hScopeDC, 0, 0, Scope.ScaleWidth,

Scope.ScaleHeight, hLayerDC, 0, 0, vbSrcAnd

 ' Show total drawing materials on scope
 BitBlt Scope.hDC, 0, 0, Scope.ScaleWidth,

Scope.ScaleHeight, hScopeDC, 0, 0, vbSrcCopy
All WIN32 API declarations and self-defined functions are in
Scope.Bas in Appendix D

56 • Examples

2.11.6 Implement 2-D example
You can refer to the complete source codes or previous section for
making this example. The results for this example is as follows:

Example: 2-11
1) Linear interpolation result:

Examples • 57

2) The circular interpolation result

58 • Examples

3) Parameters Setting Page

Examples • 59

Example 2-12: Jog
The Jogging feature can be achieved by r_move function. Generally ,
there are two types of jogging. One is incremental jogging and the
other is continuous jogging.

Incremental jogging means that for every times you press the
jogging button, the axis will step for a distance. Continuous jogging
means that when you press the jogging button and don’t release it,
the axis will move continuously and speed up increasingly depends
on how long you press.

We combine these two types of jogging in one program. The speed
increasing is proportional to the time your press the button. This
feature is also can achieve by software. The changeable speed
function is controlled by a seed number i. The function is defined as
follows:

JogMaxVel * i ^ 2
i=i+1 for each step

Example: 2-13
There are eight button in this example for 8 directions in 2-D
coordinate system. This program is look like as follows:

60 • Examples

2.12.1 Create a Thread for Jogging
You can do jogging function without any graphical presentation. Just
add the following sample codes to complete it.

The codes for press the X+ direction buttons are as follows:

Private Sub C_XB_MouseDown(Button As Integer, Shift As

Integer, X As Single, Y As Single)
 If hJogThread <> 0 Then CloseHandle (hJogThread)
 Jog = 7
 hJogThread = CreateThread(0, 0, AddressOf JogThread,

0, 0, ThreadID)
End Sub

Please refer to section 2.5 for creating a thread.

The codes for unpress X+ direction buttons are as follows:

Private Sub C_XF_MouseUP(Button As Integer, Shift As

Integer, X As Single, Y As Single)
 Jog = 0
End Sub

Notice that the Jog variable can tell the thread which button is
pressed. Jog=0 means no button is pressed.

Because interpolation functions are only used in absolute mode, we
use some tricks by increamental method to achieve the relative
motion.

Please refer to example 2-12 for complete codes. Some part of
thread for Jog Thread are as follows:

' Interpolation jogging
 Select Case Jog
 Case 1
 If Pair = 0 Then
 move_xy CardNo, LastX + Step, LastY +

Step
 Else
 move_zu CardNo, LastX + Step, LastY +

Step
 End If
 LastX = LastX + Step
 LastY = LastY + Step
 .
 .
 .

Examples • 61

' Single axis jogging

 Select Case Jog
 Case 5
 r_move 4 * CardNo + 2 * Pair, Step, JogSVel,

JogMVel * i ^ 2, JogTacc
 Case 6
 r_move 4 * CardNo + 2 * Pair + 1, Step,

JogSVel, JogMVel * i ^ 2, JogTacc
 Case 7
 r_move 4 * CardNo + 2 * Pair, -Step, JogSVel,

JogMVel * i ^ 2, JogTacc
 Case 8
 r_move 4 * CardNo + 2 * Pair + 1, -Step,

JogSVel, JogMVel * i ^ 2, JogTacc
 End Select

'Increase Speed Seed
If i < 100 Then i = i + 1
'add this delay will raise the performance
Sleep (100)

62 • Examples

The Setting Page for jogging is as follows:

2.12.2 Create a Scope for Display Jogging
In order to make a dynamic scope for displaying jog motion, you
must create a DC for drawing. In the module Scope.BAS, there are
some several functions for doing this. You can combine these three
functions – CreateCompatibleDC(), CreateCompatibleBitmap(),
SelectObject() into one function. For example: Creating and BMP DC,
you must write:

 hScopeDC = CreateBmpDC(Scope.hDC, Scope.ScaleWidth,

Scope.ScaleHeight, hScopeBmp)
In stead of

 'Scope DC (Destinative DC)
 hScopeDC = CreateCompatibleDC(Scope.hDC)
 hScopeBMP = CreateCompatibleBitmap(Scope.hDC,

Scope.ScaleWidth, Scope.ScaleHeight)
 SelectObject hScopeDC, hScopeBMP

The source codes for Scope.BAS are in Appendix D.

The following figure shows the result of jogging. Notice that The step
size is 3.

Examples • 63

Example 2-13: Velocity Change On The Fly

2.13.1 Velocity Change on the fly
There is a v_change function in PCI-8134 library. It makes the axis
change speed during continuous motion or position control motion.
User can easily change speed value by pressing a Velocity Change
command button during motion. The codes are as follows:

 v_change Channel, CDbl(T_Vchg.Text), CDbl(T_Tacc.Text)

It also can changes the speed at the desired position or condition.
The codes are as follows:

 If Position > VChagnePos Then
 v_change Channel, VChageValue, AccTime
 End If

2.13.2 Velocity Value
In order to see the velocity value without any tachometer, we use an
simple way to get the velocity value by ignore the time factor. That’s
Measured Velocity=Current Position – LastPosition

This instruction is placed in Timer procedure. The Timer in Windows
System is not accurate, so we ignore it. Besides, by using this
method, there must be a high frequency noise. The results may look
not very good. But at least, it is the most direct way to measure it. Or
you can get the velocity by another clock or use analog input to read
tachometers.

2.13.3 Velocity Change on the Fly Demo results
We test this function by setting a non-symmetric s_curve absolute
mode. The demo procedure as follows:

1) Set the position to –100000
2) Start go to position 1 (100000)
3) Press V_Change command button during the axis is moving
4) Finally, the axis stops at exactly 100000

64 • Examples

Example: 2-13
You can see the position profile (in black line) and velocity profile (in
red line)in the figure.

Examples • 65

The parameters setting are as follows:

This program can test many other velocity combinations by clicking
the option button in the form. Because the velocity value is getting
from difference value, it may has some noise on it. For better display,
you can tune the timer interval to improve it.

66 • Examples

2.13.4 Limitation of Velocity Change on the Fly
We strongly recommend that the function fix_max_speed() must be
set before every move function if you want to do velocity change
during this moving command.

Due to the hardware limitation, user can’t change axis’ speed
unlimitly in every moving operation. You must give PCI-8134 a
maximum speed that the axis may reach first.

For example, assume that you start a moving function by setting a
maximum speed of 100,000 pps and you want to change its speed to
200,000 pps when it reach some point. At this example, you must
use fix_max_speed() to set the speed higher than 200,000 before
start_a_move(). The codes are as follows:

 fix_max_speed(0, 250000);
 start_a_move(0, 100000, 100, 100000, 0.1);

when the axis reaches 50000, change the speed to 200000

 if(Position > 50000) v_change(0,200000,0.1);

Examples • 67

2.13.5 Repeat Mode
Some applications need to run the axis cyclicly between a desired
position. Making a repeat motion is necessary to introduce. The
repeat motion in this program is implemented in a thread so the axis
can be stopped at any moment.

The results of this motion is in the following figure.

The following program is a part of repeat mode. Please refer to EX2-
13 for complete codes.

'Button Position 1 Pressed
 Case 1

 Select Case ActionMode
 'Absolute mode
 Case 0

68 • Examples

 Select Case Profile
 'T_Curve
 Case 0
 ' Enter the repeat motion loop
 Do While RepeatOn = True
 If RepeatSW = True Then
 a_move Channel, P1, SVel, MVel, Tacc
 RepeatSW = False
 Else
 a_move Channel, P2, SVel, MVel, Tacc
 RepeatSW = True
 End If
 Loop
 'S_Curve
 Case 1
 ' Enter the repeat motion loop
 Do While RepeatOn = True
 If RepeatSW = True Then
 s_move Channel, P1, SVel, MVel, Tacc,

Tacc
 RepeatSW = False
 Else
 s_move Channel, P2, SVel, MVel, Tacc,

Tacc
 RepeatSW = True
 End If
 Loop
 End Select

 .
 .
 .

Repeat motion loop is control by a Boolean value, RepeatOn. And it
is controlled by stop button.

Private Sub C_Stop_Click()
 v_stop Channel, CDbl(T_Tacc.Text)
 RepeatOn = False
End Sub

The Isagraf Library For PCI-8134 • 69

Chapter Three: The ISaGRAF
Library for PCI-8134

3.1 Installation of PCI-8134 ISaGRAF Library

3.1.1 PCI-8134 ISaGRAF Library Installation

The Setup program provided by PCI-8134 ISaGRAF library
performs all tasks necessary for installing the software.

With ADLink’s “PCI-8134 ISaGRAF Library Disk” diskette :

step 1. Place the “PCI-8134 ISaGRAF Library” diskette in the 3.5"
floppy drive A:.

step 2. If Windows NT is loaded, choose Run from the taskbar.
step 3. Type A:\SETUP in the Run dialog box.
step 4. When the software component installation process is

complete, user has to copy the “8134isg.dll” and
“ISaUSP.dll” files from the “A:\LIB” directory to “x:\
Isawin\Target\cmds” directory. (x:\Isawin indicates the
directory which install the ISaGRAF software).

With “ADLink All-in-one Compact Disc”:

step 1. Place “ADLink Al-ine-one Compact Disc” in the CD-ROM
drive.

step 2. If autorun setup program is not invoked, execute
x:\setup.exe(x indicates the CD-ROM drive).

step 3. Select Software Package-> PCI-8134 ISaGRAF Library to
install the software.

step 4. When the software component installation process is
complete, user has to copy the “8134isg.dll” and
“ISaUSP.dll” files from the “x:\Software\PCI-8134
ISaGRAF Library (x indicates the CD-ROM drive).”
directory to “y:\ Isawin\Target\cmds” directory. (y:\Isawin
indicates the directory which install the ISaGRAF
software).

70 • The Isagraf Library For PCI-8134

3.1.2 PCI-8134 ISaGRAF Library Un-installation
PCI-8134 ISaGRAF Library has the capability of automatic un-
installation. To un-install PCI-8134 ISaGRAF Library, open the
“Control Panel”, double-click “Add/Remove Programs”, select “PCI-
8134 ISaGRAF Library” to un-install it.

3.2 Restore PCI-8134 ISaGRAF Library C
Function Objects in the ISaGRAF Workbench

3.2.1 With ADLink’s “PCI-8134 ISaGRAF C function Object”
diskettes

step 1. Place the diskette “PCI-8134 ISaGRAF C Function
Object” diskette in the 3.5" floppy drive A:.

step 2. Open the ISaGRAF Archive Manager Utility for “c
functions”.

step 3. Change the “Archive Location” to “a:\ Function Definition”
directory.

step 4. Click the Restore button, then PCI-8134 ISaGRAF library
c function objects will copy to the ISaGRAF Workbench.
 When the copy operation finish, user click the Close
button and exit this tool.

3.2.2 With “ADLink All-In-One Compact Disc”:

step 1. Place “ADLink All-In-One Compact Disc” in the CD-ROM
drive.

step 2. Open the ISaGRAF Archive Manager Utility for “c
functions”.

step 3. Because in the “ADLink All-In-One Compact Disc”, the
PCIS-ISG 8134 ISaGRAF library c function objects are
located in the “Software\PCI-8134 ISaGRAF Library\
Function Definition” directory, so user have to click the
“Browser” button, then assign the correct directory in the
“ADLink All-In-One Compact Disc”.

step 4. Click the Restore button, then PCI-8134 ISaGRAF library
c function objects will copy to the ISaGRAF Workbench.
 When the copy operation finish, user click the Close
button and exit this tool.

The Isagraf Library For PCI-8134 • 71

3.3 Restore PCI-8134 ISaGRAF Sample Programs
There are only one sample programs provided in this diskette. they
could help you to program your own applications by using PCI-8134
ISaGRAF sample program more easily. The brief descriptions of
these programs are specified as follows:
 Pci8134: The introduction about use ISaGRAF with PCI-

 8134 card (Using SFC and ST language)

3.3.1 With ADLink’s “PCI-8134 ISaGRAF Sample Program”
diskettes

step 1. Place the diskette “PCIS-ISG 8134 ISaGRAF Sample
Program” in the 3.5" floppy drive A:.

step 2. Open the ISaGRAF Archive Manager Utility for Project.
step 3. Change the “Archive Location” to “a:\ Project” directory.
step 4. Select the sample program user want to use, then click the

Restore button, then the project will copy to the ISaGRAF
Workbench. When the copy operation finish, user click the
Close button and exit this tool.

3.3.2 With “ADLink All-In-One Compact Disc”:

step 1. Place “ADLink All-In-One Compact Disc” in the CD-ROM
drive.

step 2. Open the ISaGRAF Archive Manager Utility for Project.
step 3. Because in the “ADLink All-In-One Compact Disc”, the

PCI-8134 ISaGRAF Sample program are located in the
“Software\PCI-8134 ISaGRAF Library\Project” directory,
so user have to click the “Browser” button, then assign the
correct directory in the “ADLink All-In-One Compact Disc”.

step 4. Click the Restore button, then PCI-8134 ISaGRAF sample
program will copy to the ISaGRAF Workbench. When the
copy operation finishes, user clicks the Close button and
exits this tool.

72 • The Isagraf Library For PCI-8134

3.4 The definition of PCIS-ISG 8134 ISaGRAF
Library

There are almost 60 functions in the PCI-8134 ISaGRAF library. Use
can use these functions directly in ST or FBD languages on
ISaGRAF environment. In order to let user can use these functions
more easy. These functions be described as below:

3.4.1 Initialization function group

Function item:
p8134ini – Software Initialization for PCI-8134
p8134clo – Software release resources of PCI-8134
s_config – Configure PCI-8134 according to Motion Creator
g_irq_ch – Get the PCI-8134 card’s IRQ number
g_addres – Get the PCI-8134 card’s base address

Function description :
p8134ini:This function is used to initialize PCI-8134 card. Every PCI-

8134 card has to be initialized by this function before
calling other functions.

p8134clo:This function is used to close PCI-8134 card and release
the PCI-8134 related resources(This function just suport
WindowNT platform).

s_config:This function is used to configure PCI-8134 card. All the I/O
configurations and some operating modes appeared on
“Axis Configuration Window” of Motion Creator will be set to
PCI-8134. Click “Save Configuration” button on the “Axis
Configuration Window” if you want to use this function in
the application program. Click “Save Configuration” button
will save all the configurations to a file call “8134.cfg”. This
file will appear in the “WINDOWS\SYSTEM\” directory.

g_irq_ch:This function is used to get the PCI-8134 card’s IRQ
number. (This function just suport Window 95 and Window
NT platform only).

g_addres:This function is used to get the PCI-8134 card’s base
address.

The Isagraf Library For PCI-8134 • 73

Syntax
Analog result = p8134ini (Analog cardNo)
Analog result = p8134clo (Analog cardNo)
Analog result = s_config (Message file)
Analog irq_no = g_irq_ch(Analog cardNo)
Analog base_addr = g_addres (Analog cardNo)

Input parameter :
card_no : The PCI-8134 card index number
file : The name of PCI-8134 card configuration file created by

Motion Creator

Output parameter :
base_addr : The PCI-8134 card’s base address.
irq_no: The PCI-8134 card’s IRQ number.
Result : 0 – No Error , >0 – Error

74 • The Isagraf Library For PCI-8134

3.4.2 Pulse Input /Output Configuration function group

Function item :
s_PlsOut – Set the configuration for pulse command output.
s_PlsIpt – Set the configuration for feedback pulse input.
s_CntSrc – Enable/Disable the external feedback pulse input

Function description :
s_PlsOut : Configure the output modes of command pulse. There are

two modes for command pulse output..
s_PlsIp : Configure the input modes of external feedback pulse.

There are four types for feedback pulse input. Note that
this function makes sense only when cnt_src parameter in
set_cnt_src() function is enabled.

s_CntSrc : If external encoder feedback is available in the pulse
system, set the cnt_src parameter in this function to
Enabled state. Then internal 28-bit up/down counter will
count according configuration of set_pls_iptmode() function.
Or the counter will count the command pulse output.

Syntax
Analog result = s_PlsOut (Analog axis, Analog

pls_outmode)
Analog result = s_PlsIpt (Analog axis,
 Analog pls_iptmode)
Analog result = s_config (Analog axis, Analog

cnt_src)

Input parameter :
axis : axis number designated to configure pulse Input/Output.
pls_outmode : setting of command pulse output mode for

OUT and DIR pins.
 pls_outmode=0, OUT/DIR type pulse output.

pls_outmode=1, CW/CCW type pulse output.
pls_inpmode : setting of encoder feedback pulse
 input mode for EA and EB pins.
 pls_iptmode=0, 1X AB phase type pulse input.
 pls_iptmode=1, 2X AB phase type pulse input.
 pls_iptmode=2, 4X AB phase type pulse input.
 pls_iptmode=3, CW/CCW type pulse input.
 cnt_src : Counter source
 cnt_src=0, counter source from command pulse
 cnt_src=1, counter source from external input EA,

EB

Output parameter :
Result : 0 – No Error , >0 – Error

The Isagraf Library For PCI-8134 • 75

3.4.3 Continuously Motion Move function group

Function item :
v_move – Accelerate an axis to a constant velocity with trapezoidal

profile
sv_move – Accelerate an axis to a constant velocity with S-curve

profile
v_change – Change speed on the fly
v_stop – Decelerate to stop

Function description :
v_move : This function is used to accelerate an axis to the specified

constant velocity. The axis will continue to travel at a
constant velocity until the velocity is changed or the axis is
commanded to stop. The direction is determined by the
sign of velocity parameter..

sv_move: This function is similar to v_stop() but accelerating with S-
curve.

v_change : You can change the velocity profile of command pulse
ouput during operation by this function. This function
changes the maximum velocity setting during operation.
However, if you operate under “Preset Mode” (like
start_a_move(),…), you are not allowed to change the
acceleration parameter during operation because the
deceleration point is pre-determined. But changing the
acceleration parameter when operating under “Constant
Velocity Mode” is valid.

v_stop : This function is used to decelerate an axis to stop. This
function is also useful when preset move(both trapezoidal
and S-curve motion), manual move or home return function
is performed.

Syntax
Analog result = v_move (Analog axis, Real str_vel,

Real max_vel, Real accel)
Analog result = sv_move (Analog axis, Real str_vel,

Real max_vel, Real tlacc, Real tsacc)
Analog result = v_change (Analog axis, Real max_vel,

Real accel)
Analog result = v_stop (Analog axis, Real decel)

Input parameter :
axis : axis number designated to move or stop.
str_vel : starting velocity in unit of pulse per second
max_vel : maximum velocity in unit of pulse per second
accel, tlacc : specified acceleration time in unit of

76 • The Isagraf Library For PCI-8134

second
decel, tsacc : specified acceleration time in unit of second

Output parameter :
Result : 0 – No Error , >0 – Error

3.4.4 Trapezoidal Motion Mode function group

Function item:
s_a_mov– Begin an absolute trapezoidal profile motion
s_r_mov– Begin a relative trapezoidal profile motion
s_t_mov– Begin a non-symmetrical relative trapezoidal profile motion
s_ta_mov– Begin a non-symmetrical absolute trapezoidal profile

motion
a_move– Begin an absolute trapezoidal profile motion and wait for

completion
r_move– Begin a relative trapezoidal profile motion and wait for

completion
t_move– Begin a non-symmetrical relative trapezoidal profile motion

and wait for completion
ta_move– Begin a non-symmetrical absolute trapezoidal profile

motion and wait for completion

Function description:
s_a_mov : This function causes the axis to accelerate from a starting

velocity, slew at constant velocity, and decelerate to stop at
the specified absolute position, immediately returning
control to the program. The acceleration rate is equal to the
deceleration rate. a_move() starts an absolute coordinate
move and waits for completion...

s_r_mov : This function causes the axis to accelerate from a starting
velocity, slew at constant velocity, and decelerate to stop at
the relative distance, immediately returning control to the
program. The acceleration rate is equal to the deceleration
rate. r_move() starts a relative move and waits for
completion.

s_t_mov : This function causes the axis to accelerate from a starting
velocity, slew at constant velocity, and decelerate to stop at
the relative distance, immediately returning control to the
program.. t_move() starts a relative coordinate move and
waits for completion.

s_ta_mov : This function causes the axis to accelerate from a
starting velocity, slew at constant velocity, and decelerate
to stop at the specified absolute position, immediately

The Isagraf Library For PCI-8134 • 77

returning control to the program.. ta_move() starts an
absolute coordinate move and waits for completion.

The moving direction is determined by the sign of pos or dist
parameter.If the moving distance is too short to reach the specified
velocity, the controller will accelerate for the first half of the distance
and decelerate for the second half (triangular profile). wait_for_done()
waits for the motion to complete.

Syntax
Analog result = s_a_move (Analog axis, Real pos, Real

str_vel, Real max_vel, Real accel)
Analog result = s_r_move (Analog axis, Real distance,

Real str_vel, Real max_vel, Real accel)
Analog result = s_t_move (Analog axis, Real distance,

Real str_vel, Real max_vel, Real accel, Real
decel)

Analog result = s_ta_mov (Analog axis, Real pos, Real
str_vel, Real max_vel, Real tacc, Real tdec)

Analog result = a_move (Analog axis, Real pos, Real
str_vel, Real max_vel, Real accel)

Analog result = r_move (Analog axis, Real distance,
Real str_vel, Real max_vel, Real accel)

Analog result = t_move (Analog axis, Real distance,
Real str_vel, Real max_vel, Real accel, Real
decel)

Analog result = ta_move (Analog axis, Real pos, Real
str_vel, Real max_vel, Real tacc, Real tdec)

Input parameter :
axis : axis number designated to move or stop.
pos : specified absolute position to move
distance : specified relative distance to move
str_vel : starting velocity in unit of pulse per second
max_vel : maximum velocity in unit of pulse per second
accel, tacc : specified acceleration time in unit of

second
decel, tdec : specified acceleration time in unit of

second

Output parameter :
Result : 0 – No Error , >0 – Error

78 • The Isagraf Library For PCI-8134

3.4.5 S-Curve Profile Motion function group

Function item:
s_s_move – Begin a S-Curve profile motion
s_move – Begin a S-Curve profile motion and wait for completion
s_rs_move– Begin a relative S-Curve profile motion
rs_move– Begin a relative S-Curve profile motion and wait for

completion
s_tas_mov– Begin a non-symmetrical absolute S-curve profile

motion
tas_move– Begin a non-symmetrical absolute S-curve profile motion

and wait for completion

Function description :
s_s_move : This function causes the axis to accelerate from a

starting velocity, slew at constant velocity, and decelerate
to stop at the specified absolute position, immediately
returning control to the program. The acceleration rate is
equal to the deceleration rate. s_move() starts an absolute
coordinate move and waits for completion.

s_rs_mov : This function causes the axis to accelerate from a
starting velocity, slew at constant velocity, and decelerate
to stop at the relative distance, immediately returning
control to the program. The acceleration rate is equal to the
deceleration rate. rs_move() starts a relative move and
waits for completion.move and waits for completion.

s_tas_mo : This function causes the axis to accelerate from a
starting velocity, slew at constant velocity, and decelerate
to stop at the specified absolute position, immediately
returning control to the program.. tas_move() starts an
absolute coordinate move and waits for completion.

Syntax
Analog result = s_s_move (Analog axis, Real pos, Real

str_vel, Real max_vel, Real tlacc, Real tsacc)
Analog result = s_move (Analog axis, Real pos, Real

str_vel, Real max_vel, Real tlacc, Real tsacc)
Analog result = s_rs_mov (Analog axis, Real distance,

Real str_vel, Real max_vel, Real tlacc, Real
tsacc)

Analog result = rs_move (Analog axis, Real distance,
Real str_vel, Real max_vel, Real tlacc, Real
tsacc)

Analog result = s_tas_mo (Analog axis, Real pos, Real
str_vel, Real max_vel, Real tlacc, Real tsacc,
Real tldec, Real tsdec)

The Isagraf Library For PCI-8134 • 79

Analog result = tas_move (Analog axis, Real pos, Real
str_vel, Real max_vel, Real tlacc, Real tsacc,
Real tldec, Real tsdec)

Input parameter :
axis : axis number designated to move.
pos : specified absolute position to move
distance : specified relative distance to move
str_vel : starting velocity in unit of pulse per second
max_vel : maximum velocity in unit of pulse per second
tlacc : specified linear acceleration time in unit of

second
tsacc : specified S-curve acceleration time in unit of

second
tldec : specified linear deceleration time in unit of

second
tsdec : specified S-curve deceleration time in unit of

second

Output parameter :
Result : 0 – No Error , >0 – Error

80 • The Isagraf Library For PCI-8134

3.4.6 Linear and Circular Interpolated Motion function group

Function item :
move_xy – Perform a 2-axes linear interpolated motion between X &

Y
move_zu – Perform a 2-axes linear interpolated motion between Z &

U
arc_xy – Perform a 2-axes circular interpolated motion between X &

Y
arc_xy – Perform a 2-axes circular interpolated motion between Z &

U

Function description :
move_xy : These two functions cause a linear interpolation motion

between two axes and wait for completion. The moving
speed should be set before performing these functions.

Move_zu : These two functions cause a linear interpolation motion
between two axes and wait for completion. The moving
speed should be set before performing these functions.

Arc_xy : These two functions cause the axes to move along a
circular arc and wait for completion. The arc starts from
origin and continues through the specified angle. A positive
value for angle produces clockwise arcs and a negative
value produces counter-clockwise arcs. The center of the
arc is specified by the parameters x_center and y_center.
set_arc_division() function specifies the maximum angle(in
degrees) between successive points along the arc. The
default angle is 5 degrees. The moving speed should be
set before performing these functions.

Arc_zu : These two functions cause the axes to move along a
circular arc and wait for completion. The arc starts from
origin and continues through the specified angle. A positive
value for angle produces clockwise arcs and a negative
value produces counter-clockwise arcs. The center of the
arc is specified by the parameters x_center and y_center.
set_arc_division() function specifies the maximum angle(in
degrees) between successive points along the arc. The
default angle is 5 degrees. The moving speed should be
set before performing these functions.

Syntax
Analog result = move_xy (Analog card_no, Real x, Real

y)
Analog result = move_zu (Analog card_no, Real z, Real

u)
Analog result = arc_xy (Analog card_no, Real x_center,

The Isagraf Library For PCI-8134 • 81

Real y_center, Real angle)
Analog result = arc_zu (Analog card_no, Real z_center,

Real u_center, Real angle)

Input parameter :
card_no : card number designated to perform interpolating function.
x, y, z, u : absolute target position of linear interpolation motion
x_center, y_center, z_center, u_center : center position of an arc
angle : specified angle for an arc

Output parameter :
Result : 0 – No Error , >0 – Error

82 • The Isagraf Library For PCI-8134

3.4.7 Interpolation Parameters Configuring function group

Function item :
s_m_sped – Set the vector velocity
s_m_accl – Set the vector acceleration time
s_ArcDiv – Set the interpolation arc segment length
arc_opti – Enable/Disable optimum acceleration calculations for arcs
s_mratio – Set the axis resolution ratios

Function description :
S_m_sped : The vector velocity and vector acceleration can be

specified for coordinated motion by this two functions.
S_m_accl : The vector velocity and vector acceleration can be

specified for coordinated motion by this two functions.
S_arcdiv : This function specifies the maximum angle (in degrees)

between successive points along the arc. The default is 5
degrees..

Arc_opti : This function enables (optimize = TRUE) or disable
(optimize = FALSE) the automatic calculation of the
optimum acceleration for an arc. The default state for arc
optimization is enabled..

S_mratio : This function configures scale factors for the specified
axis. Usually, the axes only need scale factors if their
mechanical resolutions are different. For example, if the
resolution of feedback sensors is two times resolution of
command pulse, then ratio = 2..

Syntax
Analog result = s_m_sped (Real str_vel, Real max_vel)
Analog result = s_m_accl (Real accel)
Analog result = s_arcdiv (Analog aixs, Real degree)
Analog result = arc_opti (Analog optimize)
Analog result = s_mratio (Analog axis, Real ratio)

Input parameter :
axis : axis number designated to configure
str_vel : starting velocity in unit of pulse per second
max_vel : maximum velocity in unit of pulse per second
accel : specified acceleration time in unit of second
optimize : enables (optimize = 1) or disable (optimize = 0) the

automatic calculation of the optimum acceleration for an arc.
degree : maximum angle between successive points along the arc.
Ratio : ratio of (feedback resolution)/(command resolution)

Output parameter :
Result : 0 – No Error , >0 – Error

The Isagraf Library For PCI-8134 • 83

3.4.8 Interpolation Parameters Configuring function group

Function item :
s_h_cofg –Set the configuration for home return.
home_mov –Perform a home return move.

Function description :
 s_h_cofg : Configure the logic of origin switch and index signal

needed for home_move() function. If you need to stop the
axis after EZ signal is active(home_mode=1 or 2), you
should keep placing ORG signal in the ON status until the
axis stop. If the pulse width of ORG signal is too short to
keep it at ON status till EZ goes ON, you should select the
org_latch as enable. The latched condition is cancelled by
the next start or by disabling the org_latch.

home_mov : This function will cause the axis to perform a home
return move according to the setting of set_home_config()
function. The direction of moving is determined by the sign
of velocity parameter(svel, mvel). Since the stopping
condition of this function is determined by home_mode
setting, user should take care to select the initial moving
direction. Or user should take care to handle the condition
when limit switch is touched or other conditions that is
possible causing the axis to stop. Executing v_stop()
function during home_move() can also cause the axis to
stop.

Syntax
Analog result = s_h_cofg (Analog axis, Analog

home_mode, Analog org_logic, Analog
org_latch, Analog ez_logic)

Analog result = home_mov (Analog axis , Real
str_vel, Real max_vel, Real accel)

Input parameter :
axis : axis number designated to configure and perform hom e

returning
home_mode : stopping modes for home return. home

mode=0, ORG active only. home mode=1, ORG
active and then EZ active to stop, high speed all
the way. home_mode =2, ORG active and then EZ
active to stop, high speed till ORG active then
low speed till EZ active.

org_logic : Action logic configuration for ORG signal
 org_logic=0, active low; org_logic=1, active high
org_latch : Latch state control for ORG signal
 org_latch=0, latch input; org_latch=1, latch input.

84 • The Isagraf Library For PCI-8134

ez_logic : Action logic configuration for EZ signal
EZ_logic=0, active low; EZ_logic=1, active high.

str_vel : starting velocity in unit of pulse per second
max_vel : maximum velocity in unit of pulse per second
accel : specified acceleration time in unit of second

Output parameter :
Result : 0 – No Error , >0 – Error

3.4.9 Manual Pulser Motion function group

Function item :
s_mauipt –Set pulser input mode and operation mode.
manu_mov –Begin a manual pulser movement

Function description :
s_mauipt : Four types of pulse input modes can be available for

pulser or hand wheel. User can also move two axes
simultaneously with one pulser by selecting the operation
mode to common mode. Or move the axes independently
by selecting the operation mode to independent mode.

maun_mov : Begin to move the axis according to manual pulser input
as this command is written. The maximum moving velocity
is limited by mvel parameter. Not until the v_stop()
command is written won’t system end the manual move
mode.

Syntax
Analog result = s_mauipt (Analog axis, Analog

manu_iptmode, Analog op_mode)
Analog result = manu_mov (Analog axis , Real

max_vel,)

Input parameter :
axis : axis number designated to start manual move
manu_iptmode : setting of manual pulser input mode from

PA and PB pins. ipt_mode=0, 1X AB phase type
pulse input. ipt_mode=1, 2X AB phase type
pulse input. ipt_mode=2, 4X AB phase type
pulse input. ipt_mode =3, CW/CCW type pulse
input.

op_mode : common or independent mode selection
 op_mode=0, Independent for each axis
 op_mode=1,PAX, PBX common for PAY, PBY or PAZ, PBZ

common for PAU, PBU.
max_vel : maximum velocity in unit of pulse per second

The Isagraf Library For PCI-8134 • 85

Output parameter :
Result : 0 – No Error , >0 – Error

3.4.10 Motion Status function group

Function item :
mot_done –Return the status when a motion is done.

Function description :
mot_done : Return the motion status of PCI-8134. position.
Definition of return value is as following:
 0 : the axis is busying.
 1: a movement is finished
 2: the axis stops at positive limit switch
 3: the axis stops at negative limit switch
 4: the axis stops at origin switch
 5: the axis stops because the ALARM signal is active

Syntax
Analog result = mot_done (Analog axis)

Input parameter :
axis : axis number designated to start manual move

Output parameter :
Result :
 0 : the axis is busying.
 1: a movement is finished
 2: the axis stops at positive limit switch
 3: the axis stops at negative limit switch
 4: the axis stops at origin switch
 5: the axis stops because the ALARM signal isactive

86 • The Isagraf Library For PCI-8134

3.4.11 Servo Drive Interface function group

Function item :
s_AlmLog –Set alarm logic and alarm mode
s_InpLog –Set In-Position logic and enable/disable
s_SdLog –Set slow down point logic and enable/disable
s_ErcEnl –Set ERC pin output enable/disable

Function description :
s_AlmLog : Set the active logic of ALARM signal input from servo

driver. Two reacting modes are available when ALARM signal
is active.

S_InpLog : Set the active logic of In-Position signal input from servo
driver. U※sers can select whether they want to enable this
function. Default state is disabled.

s_SdLog : Set the active logic and latch control of SD signal input
from mechanical system. Users can select whether they want
to enable this function. Default state is disabled.

S_ErcEnl : You can set ERC pin output enable/disable by this
function. Default state is enabled.

Syntax
Analog result = s_AlmLog (Analog axis, Analog

alm_logic, Analog alm_mode)
Analog result = s_InpLog (Analog axis, Analog

inp_logic, Analog inp_enable)
Analog result = s_SdLog (Analog axis, Analog sd_logic,

Analog sd_latch, Analog sd_enable)
Analog result = s_ErcEnl (Analog axis, Analog

erc_enable)

Input parameter :
axis : axis number designated to configure
alm_logic : setting of active logic for ALARM signal
alm_logic=0, active LOW.
alm_logic=1, active HIGH.
alm_mode : reacting modes when receiving ALARM

signal.
alm_mode=0, motor immediately stops.
alm_mode=1, motor decelerates then stops.
inp_enable : INP function enable/disable
inp_enable=0, Disabled
inp_enable=1, Enabled

inp_logic : setting of active logic for INP signal
inp_logic=0, active LOW.
inp_logic=1, active HIGH.
sd_logic : setting of active logic for SD signal

The Isagraf Library For PCI-8134 • 87

sd_logic=0, active LOW.
sd_logic=1, active HIGH.
sd_enable : Slow down point function enable/disable
sd_enable=0, Disabled
sd_enable=1, Enabled
sd_latch : setting of latch control for SD signal
sd_logic=0, do not latch.
sd_logic=1, latch.
Erc_enable : ERC pin output enable/disable
erc_enable=0, Disabled
erc_enable=1, Enabled

Output parameter :
Result : 0 – No Error , >0 – Error

88 • The Isagraf Library For PCI-8134

3.4.12 I/O Control and Monitoring function group

Function item :
set_svon –Set state of general purpose output pin
g_iostus –Get all the I/O status of PCI-8134

Function description :
set_svon : Set the High/Low output state of general purpose output

pin SVON.
g_iostus : Get all the I/O status for each axis. The definition for each

bit is as following:

Bit Bit Name Description
0 +EL Positive Limit Switch
1 -EL Negative Limit Sw itch
2 +SD Positive Slow Down Point
3 -SD Negative Slow Down Point
4 ORG Origin Switch
5 EZ Index signal
6 ALM Alarm Signal
7 SVON SVON of PCL5023 pin output
8 RDY RDY pin input
9 INT Interrupt status
10 ERC ERC pin output
11 INP In-Position signal input

Syntax
Analog result = set_svon (Analog axis, Analog

on_off)
Analog io_sts = g_iostus (Analog axis)

Input parameter :
axis : axis number for I/O control and monitoring
on_off : setting for SVON pin digital output .on_off=0,

SVON is LOW. on_off=1, SVON is HIGH.

Output parameter :
result : 0 – No Error , >0 – Error
io_stus : I/O status word. Where “1’ is ON and “0” is OFF.

The Isagraf Library For PCI-8134 • 89

3.4.13 Position Control function group

Function item :
set_pos –Set the actual position.
get_pos –Get the actual position.
set_comd –Set the current command position.
get_comd –Get the current command position.

Function description :
set_pos : changes the current actual position to the specified position
get_pos : reads the current actual position. Note that when feedback

signals is not available in the system, thus external encoder
feedback is Disabled in set_cnt_src() function, the value
gotten from this function is command position..

set_comd : changes the command position to the specified
command position.

get_comd : reads the current command position.

Syntax
Analog result = set_pos (Analog axis, Real spos)
Analog gpos = get_pos (Analog axis)
Analog result = set_comd (Analog axis, Real spos)
Analog gpos = get_comd (Analog axis)

Input parameter :
axis : axis number designated to set and get position.
spos : actual position or command position

Output parameter :
Result : 0 – No Error , >0 – Error
gpos : actual position or command position

90 • The Isagraf Library For PCI-8134

3.4.14 Interrupt Control function group

Function item :
s_IntCor –Set interrupt control status
s_IntFac –Set interrupt generating factors
r_int_ax –Get the axis which generates interrupt
r_int_st –Get the interrupting status of axis

Function description :
s_IntCor : This function is used to enable/disable INT control
s_IntFac : This function allows users to select factors to initiate the

INT signal. Enter 1 in each bit to output INT signal to host PC
according to the factor set.

The definition for each bit is as following:

Bit Interrupt Factor
0 Stop with the EL signal
1 Stop with the SD signal
2 Stop with the ALM signal
3 Stop with the STP signal
4 ×(should be set to 0)
5 Completion of home return
6 Completion of preset movement
7 Completion of interpolating motion for two axes: (X & Y)

or (Z & U)
8~12 ×(should be set to 0)
13 when v_stop() function stop the axis
14 EA/EB, PA/PB encoder input error
15 start with STA signal
16 Completion of Acceleration
17 Start of Deceleration

18~22 Should be 0
23 RDY active (AP3 of PCL5023 change from 1 to 0)

24~31 ×(should be set to 0)

Bit 14: When pins EA and EB, or PA and PB change simultaneously,

it will result in an encoder input error, with these pins made
valid.

r_int_ax : This function can be used inside the Interrupting Service
Routine(ISR) to identify which axis generates the INT signal to
host PC.

r_int_st : This function is also used inside ISR. When knowing the
interrupt requested axis by

get_int_axis(), user should read the interrupt factor by this function.

The Isagraf Library For PCI-8134 • 91

The definition of each bit for *int_status is as following:

Bit Interrupt Factor
0 Stop with the +EL signal
1 Stop with the –EL signal
2 Stop with the +SD signal
3 Stop with the –SD signal
4 Stop with the ALM signal
5 Stop with the STP signal
6 0
7 0
8 Stop with v_stop() command
9 Stop with home return completed
10 0
11 Stop with preset movement completed
12 Stop with EA/EB input error
13 0
14 Stop with PA/PB input error
15 Start with STA signal
16 Deceleration Completed
17 Acceleration Starting

18~22 Should be 0
23 RDY active(AP3 of PCL5023 change from 1 to 0)

24~31 0

Syntax
Analog result = s_IntCor (Analog card_no, Analog

iniflag)
Analog gpos = s_IntFac (Analog axis, Analog

int_factor)
Analog int_axis = r_int_ax (Analog card_no)
Analog int_status = r_int_st (Analog card_no)

Input parameter :
card_no : card number wanting to enable interrupt

generating
axis : axis number wanting to set and read interrupt factor.
Iniflag : the init flag(1 : enable, o : disable)
int_factor : interrupting factor to set

Output parameter :
Result : 0 – No Error , >0 – Error
int_axis : axis number which generates interrupt
int_status : interrupt factor monitor

92 • The Isagraf Library For PCI-8134

3.5 The mapping between PCIS-8134 NT DLL
function and PCI-8134 ISaGRAF Library

PCI-8134 NT DLL function PCIS-ISG 8134 ISaGRAF Library
W_8134_Initial p8134ini
W_8134_Close p8134clo
W_8134_Set_SVON set_svon
W_8134_Get_IRQ_Status Not implementation
W_8134_Get_IRQ_Channel g_irq_ch
W_8134_Get_Base_Addr g_addres
W_8134_Set_INT_Control s_IntCor
W_8134_Set_Config s_config
start_a_move s_a_move
a_move a_move
start_r_move s_r_move
r_move r_move
start_t_move s_t__move
t_move t_move
wait_for_done Not implementation
set_move_ratio s_MRatio
get_position get_pos
set_position set_pos
get_command get_comd
set_command set_comd
v_move v_move
sv_move sv_move
v_change v_chang
v_stop v_stop
get_io_status g_iostus
motion_done mot_done
map_axes not implementation
set_move_mode not implementation
set_move_pos not implementation
set_move_speed s_m_sped
set_move_accel s_m_acel
set_move_saccel not implementation
start_motion not implementation
stop_motion not implementation
set_sync_mode not implementation
set_arc_division s_ArcDiv
arc_optimization arc_opti
move_xy move_xy

The Isagraf Library For PCI-8134 • 93

move_zu move_zu
arc_xy arc_xy
arc_zu arc_zu
set_home_config s_h_confg
home_move home_mov
set_manu_iptmode s_MauIpt
manu_move manu_mov
set_pls_outmode s_PlsOut
set_pls_iptmode s_PlsIpt
set_cnt_src s_CntSrc
set_alm_logic s_AlmLog
set_inp_logic s_InpLog
set_erc_enable s_ErcEnl
set_sd_logic s_SdLog
set_int_factor s_IntFac
Read_Int_Axis r_int_ax
Read_Int_Status r_ints_st
W_8134_INT_Enable not implementation
W_8134_INT_Disable not implementation
start_ta_move s_ta_mov
ta_move ta_move
start_s_move s_s_move
s_move s_move
start_rs_move s_rs_mov
rs_move rs_move
start_tas_move s_tas_mov
tas_move tas_move
start_move_all not implementation
move_all not implementation
wait_for_all not implementation

