
Advance Technologies; Automate the World.

Manual Rev. 2.00

Revision Date: March 05, 2007

Part No: 50-11224-2000

PCIS-DASK
Data Acquisition Software Development Kit

for NuDAQ® PCI Bus Cards

User’s Manual

Copyright 2007 ADLINK TECHNOLOGY INC.

All Rights Reserved.

Disclaimer
The information in this document is subject to change without prior
notice in order to improve reliability, design, and function and does
not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, spe-
cial, incidental, or consequential damages arising out of the use or
inability to use the product or documentation, even if advised of
the possibility of such damages.

This document contains proprietary information protected by copy-
right. All rights are reserved. No part of this manual may be repro-
duced by any mechanical, electronic, or other means in any form
without prior written permission of ADLINK.

Trademark Information
NuDAQ is a registered trademark of ADLINK Technology Inc.

Product names mentioned herein are used for identification pur-
poses only and may be trademarks and/or registered trademarks
of their respective companies.

Getting service
Customer satisfaction is our top priority. Contact us should you
require any service or assistance.

ADLINK TECHNOLOGY INC.

Web Site http://www.adlinktech.com
Sales & Service service@adlinktech.com
Telephone No. +886-2-8226-5877
Fax No. +886-2-8226-5717
Mailing Address 9F No. 166 Jian Yi Road, Chungho City,

Taipei Hsien 235, Taiwan, ROC

ADLINK TECHNOLOGY AMERICA, INC.

Sales & Service info@adlinktech.com
Toll-Free +1-866-4-ADLINK (235465)
Fax No. +1-949-727-2099
Mailing Address 8900 Research Drive, Irvine, CA 92618, USA

ADLINK TECHNOLOGY EUROPEAN SALES OFFICE

Sales & Service emea@adlinktech.com
Toll-Free +49-211-4955552
Fax No. +49-211-4955557
Mailing Address Nord Carree 3, 40477 Düsseldorf, Germany

ADLINK TECHNOLOGY SINGAPORE PTE LTD

Sales & Service singapore@adlinktech.com
Telephone No. +65-6844-2261
Fax No. +65-6844-2263
Mailing Address 84 Genting Lane #07-02A, Cityneon Design

Center, Singapore 349584

ADLINK TECHNOLOGY INDIA LIAISON OFFICE

Sales & Service india@adlinktech.com
Telephone No. +91-80-57605817
Fax No. +91-80-26671806
Mailing Address No. 1357, Ground Floor, "Anupama",

Aurobindo Marg JP Nagar (Ph-1)
Bangalore - 560 078

http://www.adlinktech.com

http://www.adlinktech.com
http://www.adlinktech.com
mailto:service@adlinktech.com
service@adlinktech.com
mailto:info@adlinktech.com
service@adlinktech.com
mailto:emea@adlinktech.com
service@adlinktech.com
mailto:singapore@adlinktech.com
service@adlinktech.com
mailto:india@adlinktech.com
service@adlinktech.com

ADLINK TECHNOLOGY BEIJING

Sales & Service market@adlinkchina.com.cn
Telephone No. +82-2-20570565
Fax No. +82-2-20570563
Mailing Address 4F, Kostech Building, 262-2, Yangjae-Dong,

Seocho-Gu, Seoul, 137-130, Korea

ADLINK TECHNOLOGY BEIJING

Sales & Service market@adlinkchina.com.cn
Telephone No. +86-10-5885-8666
Fax No. +86-10-5885-8625
Mailing Address Room 801, Building E, Yingchuangdongli

Plaza, No.1 Shangdidonglu, Haidian District,
Beijing, China

ADLINK TECHNOLOGY SHANGHAI

Sales & Service market@adlinkchina.com.cn
Telephone No. +86-21-6495-5210
Fax No. +86-21-5450-0414
Mailing Address Floor 4, Bldg. 39, Caoheting Science and

Technology Park, No.333 Qinjiang Road,
Shanghai , China

ADLINK TECHNOLOGY SHENZHEN

Sales & Service market@adlinkchina.com.cn
Telephone No. +86-755-2643-4858
Fax No. +86-755-2664-6353
Mailing Address C Block, 2nd Floor, Building A1,

Cyber-tech Zone, Gaoxin Ave. 7.S,
High-tech Industrial Park S., Nanshan District,
Shenzhen, Guangdong Province, China

mailto:market@adlinkchina.com
service@adlinktech.com
mailto:market@adlinkchina.com
service@adlinktech.com
mailto:market@adlinkchina.com
service@adlinktech.com
mailto:market@adlinkchina.com
service@adlinktech.com

Using this manual
Audience and scope
This manual guides you when using the PCIS-DASK software
driver for NuDAQ PCI bus data acquisition cards. This manual
also describes how to install and use the software library and meet
your requirements when creating programs for your software
applications.

How this manual is organized
This manual is organized as follows:

Chapter 1 Introduction: This chapter intoduces the PCIS-
DASK and lists all DAQ modules and language environments
which the program supports.

Chapter 2 Function Classes: This chapter describes the
classes of functions which the PCIS-DASK supports.

Chapter 3 Building Applications: This section describes the
fundamentals of building PCIS-DASK applications in Windows
and Linux.

Chapter 4 Application Hints: This chapter provides the PCIS-
DASK programming schemes for various DAQ operations.

Chapter 5 Continuous Data Transfer: This section illustrates
the mechanism and techniques that PCIS-DASK uses for con-
tinuous data transfer.

Chapter 6 Utilities: This chapter describes the Win32 and
PCIS-DASK/X utilities.

Chapter 7 Sample Programs: This chapter provides some
PCIS-DASK sample programs for supported module

Chapter 8 Distribution of Applications: This section lists the
files, installers, and manual installation procedures needed
when distributing your PCIS-DASK-based applications.

Conventions
Take note of the following conventions used throughout the man-
ual to make sure that you perform certain tasks and instructions
properly.

NOTE Additional information, aids, and tips that help you per-
form particular tasks.

IMPORTANTCritical information and instructions that you MUST perform to
complete a task.

WARNING Information that prevents physical injury, data loss, mod-
ule damage, program corruption etc. when trying to com-
plete a particular task.

Table of Contents i

PCIS-DASK

Table of Contents
1 Introduction .. 1

1.1 Hardware Support.. 2
1.2 Language Support ... 3

2 Function Classes.. 5
2.1 General Configuration Function Group................................ 6
2.2 Actual Sampling Rate Function Group 6
2.3 Analog Input Function Group... 7

Analog Input Configuration Functions 7
One-Shot Analog Input Functions 9
Continuous Analog Input Functions 9
Asynchronous Analog Input Monitoring Functions 11

2.4 Analog Output Function Group .. 12
Analog Output Configuration Functions 12
One-Shot Analog Output Functions 13

2.5 Digital Input Function Group .. 14
Digital Input Configuration Functions 14
One-Shot Digital Input Functions 14
Continuous Digital Input Functions 15
Asynchronous Digital Input Monitoring Functions 16

2.6 Digital Output Function Group ... 17
Digital Output Configuration Functions 17
One-Shot Digital Output Functions 18
Continuous Digital Output Functions 19
Asynchronous Digital Output Monitoring Functions 19

2.7 Timer/Counter Function Group .. 20
Timer/Counter Functions .. 20
General-Purpose Timer/Counter Functions 20

2.8 Digital Input/Output Function Group 22
Digital Input/Output Configuration Functions 22
Dual-Interrupt System Setting Functions 23
Local Interrupt Setting Functions 24

2.9 Emergency Shutdown Function Group.............................. 25
2.10 Watchdog Timer Function Group....................................... 25
2.11 Hot-system Reset Hold Function Group 25
2.12 Calibration Function Group.. 25

3 Building Applications .. 27

ii Table of Contents

PCIS-DASK

3.1 Contiguous Memory Allocation .. 27
3.2 Application Building Fundamentals in Windows 28

Using Microsoft® Visual C®/C++® 28
Using Microsoft® Visual Basic® 29

3.3 Application Building Fundamentals in Linux 32
3.4 Application Building Fundamentals Using .NET 33

Using Microsoft VB.net. .. 33
Using Microsoft C# ... 35
Creating Windows® PCIS-DASK Application Using Mi-

crosoft VB.net. .. 37
Using Callback Functions in a VB.net Application with

PCIS-DASK .. 38
Using Callback Functions in a C# Application with

PCIS-DASK .. 39

4 Application Hints .. 41
4.1 Analog Input... 42

One-Shot Analog Input ... 43
Synchronous Continuous Analog Input 44
Non-Trigger Non-double-buffered Asynchronous

Continuous Analog Input 45
Non-Trigger Double-buffered Asynchronous

Continuous Analog Input 47
Trigger Mode Non-double-buffered Asynchronous

Continuous Analog Input 49
Trigger Mode Double-buffered Asynchronous

Continuous Analog Input 51
4.2 Analog Output Programming Hints 54
4.3 Digital Input Programming Hints .. 55

One-Shot Digital Input .. 56
Synchronous Continuous Digital Input 58
Non-double-buffered Asynchronous Continuous

Digital Input ... 59
Double-buffered Asynchronous Continuous

Digital Input ... 61
Multiple-buffered Asynchronous Continuous

Digital Input ... 63
4.4 Digital Output Programming Hints 66

One-Shot Digital Output .. 67
Synchronous Continuous Digital Output 69

Table of Contents iii

PCIS-DASK

Asynchronous Continuous Digital Output 70
Pattern Generation Digital Output 71
Multiple-buffered Asynchronous Continuous

Digital Output .. 72
4.5 DAQ Event Message Programming Hints 74
4.6 Interrupt Event Message Programming Hints.................... 76

5 Continuous Data Transfer ... 79
5.1 Mechanisms... 79
5.2 Double-Buffered AI/DI Operation....................................... 80

Double Buffer Mode Principle 80
Single-Buffered Versus Double-Buffered Data Transfer 82

5.3 Trigger Mode Data Acquisition for Analog Input 83

6 Utilities .. 85
6.1 Win32 Utilities .. 85

NuDAQ Registry/Configuration (PciUtil) 85
Data File Converter (DAQCvt) 89
Sample Programs Browser ... 92

6.2 PCIS-DASK/X Utilities ... 93
dask_conf ... 93

6.3 Module Installation Script... 96
6.4 Uninstallation Script ... 98
6.5 Data File Converter (DAQCvt) ... 98

Options for data format conversion 99
Options for separator in text file 99
Options for Title/Head in text file 99

7 Sample Programs... 101
7.1 Brief Program Descriptions.. 101
7.2 Development Environments... 116

Visual Basic Sample Programs 116
Microsoft C/C++ Sample Programs 116

7.3 Execute Sample Programs .. 118
7.4 Detailed Descriptions of Programs 119

A/D Conversion, D/A Conversion, D/I, and D/O 120
Data I/O Through DMA Data Transfer or

Interrupt Operation ... 121
Double Buffer Mode Data I/O Through

DMA Transfer or Interrupt Operation 122

iv Table of Contents

PCIS-DASK

Trigger Mode Data I/O Through DMA Data
Transfer or Interrupt Operation 123

8 Distribution of Applications... 125
8.1 Required Files.. 125
8.2 Automatic Installers.. 127
8.3 Manual Installation ... 128

Introduction 1

PCIS-DASK

1 Introduction
The PCIS-DASK is a software development kit for NuDAQ data
acquisition cards utilizing the PCI bus. With high performance data
acquisition driver, the PCIS-DASK lets you develop custom appli-
cations under Windows® NT/98/2000/XP/Server 2003 and Linux
environments.

With memory and data buffer management capabilities, the PCIS-
DASK gives you freedom from dealing with complex issues and
focus more on developing your applications. The PCIS-DASK also
implements simple communication with NuDAQ PCI-bus cards,
while the easy-to-use functions allow you to utilize all the card’s
features in a high-level way.

The PCIS-DASK also delivers you the advantage of all the power
features of Microsoft® Win32 System and Linux for your data
acquisition applications, including running multiple applications
and using extended memory. The PCIS-DASK’s flawless support
for Visual Basic environment makes it easy to create custom user
interfaces and graphics.

In addition to the software drivers, the PCIS-DASK comes with
sample programs for your reference. These sample programs help
you develop your applications quickly and conveniently.

2 Introduction

PCIS-DASK
Hardware Support

1.1 Hardware Support
The PCIS-DASK currently supports the following NuDAQ data
acquisition and NuIPC CompactPCI cards:

PCI-6208A/cPCI-6208A
PCI-6208V/16V/cPCI-6208V
PCI-6308A
PCI-6308V
PCI-7200/cPCI-7200
PCI-7230/cPCI-7230
PCI-7233/PCI-7233H
PCI-7234
PCI-7224
PCI-7248/cPCI-7248
cPCI-7249R
PCI-7250
cPCI-7252
PCI-7256
PCI-7258
PCI-7260
PCI-7296
PCI-7300A/cPCI-7300A
PCI-7348
PCI-7396

PCI-7432/cPCI-7432
PCI-7433/cPCI-7433
PCI-7434/cPCI-7434
cPCI-7432R
cPCI-7433R
cPCI-7434R
PCI-7442
PCI-7443
PCI-7444
cPCI-7452
PCI-8554
PCI-9111
PCI-9112/cPCI-9112
PCI-9113
PCI-9114
cPCI-9116
PCI-9118
PCI-9221
PCI-9812/10

NOTE ADLINK periodically upgrades the PCIS-DASK for new
cards/modules. Check the card/modules’s Release
Notes to know if PCIS-DASK supports it.

Introduction 3

PCIS-DASK
Language Support

1.2 Language Support
The PCIS-DASK is a DLL (Dynamic-Link Library) version for use-
with Windows® and Linux environments. It works with any Win-
dows programming language that allows calls to a DLL. These
include Microsoft® Visual C/C++ (4.0 or higher versions), Borland
C++ (5.0 or higher versions), or Microsoft® Visual Basic (4.0 or
higher version). In Linux, it works with any 32-bit compiler, such as
gcc.

The PCIS-DASK also comes with a prototype function that sup-
ports Borland Delphi 2.x (32-bit) or higher versions.

4 Introduction

PCIS-DASK
Language Support

Function Classes 5

PCIS-DASK

2 Function Classes
This chapter describes the classes of functions that the PCIS-
DASK supports.

All PCIS-DASK functions are grouped into different classes:

General Configuration Function Group
Actual Sampling Rate Function Group
Analog Input Function Group

Analog Input Configuration Functions
One-Shot Analog Input Functions
Continuous Analog Input Functions
Asynchronous Analog Input Monitoring Functions

Analog Output Function Group
Digital Input Function Group

Digital Input Configuration Functions
One-Shot Digital Input Functions
Continuous Digital Input Functions
Asynchronous Digital Input Monitoring Functions

Digital Output Function Group
Digital Output Configuration Functions
One-Shot Digital Output Functions
Continuous Digital Output Functions
Asynchronous Digital Output Monitoring Functions

Timer/Counter Function Group
DIO Function Group

Digital Input/Output Configuration Functions
Dual-Interrupt System Setting Functions
Local Interrupt Setting Functions

Emergency Shutdown Function Group
Watchdog Timer Function Group
Hot-system Reset Hold Function Group
Calibration Function Group

6 Function Classes

PCIS-DASK
General Configuration Function Group

2.1 General Configuration Function Group
These functions initialize and configure data acquisition cards.

Register_Card Initializes the hardware and software
states of a NuDAQ PCI-bus data acqui-
sition card. This function must be called
before any other DASK library functions.

Release_Card Tells the DASK library that the regis-
tered card is not in use and can be
released. This function makes room for
a new card to register.

GetCardType Gets the card type of the device with a
specified card index.

GetCardIndexFromID Gets the card type and the sequence
number of the device with a specified
card ID.

GetBaseAddr Gets the I/O base addresses of the
device with a specified card index.

GetLCRAddr Gets the LCR base address (defined by
the PCI controller on board) of the
device with a specified card index.

SetInitPattern Sets the state of the initial or safety-out
pattern.

GetInitPattern Gets the state of relays set by the
onboard switches.

IdentifyLED_Control Controls identification LED.

2.2 Actual Sampling Rate Function Group
GetActualRate Returns the actual sampling rate the

device will perform for the defined sam-
pling rate value.

Function Classes 7

PCIS-DASK
Analog Input Function Group

2.3 Analog Input Function Group

Analog Input Configuration Functions
AI_9111_Config Informs PCIS-DASK library of the trigger

source and trigger mode selected for the
analog input operation of PCI9-111. You
must call this function before calling
function to perform continuous analog
input operation of PCI-9111.

AI_9112_Config Informs PCIS-DASK library of the trigger
source selected for the analog input
operation of PCI-9112. You must call
this function before calling function to
perform continuous analog input opera-
tion of PCI-9112.

AI_9113_Config Informs PCIS-DASK library of the trigger
source selected for the analog input
operation of PCI-9113. You must call
this function before calling function to
perform continuous analog input opera-
tion of PCI-9113.

AI_9114_Config Informs PCIS-DASK library of the trigger
source selected for the analog input
operation of PCI-9114. You must call
this function before calling function to
perform continuous analog input opera-
tion of PCI-9114.

AI_9116_Config Informs PCIS-DASK library of the trigger
source, trigger mode, input mode, and
conversion mode selected for the ana-
log input operation of PCI-9116. You
must call this function before calling
function to perform continuous analog
input operation of PCI-9116.

AI_9118_Config Informs PCIS-DASK library of the trigger
source, trigger mode, input mode, and
conversion mode selected for the ana-

8 Function Classes

PCIS-DASK
Analog Input Function Group

log input operation of PCI9118. You
must call this function before calling
function to perform continuous analog
input operation of PCI-9118.

AI_9221_Config Informs PCIS-DASK library of the trigger
source, trigger mode, and trigger proper-
ties selected for the analog input opera-
tion of PCI-9221. You must call this
function before calling function to per-
form continuous analog input operation
of PCI-9221.

AI_9812_Config Informs PCIS-DASK library of the trigger
source, trigger mode, and trigger proper-
ties selected for the analog input opera-
tion of PCI-9812. You must call this
function before calling function to per-
form continuous analog input operation
of PCI-9812.

AI_9116_CounterInterval Informs PCIS-DASK library of the scan
interval value and sample interval value
selected for the analog input operation
of PCI-9116. You must call this function
before calling function to perform contin-
uous analog input operation of PCI-
9116.

AI_9221_CounterInterval Informs PCIS-DASK library of the scan
interval value and sample interval value
selected for the analog input operation
of PCI-9221. You must call this function
before calling function to perform contin-
uous analog input operation of PCI-
9221.

AI_InitialMemoryAllocated Gets the actual size of analog input
memory that is available in the device
driver.

Function Classes 9

PCIS-DASK
Analog Input Function Group

AI_GetView Gets the mapped buffer address of the
analog input memory that is available in
the device driver.

AI_SetTimeOut Sets the Timeout period for Sync mode
of continuous AI.

One-Shot Analog Input Functions
AI_ReadChannel Performs a software triggered A/D con-

version (analog input) on an analog
input channel and returns the value con-
verted (unscaled).

AI_VReadChannel Performs a software triggered A/D con-
version (analog input) on an analog
input channel and returns the value
scaled to a voltage in units of volts.

AI_ReadMultiChannels Performs software triggered A/D conver-
sions on the specified analog input
channels.

AI_ScanReadChannels Performs software triggered A/D conver-
sions on the specified analog input
channels.

AI_VoltScale Converts the result from an
AI_ReadChannel call to the actual input
voltage.

Continuous Analog Input Functions
AI_ContReadChannel Performs continuous A/D conversions

on the specified analog input channel at
a rate as close to the rate you specified.

AI_ContScanChannels Performs continuous A/D conversions
on the specified continuous analog input
channels at a rate as close to the rate
you specified. This function is only avail-
able for those cards that support auto-
scan functionality.

10 Function Classes

PCIS-DASK
Analog Input Function Group

AI_ContReadMultiChannels
Performs continuous A/D conversions
on the specified analog input channels
at a rate as close to the rate you speci-
fied. This function is only available for
those cards that support auto-scan func-
tionality.

AI_ContReadChannelToFile
Performs continuous A/D conversions
on the specified analog input channel at
a rate as close to the rate you specified
and saves the acquired data in a disk
file.

AI_ContScanChannelsToFile
Performs continuous A/D conversions
on the specified continuous analog input
channels at a rate as close to the rate
you specified and saves the acquired
data in a disk file. This function is only
available for those cards that support
auto-scan functionality.

AI_ContReadMultiChannelsToFile
Performs continuous A/D conversions
on the specified analog input channels
at a rate as close to the rate you speci-
fied and saves the acquired data in a
disk file. This function is only available
for those cards that support auto-scan
functionality.

AI_ContVScale Converts the values of an array of
acquired data from an continuous A/D
conversion call to the actual input volt-
ages.

AI_ContStatus Checks the current status of the continu-
ous analog input operation.

AI_EventCallBack Controls and notifies the user's applica-
tion when a specified DAQ event occurs.

Function Classes 11

PCIS-DASK
Analog Input Function Group

The notification is performed through a
user-specified callback function.

AI_ContBufferReset Resets all the buffers set by function
“AI_ContBufferSetup” for continuous
analog input.

AI_ContBufferSetup Sets up a specified buffer for continuous
analog input.

Asynchronous Analog Input Monitoring Functions
AI_AsyncCheck Checks the current status of the asyn-

chronous analog input operation.

AI_AsyncClear Stops the asynchronous analog input
operation.

AI_AsyncDblBufferMode Enables or disables double buffer data
acquisition mode.

AI_AsyncDblBufferHalfReady
Checks whether the next half buffer of
data in circular buffer is ready for trans-
fer during an asynchronous double-buff-
ered analog input operation.

AI_AsyncDblBufferTransfer
Copies half of the data of circular buffer
to user buffer. You can execute this
function repeatedly to return sequential
half buffers of the data.

AI_AsyncDblBufferOverrun
Checks or clears overrun status of the
double-buffered analog input operation.

AI_AsyncDblBufferHandled
Notifies the PCIS-DASK that the ready
buffer has been handled in user applica-
tion.

AI_AsyncDblBufferToFile
Logs the data of the circular buffer to a
disk file.

12 Function Classes

PCIS-DASK
Analog Output Function Group

2.4 Analog Output Function Group

Analog Output Configuration Functions
AO_6208A_Config Informs PCIS-DASK library of the cur-

rent range selected for the analog output
operation of PCI-6208A. You must call
this function before calling function to
perform current output operation.

AO_6308A_Config Informs PCIS-DASK library of the cur-
rent range selected for the analog output
operation of PCI-6308A. You must call
this function before calling function to
perform current output operation.

AO_6308V_Config Informs PCIS-DASK library of the polar-
ity (unipolar or bipolar) that the output
channel is configured for the analog out-
put and the reference voltage value
selected for the analog output chan-
nel(s) of PCI-6308V. You must call this
function before calling function to per-
form current output operation.

AO_9111_Config Informs PCIS-DASK library of the polar-
ity (unipolar or bipolar) that the output
channel is configured for the analog out-
put of PCI-9111. You must call this func-
tion before calling function to perform
voltage output operation.

AO_9112_Config Informs PCIS-DASK library of the refer-
ence voltage value selected for the ana-
log output channel(s) of PCI-9112. You
must call this function before calling
function to perform voltage output oper-
ation.

Function Classes 13

PCIS-DASK
Analog Output Function Group

One-Shot Analog Output Functions
AO_WriteChannel Writes a binary value to the specified

analog output channel.

AO_VWriteChannel Accepts a voltage value, scales it to the
proper binary value and writes a binary
value to the specified analog output
channel.

AO_VoltScale Scales a voltage to a binary value.

AO_SimuWriteChannel Writes binary values to the specified
analog output channels simultaneously.

AO_SimuVWriteChannel Accepts voltage values, scales them to
the proper binary values and writes
binary values to the specified analog
output channels simultaneously.

14 Function Classes

PCIS-DASK
Digital Input Function Group

2.5 Digital Input Function Group

Digital Input Configuration Functions
DI_7200_Config Informs PCIS-DASK library of the trigger

source and trigger properties selected
for the digital input operation of PCI-
7200. You must call this function before
calling function to perform continuous
digital input operation of PCI-7200.

DI_7300A_Config
DI_7300B_Config Informs PCIS-DASK library of the trigger

source and trigger properties selected
for the digital input operation of PCI-
7300A Rev.A or PCI-7300A Rev.B. You
must call this function before calling
function to perform continuous digital
input operation of PCI-7300A Rev.A or
PCI-7300A Rev.B.

DI_InitialMemoryAllocated Gets the actual size of digital input DMA
memory that is available in the device
driver.

DI_GetView Gets the mapped buffer address of the
digital input memory that is available in
the device driver.

One-Shot Digital Input Functions
DI_ReadLine Reads the digital logic state of the speci-

fied digital line in the specified port.

DI_ReadPort Reads digital data from the specified
digital input port.

Function Classes 15

PCIS-DASK
Digital Input Function Group

Continuous Digital Input Functions
DI_ContReadPort Performs continuous digital input on the

specified digital input port at a rate as
close to the rate you specified.

DI_ContReadPortToFile Performs continuous digital input on the
specified digital input port at a rate as
close to the rate you specified and
saves the acquired data in a disk file.

DI_ContStatus Checks the current status of the continu-
ous digital input operation.

DI_EventCallBack Controls and notifies the user's applica-
tion when a specified DAQ event occurs.
The notification is performed through a
user-specified callback function.

DI_ContMultiBufferSetup Set up the buffer for multi-buffered con-
tinuous digital input.

DI_ContMultiBufferStart Starts the multi-buffered continuous digi-
tal input on the specified digital input
port at a rate as close to the rate you
specified.

16 Function Classes

PCIS-DASK
Digital Input Function Group

Asynchronous Digital Input Monitoring Functions
DI_AsyncCheck Checks the current status of the asyn-

chronous digital input operation.

DI_AsyncClear Stops the asynchronous digital input
operation.

DI_AsyncDblBufferMode Enables or disables double buffer data
acquisition mode.

DI_AsyncDblBufferHalfReady
Checks whether the next half buffer of
data in circular buffer is ready for trans-
fer during an asynchronous double-buff-
ered digital input operation.

DI_AsyncDblBufferTransfer
Copies half of the data of circular buffer
to user buffer. You can execute this
function repeatedly to return sequential
half buffers of the data.

DI_AsyncMultiBufferNextReady
Checks whether the next buffer of data
in circular buffer is ready for transfer dur-
ing an asynchronous multi-buffered digi-
tal input operation.

DI_AsyncDblBufferOverrunChecks or clears overrun status of the
double-buffered digital input operation.

Function Classes 17

PCIS-DASK
Digital Output Function Group

2.6 Digital Output Function Group

Digital Output Configuration Functions
DO_7200_Config Informs PCIS-DASK library of the trigger

source and trigger properties selected
for the digital input operation of PCI-
7200. You must call this function before
calling function to perform continuous
digital output operation of PCI-7200.

DO_7300A_Config
DO_7300B_Config Informs PCIS-DASK library of the trigger

source and trigger properties selected
for the digital input operation of PCI-
7300A Rev.A or PCI-7300A Rev.B. You
must call this function before calling
function to perform continuous digital
output operation of PCI-7300A Rev.A or
PCI-7300A Rev.B.

EDO_9111_Config Informs PCIS-DASK library of the mode
of EDO channels of PCI-9111.

DO_InitialMemoryAllocated
Gets the actual size of digital output
DMA memory that is available in the
device driver.

DO_GetView Gets the mapped buffer address of the
digital output memory that is available in
the device driver.

18 Function Classes

PCIS-DASK
Digital Output Function Group

One-Shot Digital Output Functions
DO_WriteLine Sets the specified digital output line in

the specified digital output port to the
specified state. This function is only
available for those cards that support
digital output read-back functionality.

DO_WritePort Writes digital data to the specified digital
output port.

DO_SImuWritePort Write the output digital data to the speci-
fied digital output port simultaneously.

DO_ReadLine Reads the specified digital output line in
the specified digital output port.

DO_ReadPort Reads digital data from the specified
digital output port.

DO_WriteExtTrigLine Sets the digital output trigger line to the
specified state. This function is only
available for PCI-7200.

Function Classes 19

PCIS-DASK
Digital Output Function Group

Continuous Digital Output Functions
DO_ContWritePort Performs continuous digital output on

the specified digital output port at a rate
as close to the rate you specified.

DO_ContStatus Checks the current status of the continu-
ous digital output operation.

DO_EventCallBack Controls and notifies the user's applica-
tion when a specified DAQ event occurs.
The notification is performed through a
user-specified callback function.

DO_PGStart Performs pattern generation operation.

DO_PGStop Stops pattern generation operation.

DO_ContMultiBufferSetup Set up the buffer for multi-buffered con-
tinuous digital output.

DO_ContMultiBufferStart Starts the multi-buffered continuous digi-
tal output on the specified digital output
port at a rate as close to the rate you
specified.

Asynchronous Digital Output Monitoring Functions
DO_AsyncCheck Checks the current status of the asyn-

chronous digital output operation.

DO_AsyncClear Stops the asynchronous digital output
operation.

DO_AsyncMultiBufferNextReady
Checks whether the next buffer is ready
for new data during an asynchronous
multi-buffered digital output operation.

20 Function Classes

PCIS-DASK
Timer/Counter Function Group

2.7 Timer/Counter Function Group

Timer/Counter Functions
CTR_Setup Configures the selected counter to oper-

ate in the specified mode.

CTR_Read Reads the current contents of the
selected counter.

CTR_Clear Sets the output of the selected counter
to the specified state.

CTR_Update Writes a new initial count to the selected
counter.

CTR_8554_ClkSrc_Config Sets the counter clock source.

CTR_8554_CK1_Config Sets the source of CK1.

CTR_8554_Debounce_ConfigSets the debounce clock.

General-Purpose Timer/Counter Functions
GCTR_Setup Controls the general-purpose counter to

operate in the specified mode.

GCTR_Read Reads the current counter value of the
general-purpose counter.

GCTR_Clear Clears the general-purpose timer/
counter control register and counter reg-
ister.

GPTC_Clear Halts the specified general-purpose
counter operation and reloads the initial
value of the timer/counter.

GPTC_Control Controls the selected counter/timer by
software.

GPTC_Read Reads the counter value of the general-
purpose counter without disturbing the
counting process.

GPTC_Setup Sets the configurations of the selected
counter/timer.

Function Classes 21

PCIS-DASK
Timer/Counter Function Group

GPTC_Status Reads the latched GPTC status of the
general-purpose counter/timer from
GPTC status register.

22 Function Classes

PCIS-DASK
Digital Input/Output Function Group

2.8 Digital Input/Output Function Group

Digital Input/Output Configuration Functions
DIO_LineConfig This function is only used by the Digital

I/O cards whose I/O port can be set as
input port or output port. This function
informs PCIS-DASK library of the line
direction selected for the digital input/
output operation. You must call this
function before calling functions to per-
form digital input/output operation.

DIO_LinesConfig This function is only used by the Digital
I/O cards whose I/O port can be set as
input port or output port. This function
informs PCIS-DASK library of the entire
lines direction of the port selected for the
digital input/output operation. You must
call this function before calling functions
to perform digital input/output operation.

DIO_PortConfig This function is only used by the Digital
I/O cards whose I/O port can be set as
input port or output port. This function
informs PCIS-DASK library of the port
direction selected for the digital input/
output operation. You must call this
function before calling functions to per-
form digital input/output operation.

Function Classes 23

PCIS-DASK
Digital Input/Output Function Group

Dual-Interrupt System Setting Functions
DIO_SetDualInterrupt Controls two interrupt sources of Dual

Interrupt system.

DIO_SetCOSInterrupt Sets the ports used for COS interrupt
detection.

DIO_SetCOSInterrupt32 Sets the ports with 32-bit data width
used for COS interrupt detection.

DIO_GetCOSLatchData Get the DI data that latched in the COS
Latch register while the Change-of-State
(COS) interrupt occurred.

DIO_GetCOSLatchData32 Get the DI data with 32-bit data width
that latched in the COS Latch register
while the Change-of-State (COS) inter-
rupt occurred.

DIO_INT_EventMessage Controls and notifies the user's applica-
tion when an interrupt event occurs. The
notification is performed through a user-
specified callback function or the Win-
dows PostMessage API.

DIO_INT1_EventMessage Controls the interrupt sources of INT1 of
Dual Interrupt system and notifies the
user's application when an interrupt
event occurs. The notification is per-
formed through a user-specified call-
back function or the Windows
PostMessage API.

DIO_INT2_EventMessage Controls the interrupt sources of INT2 of
Dual Interrupt system and notifies the
user's application when an interrupt
event occurs. The notification is per-
formed through a user-specified call-
back function or the Windows
PostMessage API.

24

Local Interrupt Setting Functions
DIO_7300SetInterrupt Controls the interrupt sources (AUXDI

and Timer2) of local Interrupt system of
PCI-7300A/cPCI-7300A.

DIO_AUXDI_EventMessageControls AUXDI Interrupt and notifies
the user's application when an interrupt
event occurs. The notification is per-
formed through a user-specified call-
back function or the Windows
PostMessage API.

DIO_T2_EventMessage Controls Timer2 Interrupt and notifies
the user's application when an interrupt
event occurs. The notification is per-
formed through a user-specified call-
back function or the Windows
PostMessage API.

Function Classes 25

PCIS-DASK
Emergency Shutdown Function Group

2.9 Emergency Shutdown Function Group
EMGShutDownControl Controls emergency shutdown.

EMGShutDownStatus Returns the emergency shutdown condi-
tion.

2.10 Watchdog Timer Function Group
WDT_Control Control watchdog timer.

WDT_Reload Reload watchdog timer counter.

WDT_Setup Setup a watchdog timer.

WDT_Status Get the overflow status of a watchdog
timer

2.11 Hot-system Reset Hold Function Group
HotResetoldStatus Read hot reset hold status.

HotResetHoldControl Controls hot-system reset DO hold func-
tion. Hold the current DO output value
while your computer is hot reset if hot-
reset-hold is enabled. Otherwise, the ini-
tial pattern is outputted.

2.12 Calibration Function Group
PCI_DB_Auto_Calibration_ALL

Calibrates the specified device.

PCI_EEPROM_CAL_Constant_Update
Saves new calibration constants to the
specified EEPROM bank.

PCI_Load_CAL_Data Loads calibration constants from the
specified EEPROM bank.

26 Function Classes

PCIS-DASK
Calibration Function Group

Building Applications 27

PCIS-DASK
Contiguous Memory Allocation

3 Building Applications
3.1 Contiguous Memory Allocation
The PCIS-DASK features continuous data transfer functions that
input or output blocks of data to or from an installed NuDAQ PCI
device. To prevent reduced data transfer performance caused by
memory fragment, the PCIS-DASK allocates physically contigu-
ous buffers in device driver at system startup time (Windows® 98)
or when system boots (Windows® NT/2000/XP/2003 and Linux).

The PCIS-DASK comes with the PciUtil applications to set or
modify the sizes of contiguous memory allocated in the driver for
continuous analog input, analog output, digital input, and digital
output. Device drivers allocates these memory sizes. The size of
initially allocated memory is the maximum memory size that con-
tinuous data transfer can be performed. Refer to the NuDAQ Reg-
istry/Configuration utility section for details.

For input operations, the specified data count are transferred to
the driver buffer while the PCIS-DASK copies the data from the
driver buffer (kernel level) to a user buffer (user level). For output
operations, PCIS-DASK copies the data from a user buffer (driver
level) to the driver buffer (kernel level) and transfers outgoing data
from the driver buffer to the NuDAQ PCI device.

When performing only polling I/O, the initial allocated memory is
not needed and you may use the NuDAQ Registry/Configuration
utility to set the buffer size to 0.

28 Building Applications

PCIS-DASK
Application Building Fundamentals in Windows

3.2 Application Building Fundamentals in Windows
The following sections provide fundamental instructions when
using PCIS-DASK to build application in Windows® NT/98/2000/
XP/Server 2003 operating environment.

Using Microsoft® Visual C®/C++®

Follow these steps to create a data acquisition application using
PCIS-DASK and Microsoft Visual C/C++.

1. Launch the Microsoft Visual C/C++ application.

2. Open a new or existing project that you want to apply the
PCIS-DASK.

3. Include header file DASK.H in the C/C++ source files
that call PCIS-DASK functions. DASK.H contains all the
function declarations and constants that can be used to
develop data acquisition applications. Incorporate the
following statement in the code to include the header file.
#include “DASK.H”

4. After setting the appropriate compile and link options,
build the application by selecting the Build command
from Build menu (Visual C/C++ 4.0). Remember to link
PCIS-DASK’s import library, PCIS-DASK.LIB.

Building Applications 29

PCIS-DASK
Application Building Fundamentals in Windows

Using Microsoft® Visual Basic®

Follow the steps in the succeeding sections to create a data acqui-
sition application using PCIS-DASK and Visual Basic.

Open a project
Do one of the following to open a new or existing project:

1. Open a new project by selecting the New Project com-
mand from the File menu. To open an existing project,
select the Open Project command from the File menu to
display the Open Project dialog box.

2. Locate the existing project, then double-click on the
project file name to load.

Add the file
You must add the file DASK.BAS to the project, if the file is not yet
included. This file contains all the procedure declarations and con-

30 Building Applications

PCIS-DASK
Application Building Fundamentals in Windows

stants that can be used to develop the data acquisition application.
To add the file:

1. Select Add File from the File menu. The Add File window
appears, displaying a list of files in the current directory.

2. Double-click on the DASK.BAS file. If the file is not on
the list, make sure the list is displaying files from the cor-
rect directory. By default, the DASK.BAS file is installed
at C:\ADLink\PCIS-DASK\INCLUDE.

Building Applications 31

PCIS-DASK
Application Building Fundamentals in Windows

Design the interface
To design the interface for the application, place all the interface
elements such as command buttons, list boxes, and text boxes on
the Visual Basic form. These standard controls are available from
the Visual Basic Toolbox.

To place a control on the form, select the desired control from the
Toolbox, then draw it on the form. You may also double-click on
the control icon from the Toolbox to place it on the form.

Set the interface controls
To view the property list, click the desired control, then choose the
Properties command from the View menu, or press F4. You may
also click on the Properties button from the toolbar.

Write the event code
The event code defines the required action to be performed when
an event occurs. To write the event code, double-click on the con-
trol or form to view the code module, then add the event code. You
can also call the functions declared in the DASK.BAS file to per-
form data acquisition operations.

Run the application
Do one of the following to run the application:

Choose Start from the Run menu

Click the Start icon from the toolbar

Press <F5>

Distribute the application
After completing the project, save the application as an executable
(.EXE) file using the Make EXE File command from the File menu.
The application, after being transformed into an executable file, is
now ready for distribution.

You must include the PCIS-DASK’s DLL and driver files when the
application is distributed. Refer to Chapter 5: Distribution of Appli-
cations for the details.

32 Building Applications

PCIS-DASK
Application Building Fundamentals in Linux

3.3 Application Building Fundamentals in Linux
The following sections provide fundamental instructions when
using PCIS-DASK to build application in Linux. To create a data
acquisition application using PCIS-DASK/X and GNU C/C++, fol-
low these steps:

Edit the source files
Include the header file dask.h in the C/C++ source files that call
PCIS-DASK/X functions. The dask.h has all the function declara-
tions and constants that you can use to develop your data acquisi-
tion application. Add this statement in your code to include the
header file.

#include "dask.h"

Build your application
Using the appropriate C/C++ compiler (gcc or cc) to compile the
program. You should add -lpci_dask option to link
libpci_dask.so library. For multi-threaded applications, the
-lpthread string is required. For example:

gcc -o testai testai.c -lpci_dask

Building Applications 33

PCIS-DASK
Application Building Fundamentals Using .NET

3.4 Application Building Fundamentals Using .NET
The following sections provide fundamental instructions when
using PCIS-DASK to build application in Linux. To create a data
acquisition application using PCIS-DASK/X and GNU C/C++, fol-
low these steps:

Using Microsoft VB.net.
To create a data acquisition application using PCIS-DASK and
VB.net, follow these steps after entering VB.net:

1. Open a new or existing project.

2. Add the file DASK.vb to the project, if the file is not yet
included. This file contains all the procedure declarations
and constants that can be used to develop the data
acquisition application. To add the file:

Select Add File from the File menu. The Add Existing Item
window appears, displaying a list of files in the current direc-
tory.

Double-click on the DASK.vb file. If the file is not on the list,
make sure the list is displaying files from the correct direc-

34 Building Applications

PCIS-DASK
Application Building Fundamentals Using .NET

tory. By default, the DASK.vb file is installed at
C:\ADLINK\PCIS-DASK\INCLUDE.

3. Develop the application. You can call the functions that
are declared in the file Dask.vb to perform data acquisi-
tion operations.

4. Run your application. Do one of the following to run the
application:

Choose Start from the Run menu

Click the Start icon from the toolbar

Press <F5>

5. Distribute the application. After completing the project,
save the application as an executable (.EXE) file using
the Make EXE File command from the File menu. The
application, after being transformed into an executable
file, is now ready for distribution. You must include the
PCIS-DASK’s DLL and driver files when the application
is distributed. Refer to Chapter 8: Distribution of
Applications for the details.

Building Applications 35

PCIS-DASK
Application Building Fundamentals Using .NET

Using Microsoft C#
To create a data acquisition application using PCIS-DASK and C#,
follow these steps after entering C#:

1. Open a new or existing project.

2. Add the file DASK.cs to the project, if the file is not yet
included. This file contains all the procedure declarations
and constants that can be used to develop the data
acquisition application. To add the file:

Select Add File from the File menu. The Add Existing
Item window appears, displaying a list of files in the cur-
rent directory.From the Project menu, select the Add
Existing Item command. The Add Existing Item window
appears, displaying a list of files in the current directory.

Double-click on the DASK.cs file. If the file is not on the list,
make sure the list is displaying files from the correct direc-

36 Building Applications

PCIS-DASK
Application Building Fundamentals Using .NET

tory. By default, the DASK.cs file is installed at
C:\ADLINK\PCIS-DASK\INCLUDE.

3. Develop the application. You can call the functions that
are declared in the file Dask.cs to perform data acquisi-
tion operations.

4. Run your application. Do one of the following to run the
application:

Choose Start from the Run menu

Click the Start icon from the toolbar

Press <F5>

5. Distribute the application. After completing the project,
save the application as an executable (.EXE) file using
the Make EXE File command from the File menu. The
application, after being transformed into an executable
file, is now ready for distribution. You must include the
PCIS-DASK’s DLL and driver files when the application
is distributed. Refer to Chapter 8: Distribution of
Applications for the details.

Building Applications 37

PCIS-DASK
Application Building Fundamentals Using .NET

Creating Windows® PCIS-DASK Application Using
Microsoft VB.net.
To create a data acquisition application using DASK and C#, fol-
low these steps after entering VB.net:

1. Open a new or existing project.

2. Add the file DASK.vb to the project, if the file is not yet
included. This file contains all the procedure declarations
and constants that can be used to develop the data
acquisition application. To add the file:

Select Add File from the File menu. The Add Existing
Item window appears, displaying a list of files in the cur-
rent directory.From the Project menu, select the Add
Existing Item command. The Add Existing Item window
appears, displaying a list of files in the current directory.

Double-click on the DASK.vb file. If the file is not on the list,
make sure the list is displaying files from the correct direc-
tory. By default, the DASK.vb file is installed at
C:\ADLINK\PCIS-DASK\INCLUDE.

3. Develop the application. You can call the functions that
are declared in the file DASK.vb to perform data acquisi-
tion operations.

38

4. Run your application. Do one of the following to run the
application:

Choose Start from the Run menu

Click the Start icon from the toolbar

Press <F5>

5. Distribute the application. After completing the project,
save the application as an executable (.EXE) file using
the Make EXE File command from the File menu. The
application, after being transformed into an executable
file, is now ready for distribution. You must include the
PCIS-DASK’s DLL and driver files when the application
is distributed. Refer to Chapter 8: Distribution of
Applications for the details.

Using Callback Functions in a VB.net Application with
PCIS-DASK
To use callback functions in a VB.net application with PCIS-DASK,
follow these steps after creating a Windows® 2000/XP PCIS-
DASK application using VB.net:

1. Create a callback function. For example:
Sub CallBack()
 //Add the VB.Net function you like.
 End Sub

2. Set the callback function. For example:
AI_EventCallBack(dev, 1, DBEvent, AddressOf

CallBack);

Building Applications 39

PCIS-DASK
Application Building Fundamentals Using .NET

Using Callback Functions in a C# Application with PCIS-
DASK
To use callback functions in a c# Application with PCIS-DASK, fol-
low these steps after creating a Windows® 2000/XP PCIS-DASK
application using C#:

1. Create a callback function. For example:
 private static void CallBack()
 {
 //Add the C# function you like.
 }

2. Set the callback function. For example:
CallbackDelegate del = new Callback Delegate(

CallBack);
DASK.AI_EventCallBack((ushort)card, 1,

DASK.DBEvent, del);

40 Building Applications

PCIS-DASK
Application Building Fundamentals Using .NET

Application Hints 41

PCIS-DASK

4 Application Hints
This chapter provides the programming schemes showing the
function flow of that PCIS-DASK performs analog I/O and digital I/
O.

The figure below shows the basic building blocks of a PCIS-DASK
application. However, except using Register_Card at the begin-
ning and Release_Card at the end, depending on the specific
devices and applications you have, the PCIS-DASK functions
comprising each building block vary.

The programming schemes for analog input/output and digital
input/output are described individually in the following sections.

Register_Card

Configuration Function

AI/AO/DI/DO
Operation Function

Release_Card

42 Application Hints

PCIS-DASK
Analog Input

4.1 Analog Input
PCIS-DASK provides two kinds of analog input operation: nonbuf-
fered single-point analog input readings and buffered continuous
analog input operation.

The non-buffered single-point AI uses software polling method to
read data from the device.

The buffered continuous analog input uses interrupt transfer or
DMA transfer method to transfer data from device to user's buffer.
The maximum number of count in one transfer depends on the
size of initially allocated memory for analog input in the driver. The
driver allocates the memory at system boot (in Windows® NT) or
Windows startup time (in Windows® 98). It is recommended that
the AI_InitialMemoryAllocated function be used to get the size of
initially allocated memory before performing continuous AI opera-
tion.

The buffered continuous analog input includes:

synchronous continuous AI
non-triggered non-double-buffered asynchronous continu-
ous AI
non-triggered double-buffered asynchronous continuous AI
triggered non-double-buffered asynchronous continuous AI
triggered double-buffered asynchronous continuous AI

These are described in section to section . For special consider-
ation and performance issues for the buffered continuous analog
input, refer to Chapter 5: Continuous Data Transfer.

Application Hints 43

PCIS-DASK
Analog Input

One-Shot Analog Input
This section describes the function flow typical of non-buffered sin-
gle-point analog input readings. While performing one-shot AI
operation, most cards (except PCI-9118 Series cards) doesn't
need to include the AI configuration step at the beginning of the
application.

Example code fragment

NO

AI_VReadChannelAI_ReadChannel

Voltage reading?

AI_9118_Config
(on PCI-9118 Series cards only)

NO YES

YES
Another reading?

card = Register_Card(PCI_9118, card_number);
…
AI_9118_Config(card,Input_Signal|Input_Mode,0,0,0);
AI_ReadChannel(card, channelNo, range,

&analog_input[i]);
…
Release_Card(card);

44 Application Hints

PCIS-DASK
Analog Input

Synchronous Continuous Analog Input
This section describes the function flow typical of synchronous
analog input operation. While performing continuous AI operation,
the AI configuration function has to be called at the beginning of
your application. In addition, for synchronous AI, the SyncMode
argument in continuous AI functions has to be set to SYNCH_OP.

Example code fragment

NO

AI_ContReadChannel/
AI_ContReadChannelToFile

AI_ContScanChannels/
AI_ContScanChannelsToFile

Sample multiple
continuous channels?

AI_XXXX_Config
(XXXX = card type)

NOYES

Scale to voltage?

AI_ContVScale

YES

With SyncMode
= SYNCH_OP

With SyncMode
= SYNCH_OP

card = Register_Card(PCI_9112, card_number);
…
AI_9112_Config(card,TRIG_INT_PACER);
AI_ContScanChannels (card, channel, range, ai_buf,

data_size, (F64)sample_rate, SYNCH_OP); or
AI_ContReadChannel(card, channel, range, ai_buf,

data_size, (F64)sample_rate, SYNCH_OP)
…
Release_Card(card);

Application Hints 45

PCIS-DASK
Analog Input

Non-Trigger Non-double-buffered Asynchronous
Continuous Analog Input
This section describes the function flow typical of non-trigger, non-
double-buffered asynchronous analog input operation. While per-
forming continuous AI operation, the AI configuration function has
to be called at the beginning of your application. In addition, for
asynchronous AI, the SyncMode argument in continuous AI func-
tions has to be set to ASYNCH_OP.

NO

AI_ContReadChannel/
AI_ContReadChannelToFile

AI_ContScanChannels/
AI_ContScanChannelsToFile

Sample multiple
continuous channels?

AI_XXXX_Config
(XXXX = card type)

NOYES

Operation complete?

AI_AsyncClear

YES

With SyncMode
= SYNCH_OP

AI_AsyncCheck

With SyncMode
= SYNCH_OP

46 Application Hints

PCIS-DASK
Analog Input

Example code fragment
card = Register_Card(PCI_9112, card_number);
…
AI_9112_Config(card,TRIG_INT_PACER);
AI_AsyncDblBufferMode (card, 0); //non-double-buffer

AI
AI_ContScanChannels (card, channel, range, ai_buf,

data_size, (F64)sample_rate, ASYNCH_OP); or
AI_ContReadChannel(card, channel, range, ai_buf,

data_size, (F64)sample_rate, ASYNCH_OP)
do {

 AI_AsyncCheck(card, &bStopped, &count);
 } while (!bStopped);
AI_AsyncClear(card, &count);
…
Release_Card(card);

Application Hints 47

PCIS-DASK
Analog Input

Non-Trigger Double-buffered Asynchronous Continuous
Analog Input
This section describes the function flow typical of non-trigger, dou-
ble-buffered asynchronous analog input operation. While perform-
ing continuous AI operation, the AI configuration function has to be
called at the beginning of your application. For asynchronous AI,
The SyncMode argument in continuous AI functions has to be set
to ASYNCH_OP. In addition, double-buffered AI operation is
enabled by setting Enable argument of AI_AsyncDblBufferMode
function to 1. For more information on double buffer mode, refer to
section 5.2.

NO

AI_ContReadChannel/
AI_ContReadChannelToFile

AI_ContScanChannels/
AI_ContScanChannelsToFile

Sample multiple
continuous channels?

AI_AsyncDblBufferMode

NOYES

Next half buffer
ready for transfer?

AI_AsyncDblBuffer
Transfer

YES

With SyncMode
= ASYNCH_OP

AI_AsyncDblBuffer
HalfReady

Do you want to
stop the operation?

AI_AsyncClear

YES

With Enable = TRUE

AI_XXXX_Config
(XXXX = card type)

With SyncMode
= ASYNCH_OP

NO

48 Application Hints

PCIS-DASK
Analog Input

Example code fragment
card = Register_Card(PCI_9112, card_number);
…
AI_9112_Config(card,TRIG_INT_PACER);
AI_AsyncDblBufferMode (card, 1); // Double-buffered
AI_ContScanChannels (card, channel, range, ai_buf,

data_size, (F64)sample_rate, ASYNCH_OP); or
AI_ContReadChannel(card, channel, range, ai_buf,

data_size, (F64)sample_rate, ASYNCH_OP)
do {
 do {
 AI_AsyncDblBufferHalfReady(card, &HalfRead

&fstop);
 } while (!HalfReady);

 AI_AsyncDblBufferTransfer(card, ai_buf);
 …
} while (!clear_op);

AI_AsyncClear(card, &count);
…
Release_Card(card);

Application Hints 49

PCIS-DASK
Analog Input

Trigger Mode Non-double-buffered Asynchronous
Continuous Analog Input
This section describes the function flow typical of trigger mode
double-buffered asynchronous analog input operation. A trigger is
an event that occurs based on a specified set of conditions. An
interrupt mode or DMA-mode Analog input operation can use a
trigger to determinate when acquisition stop. The trigger mode
data acquisition programming is almost the same as the non-trig-
ger mode asynchronous analog input programming. When using
PCIS-DASK to perform trigger mode data acquisition, the Sync-
Mode of continuous AI should be set to ASYNCH_OP.

NO

AI_ContReadChannel/
AI_ContReadChannelToFile

AI_ContScanChannels/
AI_ContScanChannelsToFile

Sample multiple
continuous channels?

AI_AsyncDblBufferMode

NOYES

With SyncMode
= ASYNCH_OP

AI_AsyncCheck

Operation
complete?

AI_AsyncClear

YES

With Enable = TRUE

AI_XXXX_Config with
Trigger Mode enabled

(XXXX = card type)

With SyncMode
= ASYNCH_OP

50 Application Hints

PCIS-DASK
Analog Input

Example code fragment
card = Register_Card(PCI_9118, card_number);
…
AI_9118_Config(card,

P9118_AI_BiPolar|P9118_AI_SingEnded,
P9118_AI_DtrgPositive|P9118_AI_EtrgPositive|
P9118_AI_AboutTrgEn, 0, postCount)
AI_AsyncDblBufferMode (card, 0); //non-double-buffer

AI
AI_ContScanChannels (card, channel, range, ai_buf,

data_size, (F64)sample_rate, ASYNCH_OP); or
AI_ContReadChannel(card, channel, range, ai_buf,

data_size, (F64)sample_rate, ASYNCH_OP)
do {

 AI_AsyncCheck(card, &bStopped, &count);
 } while (!bStopped);

AI_AsyncClear(card, &count);
 …
Release_Card(card);

Application Hints 51

PCIS-DASK
Analog Input

Trigger Mode Double-buffered Asynchronous Continuous
Analog Input
This section describes the function flow typical of trigger mode
double-buffered asynchronous analog input operation. A trigger is
an event that occurs based on a specified set of conditions. An
interrupt mode or DMA-mode Analog input operation can use a
trigger to determinate when acquisition stop. The trigger mode
data acquisition programming is almost the same as the non-trig-
ger mode asynchronous analog input programming. When using
PCIS-DASK to perform trigger mode data acquisition, the Sync-
Mode of continuous AI should be set to ASYNCH_OP. In addition,
double-buffered AI operation is enabled by setting Enable argu-
ment of AI_AsyncDblBufferMode function to 1. For more informa-
tion on double buffer mode, refer to section 5.2 for the details.

52 Application Hints

PCIS-DASK
Analog Input

NO

AI_ContReadChannel/
AI_ContReadChannelToFile

AI_ContScanChannels/
AI_ContScanChannelsToFile

Sample multiple
continuous channels?

AI_AsyncDblBufferMode

NOYES

Next half buffer
ready for transfer? Or
Operation complete?

AI_AsyncDblBuffer
Transfer

YES

With SyncMode
= ASYNCH_OP

AI_AsyncDblBuffer
HalfReady

Do you want to
stop the operation?

AI_AsyncClear

YES

With Enable = TRUE

AI_XXXX_Config with
Trigger Mode enabled

(XXXX = card type)

With SyncMode
= ASYNCH_OP

NO

Application Hints 53

PCIS-DASK
Analog Input

Example code fragment
card = Register_Card(PCI_9118, card_number);
…
AI_9118_Config(card,P9118_AI_BiPolar|P9118_AI_SingE

d,
P9118_AI_DtrgPositive|P9118_AI_EtrgPositive|
P9118_AI_AboutTrgEn,0,postCount)
AI_AsyncDblBufferMode (card, 1); Double-buffered A
AI_ContScanChannels (card, channel, range, ai_buf,

data_size, (F64)sample_rate, ASYNCH_OP); or
AI_ContReadChannel(card, channel, range, ai_buf,

data_size, (F64)sample_rate, ASYNCH_OP)
do {
 do {
 AI_AsyncDblBufferHalfReady(card, &HalfRead

&fstop);
 } while (!HalfReady && !fstop);

 AI_AsyncDblBufferTransfer(card, ai_buf);
 …
} while (!clear_op && !fstop);

AI_AsyncClear(card, &count);
AI_AsyncDblBufferTransfer(card, ai_buf);
…
Release_Card(card);

54 Application Hints

PCIS-DASK
Analog Output Programming Hints

4.2 Analog Output Programming Hints
This section describes the function flow typical of single-point ana-
log output conversion. While performing the following operation,
the AO configuration function has to be called at the beginning of
your application:

1. Use PCI-6208A or PCI-6308A to perform current output

2. Use the analog output function that can convert a volt-
age value to a binary value, then write it to the device.
The AO configuration function has to be called at the
beginning of your application

Example code fragment

NO

AO_VWriteChannelAO_WriteChannel

Output voltage?

AO_6208A_Config or
AO_9112_Config

NO YES

YES

Another output?

card = Register_Card(PCI_6208A, card_number);
…
AO_6208A_Config(card, P6208_CURRENT_4_20MA);
AO_WriteChannel(card, chan, out_value);
…
Release_Card(card);

Application Hints 55

PCIS-DASK
Digital Input Programming Hints

4.3 Digital Input Programming Hints
The PCIS-DASK provides two types of digital input operation: non-
buffered single-point digital input operation and buffered continu-
ous digital input operation.

The non-buffered single-point DI uses software polling method to
read data from the device. The programming scheme for this kind
of DI operation is described in section .

The buffered continuous DI uses DMA transfer method to transfer
data from device to user's buffer. The maximum number of count
in one transfer depends on the size of initially allocated memory
for digital input in the driver. The driver allocates the memory at
system boot (in Windows® NT) or during Windows startup (in Win-
dows® 98). It is recommended that the applications use the
DI_InitialMemoryAllocated function to get the size of initially allo-
cated memory before performing continuous DI operation.

The buffered continuous analog input includes synchronous con-
tinuous DI, non-double-buffered asynchronous continuous DI and
double-buffered asynchronous continuous DI. These are
described in section to section section. For special consideration
and performance issues for the buffered continuous analog input,
refer to Chapter 5: Continuous Data Transfer.

56 Application Hints

PCIS-DASK
Digital Input Programming Hints

One-Shot Digital Input
This section describes the function flow typical of non-buffered sin-
gle-point digital input readings. While performing one-shot DI
operation, devices whose I/O port can be set as input or output
port (PCI-7248, PCI-7296, and PCI-7442) need to include port
configuration function at the beginning of the application.

Example code fragments:

NO

DI_ReadLineDI_ReadPort

Input data from line?

DIO_PortConfig
[only on PCI-7248, PCI-7249, PCI-7296 and PCI-7442 (TTL)]

DIO_LineConfig (only on PCI-7442 [TTL])
DIO_LinesConfig (only needed by PCI-7442 [TTL])

NO YES

YES

Another reading?

Line/Port configured
as input port

card = Register_Card(PCI_7248, card_number);
//port configured
DIO_PortConfig(card ,Channel_P1A, INPUT_PORT);
DIO_PortConfig(card, Channel_P1B, INPUT_PORT);
DIO_PortConfig(card, Channel_P1CL, INPUT_PORT);
DIO_PortConfig(card, Channel_P1CH, INPUT_PORT);
//DI operation
DI_ReadPort(card, Channel_P1A, &inputA);
…
Release_Card(card);

Application Hints 57

PCIS-DASK
Digital Input Programming Hints

:
card = Register_Card(PCI_7442, card_number);
//line configured
DIO_LineConfig(card ,P7442_TTL0, 0, INPUT_LINE);
//DI operation
DI_ReadLinet(card, P7442_TTL0, 0, &inDataLine0);
…
Release_Card(card);

58 Application Hints

PCIS-DASK
Digital Input Programming Hints

Synchronous Continuous Digital Input
This section describes the function flow typical of synchronous
digital input operation. While performing continuous DI operation,
the DI configuration function has to be called at the beginning of
the application. For synchronous DI, the SyncMode argument in
continuous DI functions has to be set to SYNCH_OP.

Example code fragment:

DI_XXXX_Config
(XXXX = card type)

DI_ContReadPort /
DI_ContReadPortToFile

With SyncMode = SYNCH_OP

card = Register_Card(PCI_7200, card_number);
…
DI_7200_Config(card,TRIG_INT_PACER, DI_NOWAITING,

DI_TRIG_FALLING, IREQ_FALLING);
DI_AsyncDblBufferMode (card, 0); //non-double-buffer

mode
DI_ContReadPort(card, 0, pMem, data_size,

(F64)sample_rate, SYNCH_OP)
…
Release_Card(card);

Application Hints 59

PCIS-DASK
Digital Input Programming Hints

Non-double-buffered Asynchronous Continuous Digital
Input
This section describes the function flow typical of non-double-buff-
ered asynchronous digital input operation. While performing con-
tinuous DI operation, the DI configuration function has to be called
at the beginning of the application. For asynchronous DI opera-
tion, the SyncMode argument in continuous DI functions has to be
set to ASYNCH_OP.

DI_XXXX_Config
(XXXX = card type)

DI_ContReadPort /
DI_ContReadPortToFile

With SyncMode = SYNCH_OP

Operation
completed?

YES

NO

DI_AsyncCheck

DI_AsyncCheck

60 Application Hints

PCIS-DASK
Digital Input Programming Hints

Example code fragment:
card = Register_Card(PCI_7200, card_number);
…
DI_7200_Config(card,TRIG_INT_PACER, DI_NOWAITING,

DI_TRIG_FALLING, IREQ_FALLING);
DI_AsyncDblBufferMode (card, 0); // non-double-

buffered mode
DI_ContReadPort(card, 0, pMem, data_size,

(F64)sample_rate, ASYNCH_OP)
do {

 DI_AsyncCheck(card, &bStopped, &count);
 } while (!bStopped);

DI_AsyncClear(card, &count);
 …
Release_Card(card);

Application Hints 61

PCIS-DASK
Digital Input Programming Hints

Double-buffered Asynchronous Continuous Digital Input
This section describes the function flow typical of double-buffered
asynchronous digital input operation. While performing continuous
DI operation, the DI configuration function has to be called at the
beginning of the application. For asynchronous DI, the SyncMode
argument in continuous DI functions has to be set to
ASYNCH_OP. In addition, double-buffered DI operation is
enabled by setting Enable argument of DI_AsyncDblBufferMode
function to 1. For more information on double buffer mode, refer to
section 5.2.

DI_XXXX_Config
(XXXX = card type)

DIAsyncDblBufferMode

With ENABLE = True

Next half buffer
ready for transfer?

YES

NO

DI_ContReadPort/
DI_ContReadPortToFile

With SyncMode = SYNCH_OP

DI_AsyncDblBufferHalfReady

YES

Stop the operation?

YES

AsyncDblBufferTransfer

NO

DI_AsyncClear

62 Application Hints

PCIS-DASK
Digital Input Programming Hints

Example code fragment:
card = Register_Card(PCI_7200, card_number);
…
DI_7200_Config(card,TRIG_INT_PACER, DI_NOWAITING,

DI_TRIG_FALLING, IREQ_FALLING);
DI_AsyncDblBufferMode (card, 1); // Double-buffered

mode
DI_ContReadPort(card, 0, pMem, data_size,

(F64)sample_rate, ASYNCH_OP)
do {

 do {
 DI_AsyncDblBufferHalfReady(card,

&HalfReady);
 } while (!HalfReady);

 DI_AsyncDblBufferTransfer(card, pMem);

} while (!clear_op);

DI_AsyncClear(card, &count);
 …
Release_Card(card);

Application Hints 63

PCIS-DASK
Digital Input Programming Hints

Multiple-buffered Asynchronous Continuous Digital Input
This section describes the function flow typical of multi-buffered
asynchronous digital input operation. While performing continuous
DI operation, the DI configuration function has to be called at the
beginning of the application. For asynchronous DI, the SyncMode
argument in continuous DI functions has to be set to
ASYNCH_OP.

64 Application Hints

PCIS-DASK
Digital Input Programming Hints

DI_XXXX_Config
(XXXX = card type)

DI_ContMultiBufferSetup repeatedly…

Next half buffer
ready?

YES

NO

ContMultiBufferStart

DI_AsyncMultiBufferNextReady

YES

Stop the operation?

YES

Handling the ready data

NO

DI_AsyncClear

Application Hints 65

PCIS-DASK
Digital Input Programming Hints

Example code fragment:
card = Register_Card(PCI_7300A_RevB, card_number);
…
DI_7300B_Config(card, 16, TRIG_CLK_10MHZ,

P7300_WAIT_NO, P7300_TERM_ON, 0, 1, 1);
//setting the DMA buffers repeatedly
DI_ContMultiBufferSetup (card, in_buf, data_size,

&BufferId);
DI_ContMultiBufferSetup (card, in_buf, data_size,

&BufferId);
…
// start multi-buffered DI
DI_ContMultiBufferStart (card, 0, 1);

do {
do {
DI_AsyncDblBufferHalfReady(card,

&HalfReady);
 } while (!HalfReady);

 //Handling the ready data

} while (!clear_op);

DI_AsyncClear(card, &count);
 …
Release_Card(card);

66 Application Hints

PCIS-DASK
Digital Output Programming Hints

4.4 Digital Output Programming Hints
The PCIS-DASK provides three types of digital output operation:
non-buffered single-point digital output operation, buffered contin-
uous digital output operation, and pattern generation.

The non-buffered single-point DO uses software polling method to
write data to the device. The programming scheme for this kind of
DO operation is described in section .

The buffered continuous DO uses DMA transfer method to trans-
fer data from user's buffer to device. The maximum number of
count in one transfer depends on the size of initially allocated
memory for digital output in the driver. The driver allocates the
memory during system boot (in Windows® NT) or Windows startup
(in Windows® 98). It is recommended that applications use
DO_InitialMemoryAllocated function to get the size of initially allo-
cated memory before performing continuous DO operation.

The buffered continuous digital output includes synchronous con-
tinuous DO and asynchronous continuous DO. These are
described in section and section . For special consideration and
performance issues for the buffered continuous analog input, refer
to Chapter 5: Continuous Data Transfer.
The Pattern Generation DO outputs digital data pattern repeatedly
at a predetermined rate. The programming scheme for this kind of
DO operation is described in section .

Application Hints 67

PCIS-DASK
Digital Output Programming Hints

One-Shot Digital Output
This section describes the function flow typical of non-buffered sin-
gle-point digital output operation. While performing one-shot DO
operation, the cards whose I/O port can be set as input or output
port (PCI-7248, PCI7249, PCI-7296, and PCI-7442) need to
include port configuration function at the beginning of the applica-
tion.

Example code fragments:

NO

DI_WriteLineDI_WritePort

Output data to line?

DIO_PortConfig
[only on PCI-7248, PCI-7249, PCI-7296 and PCI-7442 (TTL)]

DIO_LineConfig (only on PCI-7442 [TTL])
DIO_LinesConfig (only needed by PCI-7442 [TTL])

NO YES

YES

Another output?

Port configured
as output port

card = Register_Card(PCI_7248, card_number);
//port configured
DIO_PortConfig(card ,Channel_P1A, OUTPUT_PORT);
DIO_PortConfig(card, Channel_P1B, OUTPUT_PORT);
DIO_PortConfig(card, Channel_P1CL, OUTPUT_PORT);
DIO_PortConfig(card, Channel_P1CH, OUTPUT_PORT);
//DO operation
DO_WritePort(card, Channel_P1A, outA_value);
…
Release_Card(card);

68 Application Hints

PCIS-DASK
Digital Output Programming Hints

:
card = Register_Card(PCI_7442, card_number);
//Lines configured
DIO_LineConfig(card, P7442_TTL0, 0, OUTPUT_LINE);
//DO operation
DO_WriteLine(card, P7442_TTL0, 0, out_value);
…
Release_Card(card);

Application Hints 69

PCIS-DASK
Digital Output Programming Hints

Synchronous Continuous Digital Output
This section describes the function flow typical of synchronous
digital output operation. While performing continuous DO opera-
tion, the DO configuration function has to be called at the begin-
ning of the application. In addition, the SyncMode argument in
continuous DO functions for synchronous mode has to be set to
SYNCH_OP.

Example code fragment:

DO_XXXX_Config
(XXXX = card type)

DO_ContWritePort

With SyncMode = SYNCH_OP

card = Register_Card(PCI_7200, card_number);
…
DO_7200_Config(card, TRIG_INT_PACER, OREQ_DISABLE,

OTRIG_LOW);
DO_AsyncDblBufferMode (card, 0); //non-double-buffer

mode
DO_ContWritePort(card, 0, DoBuf, count, 1,

(F64)sample_rate, SYNCH_OP);
…
Release_Card(card);

70 Application Hints

PCIS-DASK
Digital Output Programming Hints

Asynchronous Continuous Digital Output
This section describes the function flow typical of asynchronous
digital output operation. While performing continuous DO opera-
tion, the DO configuration function has to be called at the begin-
ning of the application. In addition, the SyncMode argument in
continuous DO functions for asynchronous mode has to be set to
ASYNCH_OP.

Example code fragment:

DO_XXXX_Config
(XXXX = card type)

DO_ContWritePort

With SyncMode = SYNCH_OP

Operation
completed?

YES

NO

DO_AsyncCheck

DO_AsyncCheck

card = Register_Card(PCI_7200, card_number);
…
DO_7200_Config(card, TRIG_INT_PACER, OREQ_DISABLE,

OTRIG_LOW);
DO_ContWritePort(card, 0, DoBuf, count, 1,

(F64)sample_rate, ASYNCH_OP);
do {

 DO_AsyncCheck(card, &bStopped, &count);
 } while (!bStopped);

DO_AsyncClear(card, &count);
 …
Release_Card(card);

Application Hints 71

PCIS-DASK
Digital Output Programming Hints

Pattern Generation Digital Output
This section describes the function flow typical of pattern genera-
tion for digital output. While performing pattern generation of DO,
the DO configuration function has to be called at the beginning of
the application.

Example code fragment:

DI_XXXX_Config
(XXXX = card type)

DO_PGStart

Complete pattern generation

DO_PGStop

card = Register_Card(PCI_7300A_RevB, card_number);
…
DO_7300B_Config (card, 16, TRIG_INT_PACER,

P7300_WAIT_NO, P7300_TERM_ON, 0, 0x40004000);
//start pattern generation
DO_PGStart (card, out_buf, 10000, 5000000);
…
//stop pattern generation
DO_PGStop (card);
Release_Card(card);

72 Application Hints

PCIS-DASK
Digital Output Programming Hints

Multiple-buffered Asynchronous Continuous Digital
Output
This section describes the function flow typical of multi-buffered
asynchronous digital output operation. While performing continu-
ous DO operation, the DO configuration function has to be called
at the beginning of the application. For asynchronous DO, the
SyncMode argument in continuous DO functions has to be set as
ASYNCH_OP.

DO_XXXX_Config
(XXXX = card type)

DO_ContMultiBufferSetup repeatedly…

Next half buffer
ready?

YES

NO

DO_ContMultiBufferStart

DO_AsyncMultiBufferNextReady

YES

Stop the operation?

YES

Copy prepared data to the ready buffer

NO

DO_AsyncClear

Application Hints 73

PCIS-DASK
Digital Output Programming Hints

Example code fragment:
card = Register_Card(PCI_7300A_RevB, card_number);
…
DO_7300B_Config (card, 16, TRIG_CLK_10MHZ,

P7300_WAIT_NO, P7300_TERM_ON, 0, 0x00040004);
//setting the DMA buffers repeatedly
DO_ContMultiBufferSetup (card, out_buf, data_size,

&BufferId);
DO_ContMultiBufferSetup (card, out_buf, data_size,

&BufferId);
…
// start multi-buffered DO
DO_ContMultiBufferStart (card, 0, 1);

do {
 do {

 DO_AsyncDblBufferHalfReady(card,
&HalfReady);

 } while (!HalfReady);

 // Copy prepared data to the ready buffer

} while (!clear_op);

DO_AsyncClear(card, &count);
 …
Release_Card(card);

74 Application Hints

PCIS-DASK
DAQ Event Message Programming Hints

4.5 DAQ Event Message Programming Hints
DAQ Event Message functions are efficient ways to monitor your
background data acquisition processes without dedicating your
foreground process for status checking. There are two kinds of
events: AI/DI/DO operation completed notification event and half
buffer ready notification event.

To receive notification from the PCIS-DASK data acquisition pro-
cess in case of special events, you can call AI_EventCallBack,
DI_EventCallBack, or DO_EventCallBack to specify an event.

Event notification is done through user-defined callbacks. When a
user-specified DAQ event occurs, PCIS-DASK calls the user-
defined callback. After receiving the message, the user's applica-
tion carries out the appropriate task.

The event message mechanism is easy and safe in Windows® 98
and Windows® NT systems. However, the time delay between the
event and notification is highly variable and depends largely on
how your system is loaded. In addition, if a callback function is
called, succeeding events will not be handled until your callback
has returned. If the time interval between events is smaller than
the time taken for callback function processing, the succeeding
events will not be handled. Therefore this mechanism is not suit-
able for the frequent events occurrence condition.

Application Hints 75

PCIS-DASK
DAQ Event Message Programming Hints

Example code fragment:
card = Register_Card(PCI_9118DG, card_number);
AI_9118_Config(card,P9118_AI_BiPolar|P9118_AI_SingE

d,
P9118_AI_DtrgPositive|P9118_AI_EtrgPositive|P9118
I_AboutTrgEn,0,postCount);

AI_AsyncDblBufferMode(card, 1); //double-buffer mo

// Enable half buffer ready event notification
AI_EventCallBack (card, 1, DBEvent, (U32)

DB_cbfn);

//Enable AI completeness event notification
AI_EventCallBack (card, 1, AIEnd, (U32) AI_cbfn);

AI_ContScanChannels (card, channel, range, NULL,
data_size, (F64)sample_rate, ASYNCH_OP); or

AI_ContReadChannel(card, channel, range, NULL,
data_size, (F64)sample_rate, ASYNCH_OP)

....
Release_Card(card);

//Half buffer ready call back function
void DB_cbfn()
{
//half buffer is ready
AI_AsyncDblBufferTransfer(card, ai_buf); //transfe

to user buffer
….
}

//AI completeness call back function
void AI_cbfn()
{
//AI is completed]
AI_AsyncClear(card, &count);
//Transfer the remainling data into the user buffer
AI_AsyncDblBufferTransfer(card, ai_buf);
….
}

76 Application Hints

PCIS-DASK
Interrupt Event Message Programming Hints

4.6 Interrupt Event Message Programming Hints
The PCIS-DASK comes with two methods of performing interrupt
occurrence notification for NuDAQ DIO cards that have dual-inter-
rupt system.

The Event Message method handles event notification through
user-defined callbacks and/or the Windows Message queue (for
VB5, through user-defined callbacks only). When a user-specified
interrupt event occurs, PCIS-DASK calls the user-defined callback
(if defined) and/or puts a message into the Windows Message
queue, if you specified a window handle. After receiving the mes-
sage, the user's application can carry out the appropriate task.

The event message mechanism is easy and safe in Windows® 98
and Windows® NT systems. However, the time delay between the
event and notification is highly variable and depends largely on
how your system is loaded. In addition, if a callback function is
called, succeeding events will not be handled until your callback
has returned. If the time interval between events is smaller than
the time taken for callback function processing, the succeeding
events will not be handled. Therefore this mechanism is not suit-
able for the frequent events occurrence condition.

The Event Status checking and waiting method handles interrupt
event status checking through Win32 wait functions, such as Wait-
ForSingleObject or WaitForMultipleObjects. This method is useful
for situations when the interrupt event occurs very often and when
the applications written in the language doesn't support function
pointers (e.g. VB4).

Application Hints 77

PCIS-DASK
Interrupt Event Message Programming Hints

Through user-defined callbacks and Windows Message
queue
Example code fragment:

card = Register_Card(PCI_7230, card_number);

//INT1 event notification is through window message
DIO_INT1_EventMessage (card, INT1_EXT_SIGNAL, hWnd,

WM_INT, NULL);

//INT2 event notification is through a callback
function

DIO_INT2_EventMessage (card, INT2_EXT_SIGNAL, hWnd,
NULL, (void *) cbfn);

….
//window message handling function
long PASCAL MainWndProc(hWnd, message, wParam,

lParam)
{

switch(message) {
….
case WM_INT: //interrupt event occurring message
….
break;
….
case WM_DESTROY:

//Disable interrupts
DIO_INT1_EventMessage (card, INT1_DISABLE, hMainWn

NULL, NULL);
DIO_INT2_EventMessage (card, INT2_DISABLE, hMainWnd

NULL, NULL);
//Release card
if (card >= 0) Release_Card(card);
PostQuitMessage(0);
break;
….
 }
 }
….
//call back function
LRESULT CALLBACK cbfn()
{
 ….
}

78 Application Hints

PCIS-DASK
Interrupt Event Message Programming Hints

Through a Win32 wait function
Example code fragment:

card = Register_Card(PCI_7230, card_number);
DIO_SetDualInterrupt(card, INT1_EXT_SIGNAL,

INT2_EXT_SIGNAL, hEvent);
….
//wait for INT1 event
if (WaitForSingleObject(hEvent[0], INFINITE) ==

WAIT_OBJECT_0) {
 ResetEvent(hEvent[0]);
……
 }
 …..
//wait for INT2 event
if (WaitForSingleObject(hEvent[1], INFINITE) ==

WAIT_OBJECT_0) {
 ResetEvent(hEvent[1]);
……
}
…..
if (card >= 0) Release_Card(card);

Continuous Data Transfer 79

PCIS-DASK
Mechanisms

5 Continuous Data Transfer
The continuous data transfer function in the PCIS-DASK inputs or
outputs blocks of data to or from a plugged-in NuDAQ PCI device.
For input operations, the PCIS-DASK transfers the incoming data
to a buffer in the system memory. For output operations, the PCIS-
DASK transfers outgoing data from a buffer in the computer mem-
ory to the NuDAQ PCI device.

This chapter describes the mechanism and techniques that PCIS-
DASK use for continuous data transfer and the considerations for
selecting the continuous data transfer mode (synchronous or
asynchronous, double buffered, triggered or non-triggered mode).

5.1 Mechanisms
The PCIS-DASK uses two mechanisms to perform continuous
data transfer: interrupt transfer and DMA.

Interrupt transfer transfers data through the interrupt mechanism,
while the DMA controller chip performs data transfer via a hard-
ware. The PCIS-DASK uses the interrupt or DMA depending on
the device. When the device supports both mechanisms, the
PCIS-DASK decides on the data transfer method that takes maxi-
mum advantage of available resources. For example, PCI-9112
supports both interrupt and DMA for data transfers. The PCIS-
DASK uses DMA data transfer in this instance since it is faster.
For PCI-9111 that supports FIFO Half-Full and EOC interrupt
transfer modes, the PCIS-DASK uses the FIFO Half-Full interrupt
transfer mode since the CPU is interrupted to do data transfer only
when the FIFO becomes half-full.

80 Continuous Data Transfer

PCIS-DASK
Double-Buffered AI/DI Operation

5.2 Double-Buffered AI/DI Operation
The PCIS-DASK uses double-buffering techniques in its driver
software for continuous input of large amounts of data.

Double Buffer Mode Principle
The data buffer for double-buffered continuous input operation is a
logical circular buffer. It is logically divided into two equal halves.
The double-buffered input begins when the device starts writing
data into the first half of the circular buffer (a). Refer to figure
below. When the device starts writing to the second half of the cir-
cular buffer, the data is copied from the first half to the transfer
buffer (b) also known as user buffer. You can now process the
data in the transfer buffer depending on the application needs.
After the board has filled the second half of the circular buffer, the
board returns to the first half buffer and overwrites the old data.
The data is copied from the second half of the circular buffer to the
transfer buffer (c). The data in the transfer buffer is again available
for process. The process may be repeated endlessly to provide a
continuous stream of data to your application (d).

The PCIS-DASK double buffer mode functions were designed
according to the principle described above. If you use:

AI_AsyncDblBufferMode or
DI_AsyncDblBufferMode

to enable double buffer mode, the following continuous AI/DI func-
tion performs double-buffered continuous AI/DI. You may call

Continuous Data Transfer 81

PCIS-DASK
Double-Buffered AI/DI Operation

AI_AsyncDblBufferHalfReady or
DI_AsyncDblBufferHalfReady

to check if data in the circular buffer is half full and ready for copy-
ing to the transfer buffer. Then you may call:

AI_AsyncDblBufferTransfer or
DI_AsyncDblBufferTransfer

to copy data from the ready half buffer to the transfer buffer.

82 Continuous Data Transfer

PCIS-DASK
Double-Buffered AI/DI Operation

Single-Buffered Versus Double-Buffered Data Transfer
Single-buffered data transfer is the most common method for con-
tinuous data transfer. In single-buffered input operations, a fixed
number of samples are acquired at a specified rate and trans-
ferred into user's buffer. After the user's buffer stores the data, the
application can analyze, display, or store the data to the hard disk
for later processing. Single-buffered operations are relatively sim-
ple to implement and can usually take advantage of the full hard-
ware speed of the device. However, the major disadvantage of
single-buffered operation is that the maximum amount of data that
can be input at any one time is limited to the amount of initially
allocated memory allocated in driver and the amount of free mem-
ory available in the computer.

In double-buffered operations, as mentioned above, the data
buffer is configured as a circular buffer. Therefore, unlike single-
buffered operations, double-buffered operations reuse the same
buffer and are able to input or output an infinite number of data
points without requiring an infinite amount of memory. However,
there exists the undesired result of data overwritten for double-
buffered data transfer. The device might overwrite data before
PCIS-DASK has copied it to the transfer buffer. Another data over-
written problem occurs when an input device overwrites data that
PCIS-DASK is simultaneously copying to the transfer buffer.
Therefore, the data must be processed by the application at least
as fast as the rate at which the device is reading data. For most of
the applications, this requirement depends on the speed and effi-
ciency of the computer system and programming language.

Hence, double buffering might not be practical for high-speed
input applications.

Continuous Data Transfer 83

PCIS-DASK
Trigger Mode Data Acquisition for Analog Input

5.3 Trigger Mode Data Acquisition for Analog Input
A trigger is an event that occurs based on a specified set of condi-
tions. An interrupt mode or DMA-mode analog input operation can
use a trigger to determinate when acquisition stops or starts.

The PCIS-DASK also provides two buffering methods for trigger
mode AI double-buffering and single-buffering. However, the sin-
gle buffer in trigger mode AI is different from that in non-trigger
mode AI. It is a circular buffer just like that in double buffer mode
but the data stored in the buffer can be processed only when the
continuous data reading is completed. The buffer is reused until
the data acquisition operation is completed. Therefore, to keep the
data you want to transfer from being overwritten, the size of the
single buffer should be the same as or larger than the amount of
data you want to access.

For example, if you want to perform single-buffered middle-trigger
AI with PCI-9812, and the amount of data you want to collect
before and after the trigger event are 1000 and 3000, respectively,
the size of single buffer should be at least 4000. Since the data are
handled after the input operation is completed, data loss problems
are eliminated.

Since PCIS-DASK uses asynchronous AI to perform trigger mode
data acquisition, the SyncMode of continuous AI should be set as
ASYNCH_OP.

84

Utilities 85

PCIS-DASK
Win32 Utilities

6 Utilities
This chapter introduces the tools that came with the PCIS-DASK
package.

6.1 Win32 Utilities

NuDAQ Registry/Configuration (PciUtil)
The PciUtil registers the PCIS-DASK drivers (Windows® NT4
only), removes installed drivers (Windows® NT4 only), and sets/
modifies the allocated buffer sizes of AI, AO, DI, and DO. By
default, the utility is located at <InstallDir>\Util directory.

Using PciUtil in Windows® NT
The PciUtil main window shows all registered PCIS-DASK/NT
drivers. When detected, PciUtil displays the driver in the Regis-
tered Drivers section.

To register a PCIS-DASK driver, click New.

86 Utilities

PCIS-DASK
Win32 Utilities

A Driver Configuration window appears.

From the Card Type drop-down menu, select the driver you want
to register, then key-in the allocated buffer (KB) for the AI, AO, DI,
or DO functions depending on your application requirements.

The allocated buffer represents the size of contiguous, initially
allocated memory for continuous analog input, analog output, digi-
tal input, and digital output. The device driver allocates the mem-
ory size during system startup. The size of initially allocated
memory is the maximum memory size that DMA or interrupt trans-
fer can be performed. An unexpected result occurs when the DMA
or interrupt transfer performs an operation exceeding the initially
allocated size.

Utilities 87

PCIS-DASK
Win32 Utilities

After setting the driver configuration, click OK to register the driver
and return to the PciUtil main window. The registered driver
appears on the registered driver list.

To change the allocated buffer, select the driver from the Regis-
tered Driver list, then click Modify. The Driver Configuration win-
dow appears.

Key-in the new allocated buffer size in each available AI, AO, DI
and DO fields, then click OK.

To remove a registered driver, select the driver from the Regis-
tered Driver list from the PciUtil main window, then click Remove.
The selected driver is deleted from the registry table.

88 Utilities

PCIS-DASK
Win32 Utilities

Using PciUtil in Windows® 98/2000/XP/Server 2003
The PciUtil sets or modifies the allocated buffer sizes of AI, AO,
DI and DO in Windows® 98/2000/XP/Server 2003 environment.

The allocated buffer represents the size of contiguous, initially
allocated memory for continuous analog input, analog output, digi-
tal input, and digital output. The device driver allocates the mem-
ory size during system startup. The size of initially allocated
memory is the maximum memory size that DMA or interrupt trans-
fer can be performed. An unexpected result occurs when the DMA
or interrupt transfer performs an operation exceeding the initially
allocated size.

To set the buffer size, key-in the allocated buffer (KB) for the AI,
AO, DI, or DO functions depending on your application require-
ments from the Driver Configuration window. Click OK when fin-
ished.

Utilities 89

PCIS-DASK
Win32 Utilities

Data File Converter (DAQCvt)
When performing continuous data acquisition followed by storage
to a disk operation, the data files generated by the PCIS-DASK
functions are written in binary format. Normal text editors may not
be able to read binary files and spreadsheet applications may not
recognize binary files for analysis.

The PCIS-DASK comes with the DAQCvt tool to conveniently
convert these binary files into easily-read formats. The utility may
be found at <InstallDir>\Util directory.

The DAQCvt main window is shown below.

The DAQCvt main window is divided into two sections: Input File
and Output File. The Input File section identifies the source data
file while the Output File section identifies the destination for the
converted file.

To convert a binary file:

1. Click Browse to locate the binary file.

2. After locating the binary file, click Load. The binary file
information displays on the Input File section for your ref-
erence. The default converted data file path and format
also appear in the Output File section.

90 Utilities

PCIS-DASK
Win32 Utilities

NOTE The default destination for the converted file with a .cvt
extension is in the same directory as the source file.

3. To change the default file path, click Browse, then
select the destination for the converted file.

4. To change the format of the converted file, click the For-
mat drop-down menu, then select from three available
data formats. Refer to the formats’ description below:

Scaled data to text file. The data in hexadecimal format
is scaled to engineering unit (voltage, ample, etc.)
according to the card type, data width, and data range,
then written to disk in text file format. This type is avail-
able for the data accessed from continuous AI operation
only.
Scaled data to binary file (float). The data in hexadeci-
mal is scaled to engineering unit (voltage, ample, etc.)
according to the card type, data width and data range,
then written to disk in binary file format. This type is
available for the data accessed from continuous AI oper-
ation only.

Utilities 91

PCIS-DASK
Win32 Utilities

Binary codes to text file. The data in hexadecimal for-
mat or converted to a decimal value is written to disk in
text file format. If the original data includes channel infor-
mation, the raw value is handled to get the real data
value. This type is available for data accessed from con-
tinuous AI and DI operations.

5. Select the text file separator. You may separate data
using a space, a comma, or a tab.

6. Check the Title/Head option if you want to add a title/
head, including the card type information, at the begin-
ning of the file.

7. When finished, click Start Convert to convert the file.

92 Utilities

PCIS-DASK
Win32 Utilities

Sample Programs Browser
The PCIS-DASK comes with Examples.exe — a sample program
browser that allows you to view and execute all bundled sample
programs. Examples.exe is located at the <InstallDir>\Samples
directory. After launching Examples.exe, double-click the icon of
the sample you want to execute.

Utilities 93

PCIS-DASK
PCIS-DASK/X Utilities

6.2 PCIS-DASK/X Utilities
This section introduces the tools that comes with the PCIS-DASK/
X package for Linux distributions.

dask_conf
The dask_conf configures the PCIS-DASK drivers, removes con-
figured drivers, and sets or modifies the allocated buffer sizes of
AI, AO, DI and DO. By default, the dask_conf is located at pci-
dask_xxx/util (where xxx is the version number) directory.

Using dask_conf in Linux
The dask_conf main screen shows all configured PCIS-DASK/X
drivers in the Configured Cards list.

To configure a PCIS-DASK/X driver, type the card type number. A
Driver Configuration screen appears.

From this screen, key-in the number of cards and buffer size for
continuous operations. To be platform-independent, the buffer
size is set by the memory-page. The PAGE_SIZE for Intel platform
is 4 KB. The Memory Pages of AI, AO, DI, and DO represent the

94 Utilities

PCIS-DASK
PCIS-DASK/X Utilities

number of pages of contiguous initially allocated memory for con-
tinuous analog input, analog output, digital input, and digital out-
put. The device driver allocates these memory sizes from the
memory management module.

After the selected driver is configured, type Y to confirm and return
to the dask_conf main screen. The configured driver now appears
at the Configured Cards list.

To modify the driver configuration, including the number of cards
and the buffer size, select the driver from the list, then assign the
new settings. When the number of cards is set to zero, the config-
uration for the selected driver is removed.

When configuration is finished, the device configuration informa-
tion is saved in pci-dask_xxx/drivers/pcidask.conf. The content of
dask.conf is shown on the following illustration.

Utilities 95

PCIS-DASK
PCIS-DASK/X Utilities

96 Utilities

PCIS-DASK
Module Installation Script

6.3 Module Installation Script
The PCI-bus architecture allows automatic detection of PCI
devices right after these are installed and device nodes are cre-
ated.

The following commands are necessary:
“insmod p9111”
“grep'p9111' /proc/devices”
“mknod /dev/PCI9111W0 c 254 0”
“mknod /dev/PCI9111W1 c 254 1”…

You can do these commands manually or use the provided instal-
lation scripts. The installation script is located at pci-dask_xxx/driv-
ers.

Using the pcidask.conf configuration file, the installation script
inserts all previously configured device modules and the memory
management module, if required. The script then makes device
nodes according to the number of cards. To install, execute this
script:

<InstallDir>/pci-dask_xxx/drivers/dask_inst.pl

By default, the installation script reads the configuration file in the
current directory. You may specify the work directory for the PCIS-
DASK/X to install script from the command argument. For exam-
ple, if the pcis-dask/x had been installed in /usr/local/pdask, you
may install the driver using the following command:

dask_inst.pl /usr/local/pdask

The installation script reads the related configuration file by its
argument and inserts the modules needed by the configured
devices. This may be useful if the installation needs to be exe-
cuted by init after system starts up.

For example, if you install the PCIS-DASK/X in the /usr/pdask
directory and the system needs to insert the modules automati-
cally. You may add the following command in the /etc/inittab, then
the init process inserts the modules automatically.

ad:2345:wait:/usr/pdask/drivers/dask_inst.pl /
usr/pdask "Insert ADLINK modules"

Utilities 97

PCIS-DASK
Module Installation Script

Because the current modules are designed based on Uni-Proces-
sor kernel, these modules may not work with SMP kernel. The
installation script checks the kernel version through the /proc/sys/
kernel/version file. For SMP kernel, the version-checking proce-
dure displays the additional error/warning messages and stops the
installation.

98

6.4 Uninstallation Script
The dask_remove.pl removes the PCIS-DASK/X installed in Linux.
By default, this script is located at pci-dask_xxx/util directory.

To remove the PCIS-DASK for Linux, execute the uninstallation
script:

<InstallDir>/pci-dask_xxx/util/dask_remove.pl

The script removes the device nodes made in /dev and the library
copied into /usr/lib.

6.5 Data File Converter (DAQCvt)
When performing continuous data acquisition followed by storage
to a disk operation, the data files generated by the PCIS-DASK
functions are written in binary format. Normal text editors may not
be able to read binary files and spreadsheet applications may not
recognize binary files for analysis.

The PCIS-DASK comes with the DAQCvt tool to conveniently
convert these binary files into easily-read formats. The utility may
be found at <InstallDir>\Util directory.

DAQCvt may be launched using the "--help" argument. The
DAQCvt main screen is shown below.

Utilities 99

PCIS-DASK
Data File Converter (DAQCvt)

Options for data format conversion
DAQCvt provides three data format options.

-st : text file with scaled data

The data in hexadecimal format is scaled to engineering unit (volt-
age, ample, etc.) according to the card type, data width, and data
range, then written to disk in text file format. This type is available
for the data accessed from continuous AI operation only.

-sb : binary file with scaled data (float)

The data in hexadecimal is scaled to engineering unit (voltage,
ample, etc.) according to the card type, data width and data range,
then written to disk in binary file format. This type is available for
the data accessed from continuous AI operation only.

-bt : text file with binary codes

The data in hexadecimal format or converted to a decimal value is
written to disk in text file format. If the original data includes chan-
nel information, the raw value is handled to get the real data value.
This type is available for data accessed from continuous AI and DI
operations.

The default option for data format conversion is -st.

Options for separator in text file
The data separator in the converted text file may either be a
space, tab, or comma.

-sep0 : add space as separator
-sep1 : add Tab as separator
-sep2 : add comma as separator

The default option for data format conversion is -sep0.

Options for Title/Head in text file
If you do not want to add the title/head at the beginning of the file,
add the -nohead option.

After specifying the input filename, output filename, and the
options in the command line, DAQCvt converts the file and saves
it into the default location.

100 Utilities

PCIS-DASK
Data File Converter (DAQCvt)

Sample Programs 101

PCIS-DASK
Brief Program Descriptions

7 Sample Programs
Several sample programs are provided in the software CD. These
sample program are designed to assist you when creating your
own applications using PCIS-DASK.

NOTE ADLINK periodically upgrades the PCIS-DASK for new
cards/modules. Check the card/modules’s Release
Notes to know if PCIS-DASK supports it.

7.1 Brief Program Descriptions
Below is a list of programs and their description.

Card
Type Sample Name Description

PCI-6208 SDK6208V D/A conversion of PCI-6208V/16V
Visual C/C++ Program

SDK6208A D/A conversion of PCI-6208A
Visual C/C++ Program

VB6208 D/A conversion of PCI-6208A
Visual Basic Program

VB6216 D/A conversion of PCI-6208V/16V
Visual Basic Program

PCI-6308 SDK6308V D/A conversion of PCI-6308V
Visual C/C++ Program

SDK6308A D/A conversion of PCI-6308A
Visual C/C++ Program

VB6308A D/A conversion of PCI-6308A
Visual Basic Program

VB6308V D/A conversion of PCI-6308V
Visual Basic Program

102 Sample Programs

PCIS-DASK
Brief Program Descriptions

PCI-7200
C7200File

1. Digital input of PCI-7200/cPCI-7200 through DMA
transfer

2. Storing the data to disk
Visual C/C++ console Program

C7200DbfFile

1. Double buffer mode digital input of PCI-7200/
cPCI-7200 through DMA transfer

2. Storing the data to disk
Visual C/C++ console Program

SDK7200Wave Digital input of PCI-7200/cPCI-7200 through DMA
transfer Visual C/C++ Program

SDK7200DbfWav Double buffer mode digital input of PCI-7200/cPCI-7200
through DMA transfer Visual C/C++ Program

SDK7200HdSk HandShanking mode digital input of PCI-7200/cPCI-7200
through DMA transfer Visual C/C++ program

SDKETrigLine ExtTrig Line setting of PCI-7200/cPCI-7200
Visual C/C++ Program

VB7200Dma Digital input of PCI-7200/cPCI-7200 through DMA
transfer Visual Basic Program

PCI-7230 SDK7230 D/I, and D/O of PCI-7230/cPCI-7230
Visual C/C++ Program

SDK7230Int
D/I, and D/O of PCI-7230/cPCI-7230 by Interrupt Event
Status checking and waiting method
Visual C/C++ Program

SDK7230DbEvt
D/I, and D/O of PCI-7230/cPCI-7230 by Interrupt Event
Status checking and waiting method (Dual Interrupt
Events) Visual C/C++ Program

SDK7230IntMsg D/I, and D/O of PCI-7230/cPCI-7230 by Interrupt Event
Message method

SDK7230DbEvtMsg
D/I, and D/O of PCI-7230/cPCI-7230 by Interrupt Event
Message method (Dual Interrupt Events)
Visual C/C++ Program

VB7230 D/I, and D/O of PCI-7230/cPCI-7230
Visual Basic Program

PCI-7233 SDK7233 D/I of PCI-7233
Visual C/C++ Program

SDK7233Int
D/I of PCI-7233 by Interrupt Event Status checking and
waiting method
Visual C/C++ Program

SDK7233DbEvt
D/I of PCI-7233 by Interrupt Event Status checking and
waiting method (Dual Interrupt Events)
Visual C/C++ Program

VB7233 D/I of PCI-7233
Visual Basic Program

PCI-7234 SDK7234 D/O of PCI-7234
Visual C/C++ Program

VB7234 D/O of PCI-7234
Visual Basic Program

Card
Type Sample Name Description

Sample Programs 103

PCIS-DASK
Brief Program Descriptions

PCI-7248 SDK7248 D/I, and D/O of PCI-7248/cPCI-7248
Visual C/C++ Program

SDK7248Int
D/I, and D/O of PCI-7248/cPCI-7248 by Interrupt Event
Status checking and waiting method
Visual C/C++ Program

SDK7248DbEvt
D/I, and D/O of PCI-7248/cPCI-7248 by Interrupt Event
Status checking and waiting method (Dual Interrupt
Events) Visual C/C++ Program

SDK7248IntMsg
D/I, and D/O of PCI-7248/cPCI-7248 by Interrupt Event
Message method
Visual C/C++ Program

SDK7248DbEvtMsg
D/I, and D/O of PCI-7248/cPCI-7248 by Interrupt Event
Message method (Dual Interrupt Events)
Visual C/C++ Program

VB7248 D/I, and D/O of PCI-7248/cPCI-7248
Visual Basic Program

PCI-7249 SDK7249 D/I, and D/O of cPCI-7249
Visual C/C++ Program

SDK7249Int
D/I, and D/O of cPCI-7249 by Interrupt Event Status
checking and waiting method
Visual C/C++ Program

SDK7249DbEvt
D/I, and D/O of cPCI-7249 by Interrupt Event Status
checking and waiting method (Dual Interrupt Events)
Visual C/C++ Program

VB7249 D/I, and D/O of cPCI-7249
Visual Basic Program

PCI-7250 SDK7250 D/I, and D/O of PCI-7250/51
Visual C/C++ Program

VB7250 D/I, and D/O of PCI-7250/51
Visual Basic Program

PCI-7252 SDK7252 D/I, and D/O of cPCI-7252
Visual C/C++ Program

VB7252 D/I, and D/O of cPCI-7252
Visual Basic Program

PCI-7256 SDK7256 D/I, and D/O of PCI-7256
Visual C/C++ Program

SDK7256Int
D/I, and D/O of PCI-7256 by Interrupt Event Status
checking and waiting method
Visual C/C++ Program

SDK7256DbEvt
D/I, and D/O of PCI-7256 by Interrupt Event Status
checking and waiting method (Dual Interrupt Events)
Visual C/C++ Program

VB7256 D/I, and D/O of PCI-7256
Visual Basic Program

Card
Type Sample Name Description

104 Sample Programs

PCIS-DASK
Brief Program Descriptions

PCI-7296 SDK7296 D/I, and D/O of PCI-7296
Visual C/C++ sample program

SDK7296Int
D/I, and D/O of PCI-7296 by Interrupt Event Status
checking and waiting method
Visual C/C++ sample program

SDK7296DbEvt
D/I, and D/O of PCI-7296 by Interrupt Event Status
checking and waiting method (Dual Interrupt Events)
Visual C/C++ sample program

SDK7248IntMsg
D/I, and D/O of PCI-7296 by Interrupt Event Message
method
Visual C/C++ Program

SDK7248DbEvtMsg
D/I, and D/O of PCI-7296 by Interrupt Event Message
method (Dual Interrupt Events)
Visual C/C++ Program

VB7296 D/I, and D/O of PCI-7296
Visual Basic Program

PCI-7300
Rev.A SDK7300Wave

Digital input of PCI-7300A_Rev.A/cPCI-7300A_Rev.A
through DMA transfer
Visual C/C++ Program

S7300PGwav
Pattern generation of PCI-7300A_Rev.A/cPCI-
7300A_Rev.A
Visual C/C++ program

SDK7300aMBufWav
Multiple buffer mode digital input of PCI-7300A_Rev.A/
cPCI-7300A_Rev.A through DMA transfer
Visual C/C++ sample program

SDK7300Int

Interrupt operation of PCI-7300A_Rev.A/cPCI-
7300A_Rev.A by Event Status checking and waiting
method
Visual C/C++ program

SDK7300DbEvt

Interrupt operation of PCI-7300A_Rev.A/cPCI-
7300A_Rev.A by Interrupt Event Status checking and
waiting method (Dual Interrupt Events)
Visual C/C++ Program

C7300File

1. Digital input of PCI-7300A_Rev.A/
cPCI-7300A_Rev.A through DMA transfer

2. Storing the data to disk
Visual C/C++ console program

Card
Type Sample Name Description

Sample Programs 105

PCIS-DASK
Brief Program Descriptions

PCI-7300
Rev.B SDK7300Wave

Digital input of PCI-7300A_Rev.B/cPCI-7300A_Rev.B
through DMA transfer
Visual C/C++ Program

S7300PGwav
Pattern generation of PCI-7300A_Rev.B/cPCI-
7300A_Rev.B
Visual C/C++ program

SDK7300aMBufWav
Multiple buffer mode digital input of PCI-7300A_Rev.B/
cPCI-7300A_Rev.B through DMA transfer
Visual C/C++ Program

SDK7300Int

Interrupt operation of PCI-7300A_Rev.B/cPCI-
7300A_Rev.B by Event Status checking and waiting
method
Visual C/C++ program

SDK7300DbEvt

Interrupt operation of PCI-7300A_Rev.B/cPCI-
7300A_Rev.B by Interrupt Event Status checking and
waiting method (Dual Interrupt Events)
Visual C/C++ sample program

C7300bDbfDO
Double buffer mode digital output of PCI-7300A_Rev.B/
cPCI-7300A_Rev.B through DMA transfer
Visual C/C++ console Program

C7300File

1. Digital input of PCI-7300A_Rev.B/cPCI-
7300A_Rev.B through DMA transfer

2. Storing the data to disk
Visual C/C++ sample program

Card
Type Sample Name Description

106 Sample Programs

PCIS-DASK
Brief Program Descriptions

PCI-7348/
PCI-7396

SDK7348 D/I, and D/O of PCI-7348
Visual C/C++ sample program

SDK7348Int
D/I, and D/O of PCI-7348 by Interrupt Event Status
checking and waiting method
Visual C/C++ Program

SDK7348DbEvt
D/I, and D/O of PCI-7348 by Interrupt Event Status
checking and waiting method (Dual Interrupt Events)
Visual C/C++ Program

SDK7348COSi
COS of Interrup operation of D/I, and D/O of PCI-7348 by
Interrupt Event Status checking and waiting method
Visual C/C++ sample program

SDK7348IntMsg
D/I, and D/O of PCI-7348 by Interrupt Event Message
method
Visual C/C++ Program

SDK7348DbEvtMsg
D/I, and D/O of PCI- PCI-7348 by Interrupt Event
Message method (Dual Interrupt Events)
Visual C/C++ Program

VB7348 D/I, and D/O of PCI-7348
Visual Basic Program

SDK7396 D/I, and D/O of PCI-7396
Visual C/C++ sample program

SDK7396Int
D/I, and D/O of PCI-7396 by Interrupt Event Status
checking and waiting method
Visual C/C++ Program

SDK7396DbEvt
D/I, and D/O of PCI-7396 by Interrupt Event Status
checking and waiting method (Dual Interrupt Events)
Visual C/C++ sample program

SDK7396COSi
COS of Interrup operation of D/I, and D/O of PCI-7396 by
Interrupt Event Status checking and waiting method
Visual C/C++ Program

SDK7396IntMsg
D/I, and D/O of PCI-7396 by Interrupt Event Message
method
Visual C/C++ Program

SDK7396DbEvtMsg
D/I, and D/O of PCI- PCI-7396 by Interrupt Event
Message method (Dual Interrupt Events)
Visual C/C++ Program

VB7396 D/I, and D/O of PCI-7396
Visual Basic Program

Card
Type Sample Name Description

Sample Programs 107

PCIS-DASK
Brief Program Descriptions

PCI-7432 SDK7432 D/I, and D/O of PCI-7432/cPCI-7432
Visual C/C++ sample program

SDK7432Int
D/I, and D/O of PCI-7432/cPCI-7432 by Interrupt Event
Status checking and waiting method
Visual C/C++ Program

SDK7432DbEvt

D/I, and D/O of PCI-7432/cPCI-7432 by Interrupt Event
Status checking and waiting method (Dual Interrupt
Events)
Visual C/C++ Program

SDK7432IntMsg
D/I, and D/O of PCI-7432/cPCI-7432 by Interrupt Event
Message method
Visual C/C++ Program

SDK7432DbEvtMsg
D/I, and D/O of PCI-7432/cPCI-7432 by Interrupt Event
Message method (Dual Interrupt Events)
Visual C/C++ Program

VB7432 D/I, and D/O of PCI-7432/cPCI-7433
Visual Basic Program

PCI-7433 SDK7433 D/I of PCI-7433/cPCI-7433
Visual C/C++ sample program

SDK7433R D/I of cPCI-7433R
Visual C/C++ sample program

SDK7433Int D/I of PCI-7433/cPCI-7433 through Interrupt operation
Visual C/C++ Program

SDK7433DbEvt
D/I of PCI-7433/cPCI-7433 through Interrupt operation
(Dual Interrupt Events)
Visual C/C++ Program

SDK7433IntMsg
D/I of PCI-7433/cPCI-7433 by Interrupt Event Message
method
Visual C/C++ Program

SDK7433DbEvtMsg
D/I of PCI-7433/cPCI-7433 by Interrupt Event Message
method (Dual Interrupt Events)
Visual C/C++ Program

VB7433 D/I of PCI-7433/cPCI-7433
Visual Basic Program

PCI-7434 SDK7434 D/O of PCI-7434/cPCI-7434
Visual C/C++ sample program

SDK7434R D/O of cPCI-7434R
Visual C/C++ sample program

VB7434 D/O of PCI-7434/cPCI-7434
Visual Basic Program

Card
Type Sample Name Description

108 Sample Programs

PCIS-DASK
Brief Program Descriptions

PCI-7442 C7442TTL_Line Programmable D/I and D/O of PCI-7442
Visual C/C++ Program

C7442TTL_Port Programmable D/I and D/O of PCI-7442
Visual C/C++ Program

CDIOOnePoint D/I and D/O of PCI-7442
Visual C/C++ Program

CWdtOvflow Watchdog timer of PCI-7442
Visual C/C++ Program

SDK7442DbEvt Change-of-state of PCI-7442
Visual C/C++ Program

SDK7442DBEvtMsg Change-of-state of PCI-7442
Visual C/C++ Program

SDK7442int Change-of-state of PCI-7442
Visual C/C++ Program

SDK7442intMsg Change-of-state of PCI-7442
Visual C/C++ Program

SDK7442TTL Programmable D/I and D/O of PCI-7442
Visual C/C++ Program

SDK7442DIO D/I and D/O of PCI-7442
Visual C/C++ Program

SDKWdtOvflow Watchdog Timer of PCI-7442
Visual C/C++ Program

VB7442TTL Programmable D/I and D/O of PCI-7442
Visual Basic Program

VB7442DIO D/I and D/O of PCI-7442
Visual Basic Program

PCI-7443 C7443TTL_Line Programmable D/I and D/O of PCI-7443
Visual C/C++ Program

C7443TTL_Port Programmable D/I and D/O of PCI-7443
Visual C/C++ Program

CDIOnePoint D/I of PCI-7443
Visual C/C++ Program

SDK7443intMsg Change-of-state of PCI-7443
Visual C/C++ Program

SDK7443MultiEvt Change-of-state of PCI-7443
Visual C/C++ Program

SDK7443MultiEvtMsg Change-of-state of PCI-7443
Visual C/C++ Program

SDK7443TTL Programmable D/I and D/O of PCI-7443
Visual C/C++ Program

VB7443TTL Programmable D/I and D/O of PCI-7443
Visual C/C++ Program

Card
Type Sample Name Description

Sample Programs 109

PCIS-DASK
Brief Program Descriptions

PCI-7444 C7444TTL_Line Programmable D/I and D/O of PCI-7444
Visual C/C++ Program

C7444TTL_Port Programmable D/I and D/O of PCI-7444
Visual C/C++ Program

CDOOnePoint D/O of PCI-7444
Visual C/C++ Program

CWdtOvflow Watchdog timer of PCI-7444
Visual C/C++ Program

SDK7444TTL Programmable D/I and D/O of PCI-7444
Visual C/C++ Program

SDKWdtOvflow Watch-dog Timer of PCI-7444
Visual C/C++ Program

VB7444TTL Programmable D/I and D/O of PCI-7444
Visual Basic Program

PCI-8554 SDK8554 Timer/counter of PCI-8554
Visual C/C++ sample program

SDKEventCnt Event counter of PCI-8554
Visual C/C++ sample program

VB8554 Timer/counter of PCI-8554
Visual Basic Program

PCI-9111 SDK9111 A/D conversion, D/A conversion, D/I, and D/O of PCI9111
Visual C/C++ Program

SDK9111Int Analog input of PCI-9111 through Interrupt operation
Visual C/C++ Program

SDK9111DbfPreTrg
Pre-trigger with Double buffer mode analog input of PCI-
9111 through Interrupt operation
Visual C/C++ Program

SDK9111SpreTrg
Pre-trigger with Double buffer mode analog input of PCI-
9111 through Interrupt operation
Visual C/C++ Program

C9111File
1. Analog input of PCI-9111 through Interrupt operation
2. Storing the data to disk
Visual C/C++ console Program

C9111DbfFile

1. Double buffer mode analog input of PCI-9111
through Interrupt operation

2. Storing the data to disk
Visual C/C++ console Program

VB9111 A/D conversion, D/A conversion, D/I, and D/O of PCI9111
Visual Basic Program

VB9111Int Analog input of PCI-9111 through Interrupt operation
Visual Basic Program

VB9111PreTrg
Pre-trigger with Double buffer mode analog input of PCI-
9111 through Interrupt operation
Visual Basic Program

VB9111Scan Autoscan Analog input of PCI-9111
Visual Basic Program

Card
Type Sample Name Description

110 Sample Programs

PCIS-DASK
Brief Program Descriptions

PCI-9112
SDK9112

A/D conversion, D/A conversion, D/I, and D/O of
PCI9112/cPCI-9112
Visual C/C++ program

SDK9112DMA
Analog input of PCI-9112/cPCI-9112 through DMA data
transfer
Visual C/C++ Program

SDK9112DbfDma
Double buffer mode analog input of PCI-9112/cPCI-9112
through DMA data transfer
Visual C/C++ sample program

C9112File
1. Analog input of PCI-9112 through DMA data transfer
2. Storing the data to disk
Visual C/C++ console Program

C9112DbfFile

1. Double buffer mode analog input of PCI-9112
through DMA data transfer

2. Storing the data to disk
Visual C/C++ console Program

VB9112
A/D conversion, D/A conversion, D/I, and D/O of
PCI9112/cPCI-9112
Visual Basic Program

VB9112DbfDma
Double buffer mode analog input of PCI-9112/cPCI-9112
through DMA data transfer
Visual Basic Program

PCI-9113 SDK9113 A/D conversion, D/A conversion, D/I, and D/O of PCI-
9113 Visual C/C++ Program

SDK9113Int Analog input of PCI-9113 through Interrupt operation
Visual C/C++ Program

SDK9113DbfInt
Double buffer mode analog input of PCI-9113 through
Interrupt operation
Visual C/C++ sample program

C9113File
1. Analog input of PCI-9113 through Interrupt operation
2. Storing the data to disk
Visual C/C++ console Program

C9113DbfFile

1. Double buffer mode analog input of PCI-9113 through
Interrupt operation
2. Storing the data to disk
Visual C/C++ console program

VB9113 A/D conversion, D/A conversion, D/I, and D/O of PCI-
9113 Visual Basic Program

VB9113Int Analog input of PCI-9113 through Interrupt operation
Visual Basic Program

VB9113Scan Autoscan Analog input of PCI-9113
Visual Basic Program

Card
Type Sample Name Description

Sample Programs 111

PCIS-DASK
Brief Program Descriptions

PCI-9114 SDK9114 A/D conversion, D/A conversion, D/I, and D/O of PCI-
9114 Visual C/C++ Program

SDK9114Int Analog input of PCI-9114 through Interrupt operation
Visual C/C++ Program

SDK9114DbfInt
Double buffer mode analog input of PCI-9114 through
Interrupt operation
Visual C/C++ sample program

C9114File
1. Analog input of PCI-9114 through Interrupt operation
2. Storing the data to disk
Visual C/C++ console Program

C9114DbfFile

1. Double buffer mode analog input of PCI-9114
through Interrupt operation

2. Storing the data to disk
Visual C/C++ console Program

VB9114 A/D conversion, D/A conversion, D/I, and D/O of PCI-
9114 Visual Basic Program

VB9114Int Analog input of PCI-9114 through Interrupt operation
Visual Basic Program

VB9114Scan Autoscan Analog input of PCI-9114
Visual Basic Program

Card
Type Sample Name Description

112 Sample Programs

PCIS-DASK
Brief Program Descriptions

cPCI-9116 SDK9116 A/D conversion of cPCI-9116
Visual C/C++ Program

SDK9116ScanDma
Software trigger with Single buffer mode analog input of
cPCI-9116 through DMA data transfer
Visual C/C++ Program

SDK9116PostTrg
Post trigger with Single buffer mode analog input of cPCI-
9116 through DMA data transfer
Visual C/C++ Program

SDK9116MidTrg
Middle trigger with Single buffer mode analog input of
cPCI-9116 through DMA data transfer
Visual C/C++ Program

SDK9116DlyTrg
Delay trigger with Single buffer mode analog input of
cPCI-9116 through DMA data transfer
Visual C/C++ Program

SDK9116DbfDma
Double buffer mode analog input of cPCI-9116 through
DMA data transfer
Visual C/C++ Program

SDK9116DbfAboutTrg
Middle trigger with Double buffer mode analog input of
cPCI-9116 through DMA data transfer
Visual C/C++ Program

SDK9116DbfPostTrg
Post trigger with Double buffer mode analog input of
cPCI-9116 through DMA data transfer
Visual C/C++ Program

SDK9116DbfDlyTrg
Delay trigger with Double buffer mode analog input of
CPCI-9116 through DMA data transfer
Visual C/C++ Program

C9116File

1. Analog input of cPCI-9116 through DMA data
transfer

2. Storing the data to disk
Visual C/C++ console Program

C9116DbfFile

1. Double buffer mode analog input of cPCI-9116
through DMA data transfer

2. Storing the data to disk
Visual C/C++ console Program

VB9116 Analog input of CPCI-9116 through DMA data transfer
Visual Basic Program

PCI-9118 SDK9118 A/D conversion, D/A conversion, D/I, and D/O of PCI-
9118 Visual C/C++ Program

SDK9118DbfAboutTrg
About trigger with Double buffer mode analog input of
PCI-9118 through DMA data transfer
Visual C/C++ Program

SDK9118BurstDma
Analog input of PCI-9118 through Burst Mode DMA data
transfer
Visual C/C++ Program

SDK9118DbfDma
Double buffer mode analog input of PCI-9118 through
DMA data transfer
Visual C/C++ Program

Card
Type Sample Name Description

Sample Programs 113

PCIS-DASK
Brief Program Descriptions

PCI-9118
SDK9118HRDbfDma

Double buffer mode analog input of PCI-9118HR through
DMA data transfer
Visual C/C++ Program

SDK9118ScanDma
Autoscan Analog input of PCI-9118 through DMA data
transfer
Visual C/C++ Program

SDK9118HRScanDma
Autoscan Analog input of PCI-9118HR through DMA data
transfer
Visual C/C++ Program

SDK9118DbfPreTrg
Pre-trigger with Double buffer mode analog input of PCI-
9118 through DMA data transfer
Visual C/C++ Program

SDK9118DbfPostTrg
Post trigger with Double buffer mode analog input of PCI-
9118 through DMA data transfer
Visual C/C++ sample program

SDK9118AboutTrg
About trigger with Single buffer mode analog input of PCI-
9118 through DMA data transfer
Visual C/C++ Program

SDK9118HRAboutTrg
About trigger with Single buffer mode analog input of PCI-
9118HR through DMA data transfer
Visual C/C++ Program

SDK9118PostTrg
Post trigger with Single buffer mode analog input of PCI-
9118 through DMA data transfer
Visual C/C++ Program

C9118File
1. Analog input of PCI-9118 through DMA data transfer
2. Storing the data to disk
Visual C/C++ console Program

C9118DbfFile

1. Double buffer mode analog input of PCI-9118
through DMA data transfer

2. Storing the data to disk
Visual C/C++ console Program

VB9118DgHr
A/D conversion, D/A conversion, D/I, and D/O of
PCI9118DG/HR
Visual Basic Program

VB9118Hg
A/D conversion, D/A conversion, D/I, and D/O of
PCI9118HG
Visual Basic Program

VB9118AboutTrg
About trigger with Single buffer mode analog input of PCI-
9118 through DMA data transfe
Visual Basic Program

VB9118PostTrg
Post trigger with Single buffer mode analog input of PCI-
9118 through DMA data transfe
Visual Basic sample program

VB9118Dma Analog input of PCI-9118 through DMA data transfer
Visual Basic Program

Card
Type Sample Name Description

114 Sample Programs

PCIS-DASK
Brief Program Descriptions

PCI-9812
SDK9812SoftTrg

Software trigger with Single buffer mode analog input of
PCI-9812/cPCI-9812 through DMA data transfer
Visual C/C++ Program

SDK9812PreTrg
Pre-trigger with Single buffer mode analog input of PCI-
9812/cPCI-9812 through DMA data transfer
Visual C/C++ Program

SDK9812PostTrg
Post trigger with Single buffer mode analog input of PCI-
9812/cPCI-9812 through DMA data transfer
Visual C/C++ Program

SDK9812MidTrg
Middle trigger with Single buffer mode analog input of
PCI-9812/cPCI-9812 through DMA data transfer
Visual C/C++ Program

SDK9812DelayTrg
Delay trigger with Single buffer mode analog input of PCI-
9812/cPCI-9812 through DMA data transfer
Visual C/C++ Program

SDK9812DbfMidTrg
Middle trigger with Double buffer mode analog input of
PCI-9812/cPCI-9812 through DMA data transfer
Visual C/C++ Program

SDK9812DbfPreTrg
Pre-trigger with Double buffer mode analog input of PCI-
9812/cPCI-9812 through DMA data transfer
Visual C/C++ Program

SDK9812DbfPostTrg
Post trigger with Double buffer mode analog input of PCI-
9812/cPCI-9812 through DMA data transfer
Visual C/C++ Program

SDK9812DbfDelayTrg
Delay trigger with Double buffer mode analog input of
PCI-9812/cPCI-9812 through DMA data transfer
Visual C/C++ Program

C9812File

1. Analog input of PCI-9812/10 through DMA data
transfer

2. Storing the data to disk
Visual C/C++ console Program

C9812DbfFile

1. Double buffer mode analog input of PCI-9812/10
through DMA data transfer

2. Storing the data to disk
Visual C/C++ console Program

VB9812
Analog input of PCI-9812/cPCI-9812 through DMA data
transfer
Visual Basic 4.0 Program

9812 VB5
Analog input of PCI-9812/cPCI-9812 through DMA data
transfer
Visual Basic 5.0 Program

Card
Type Sample Name Description

Sample Programs 115

PCIS-DASK
Brief Program Descriptions

NOTE The PCIS-DASK comes with Examples.exe - a sample
program browser that allows you to view and execute all
bundled sample programs. Examples.exe is located in
<InstallDir>\Samples directory. After launching Exam-
ples.exe, double-click the icon of the sample you want to
execute.

PCI-9221 C9221AIDma A/D conversion of PCI-9221
Visual C/C++ Program

C9221AIDma_ExtD A/D conversion of PCI-9221 with external trigger
Visual C/C++ Program

C9221AIDmaToFile
A/D conversion of PCI-9221 Stores acquired data to a
disk file
Visual C/C++ Program

C9221AIPoll A/I Polling of PCI-9221
Visual C/C++ Program

C9221AIPoll_MultiChn A/I Polling of PCI-9221 for multiple channels
Visual C/C++ Program

C9221AO A/O of PCI-9221
Visual C/C++ Program

C9221Cal Calibration of PCI-9221
Visual C/C++ Program

C9221DIO_Line D/I and D/O of PCI-9221
Visual C/C++ Program

C9221DIO_Port D/I and D/O of PCI-9221
Visual C/C++ Program

C9221GPTC General-Purpose Timer/Counter of PCI-9221
Visual C/C++ Program

SDK9221AIDma A/D conversion of PCI-9221
Visual C/C++ Program

SDK9221AIDmaDbf
Double buffer mode analog input of PCI-9221 through
DMA data transfer
Visual C/C++ Program

SDK9221AIDmaDbfCallB
ack

Double buffer mode analog input of PCI-9221 through
DMA data transfer
Visual C/C++ Program

SDK9221DIO D/I and D/O of PCI-9221
Visual C/C++ Program

VB9221AIDma A/D conversion of PCI-9221
Visual Basic Program

Card
Type Sample Name Description

116 Sample Programs

PCIS-DASK
Development Environments

7.2 Development Environments

Visual Basic Sample Programs
Several Visual Basic sample programs are provided for each card.
Using VB9112DMA as example, the following files are included in
each sample program:

VB project file - VB9112D.VBP
VB form files - VB9112D.FRM
Executable file - VB9112D.EXE

You must install a 32-bit Microsoft® Visual Basic 4.0 Professional
Edition or higher to view these sample programs. Refer to
Microsoft® Visual Basic 4.0 Professional Edition manual or related
reference books to get the information on using Visual Basic 4.0.

If you want to execute the VB sample programs without installing
Microsoft® Visual Basic 4.0, use the VB4 Runtime package. The
VB4 Runtime package includes the required library and DLL files
to run the VB sample programs. You can find this package from
the main setup window or root directory of the ADLINK All-In-One
CD.

Microsoft C/C++ Sample Programs
The PCIS-DASK also includes Microsoft® C/C++ sample pro-
grams featuring similar functions as those provided by VB sam-
ples. These may be directly executed and do not require
installation of any additional package. It is recommended that you
use Microsoft® C/C++ sample programs when testing the PCIS-
DASK packages.

Using SDK7200WAV as example, the following files are included
in each sample program:

C source file - 7200WAV.C
Workspace file - 7200WAV.MDP
Resource script file - 7200WAV.RC, RESOURCE.H
Make file - 7200WAV.MAK
Executable file - 7200WAV.EXE

Sample Programs 117

PCIS-DASK
Development Environments

You can use any Microsoft® Visual C++ 4.0 editor to view or mod-
ify these source files. However, you must install Microsoft® Visual
C++ 4.0 or higher to build the executable 7200WAV.EXE. Refer to
the Microsoft® Visual C++ manual or related reference books for
additional information.

118 Sample Programs

PCIS-DASK
Execute Sample Programs

7.3 Execute Sample Programs
To run the sample programs:

1. Open the sample program

You can use Microsoft Visual C++ 4.0 or Visual Basic 4.0 to
open and execute the sample programs. Or you can run the
executable files directly.

2. Set the testing parameters

Depending on your requirements, set the testing parameters
such as A/D or D/A conversion, testing channels, sampling
rate, transfer count, etc.

3. Click the Start button to run the program.

Sample Programs 119

PCIS-DASK
Detailed Descriptions of Programs

7.4 Detailed Descriptions of Programs
Four types of sample programs are provided together with the
PCIS-DASK software driver:

AD conversion, D/A conversion, and D/O
Data I/O through DMA Data Transfer or Interrupt operation
Double buffer mode data I/O through DMA transfer or Inter-
rupt operation
Trigger Mode Data I/O through DMA Data Transfer or Inter-
rupt operation

NOTE The following sections describing these types of sample
programs use the VB 9112, SDK 9112DMA, SDK
9112CDMA and SDK 9118 DbfPreTrg screens as exam-
ples.

120 Sample Programs

PCIS-DASK
Detailed Descriptions of Programs

A/D Conversion, D/A Conversion, D/I, and D/O
This sample illustrates how to use the PCIS-DASK to operate soft-
ware trigger with program polling data mode and read/write data
from digital input/output channels on PCI-9112. The main program
main screen is shown below:

Analog Input (A/D). Shows the results of A/D conversion. You
can select the input channels (allows multiple channels) and the
input range (gain) you want to test.

Analog output (D/A). Shows the results of D/A conversion. You
may turn the tuner to set the output voltage. You can also set the
output waveform to sine or square.

D/I and D/O. Shows the results of read/write data from/to digital
input/output channels. To set the output value, click the channel
buttons. A red color indicates an ON channel, while a white color
indicates an OFF channel.

Sample Programs 121

PCIS-DASK
Detailed Descriptions of Programs

Data I/O Through DMA Data Transfer or Interrupt Operation
This program demonstrates the use of PCIS-DASK to operate
data I/O through DMA data transfer or Interrupt operation. The
program main screen is shown below.

These programs allow you to adjust the input channels, input
range (PCI-7200 does not have these two options), sampling rate,
and data size (transfer count).

To view the input data, click on the Data Value button in the main
screen when data transfer is finished. Refer to the following
screen.

122 Sample Programs

PCIS-DASK
Detailed Descriptions of Programs

Double Buffer Mode Data I/O Through DMA Transfer or
Interrupt Operation
This program tells you how to use PCIS-DASK to operate double-
buffered data I/O through DMA transfer or Interrupt operation. The
program main screen is shown below:

These programs lets you input channel, input range (PCI-7200
does not have this two options), sampling rate, and data size
(transfer count).

To view the input data, click on the Data Value button in the main
screen after you stop the double-buffered operation.

Sample Programs 123

PCIS-DASK
Detailed Descriptions of Programs

Trigger Mode Data I/O Through DMA Data Transfer or
Interrupt Operation
These programs tell you how to use PCIS-DASK to operate trigger
mode data I/O through DMA data transfer or interrupt operation.
Except for the additional input item postCount, the main screen of
these programs are similar with Single-Buffer Mode or Double-
Buffer Mode programs. Please refer to these two sections for the
details.

The postCount item represents the number of data accessed
after a specific trigger event or the counter value for deferring to
access data after a specific trigger event. Refer to the description
of AI configuration functions (AI_9111_Config, AI_9118_Config,
AI_9812_Config) for details.

NOTE Except for VB9812, all trigger mode data acquisition sam-
ple programs use external digital trigger source to provide
trigger signal. Refer to the card’s documentation if you
you want to operate for the detailed description of trigger
mode data acquisition.

124 Sample Programs

PCIS-DASK
Detailed Descriptions of Programs

Distribution of Applications 125

PCIS-DASK
Required Files

8 Distribution of Applications
8.1 Required Files
When installing an application that uses PCIS-DASK on another
computer, you must install the necessary driver files and support-
ing libraries on the target system. You can create an automatic
installer that installs your program and all files needed to run the
program or you can install the program and program files manually
For both installation methods, you must install the following files:

Required support DLLs: Pci-dask.dll
Driver files
Windows® 98

Corresponding driver files in \Software\Pcis-
dask\W98NT2K \redist\W98\drivers (e.g. pci7200.sys for
PCI-7200). These files must be copied to the Win-
dows\system32\drivers directory.
Corresponding INF files in \Software\Pcis-dask\W98NT2K
\redist\W98\Inf (e.g. p7200.inf for PCI-7200). These files
must be copied to the Windows\inf directory.
Device configuration utility in \Software\Pcis-
dask\W98NT2K\redist\W98\Util.

Windows® NT 4.0

adldask.sys in \Software\Pcis-
dask\W98NT2K\redist\Wnt\drivers. This file must be cop-
ied to Winnt\system32\drivers directory.
Corresponding driver files in \Software\Pcis-
dask\W98NT2K \redist\Wnt\drivers (e.g. pci7200.sys for
PCI-7200). These files must be copied to
Winnt\system32\drivers directory.
Device configuration utility in \Software\Pcis-
dask\W98NT2K/redist\Wnt\Util.

Windows® 2000

Corresponding driver file in \Software\Pcis-
dask\W98NT2K \redist\W2000\drivers (e.g. pci7200.sys

126 Distribution of Applications

PCIS-DASK
Required Files

for PCI-7200). These files must be copied to
Winnt\system32\drivers directory.
Corresponding INF file in \Software\Pcis-dask\W98NT2K
\redist\W2000\Inf (e.g. p7200.inf for PCI-7200). These files
must be copied to Winnt\inf directory.
Device configuration utility in \Software\Pcis-
dask\W98NT2K \redist\W2000\Util.

Utility file (option)
Data conversion utility DAQCvt.exe in \Software\Pcis-
dask\ W98NT2K\redist\W98\Util, \Software\Pcis-
dask\W98NT2K\redist\Wnt\Util, or \Software\Pcis-
dask\W98NT2K\redist\W2000\Util to convert the binary
data file to an easily read file format.

Distribution of Applications 127

PCIS-DASK
Automatic Installers

8.2 Automatic Installers
Several programming environments provide setups or distribution
kit tools that automatically create an installation program so that it
can be conveniently installed from one computer to another. For
the application to function properly, this tool must locate and
include the required control files and supporting libraries in the
installation program that it creates.

Some tools, such as the Visual Basic 5 Setup Wizard, uses
dependency files to determine which libraries are required by a VB
application. Some setup tools may not automatically recognize
which files are required by a program, but they provide an option
to add additional files to the installation program. In this case, ver-
ify that all the necessary files described in the previous section are
included. The user should also check if the resulting installation
program does not copy older versions of a file over a newer ver-
sion on the target computer.

If the programming environment does not provide a tool or wizard
for building an installation program, third-party tools such as
InstallShield may be used instead. Some programming environ-
ments provide simplified or trial versions of third-party installer cre-
ation tools on their installation CDs.

128 Distribution of Applications

PCIS-DASK
Manual Installation

8.3 Manual Installation
If the programming environment does not include a setup or distri-
bution kit tool, the installation task may be performed manually. To
install the program to another computer:

1. Copy the program executable to the target computer.

2. Copy all required PCIS-DASK files described in the sec-
tion 8.1 to the appropriate directory on the target com-
puter.

3. Use NuDAQ Device Configuration utility to configure the
device.

NOTE Do not replace a newer version of a file installed in the tar-
get computer.

	Table of Contents
	1 Introduction
	1.1 Hardware Support
	1.2 Language Support

	2 Function Classes
	2.1 General Configuration Function Group
	2.2 Actual Sampling Rate Function Group
	2.3 Analog Input Function Group
	Analog Input Configuration Functions
	One-Shot Analog Input Functions
	Continuous Analog Input Functions
	Asynchronous Analog Input Monitoring Functions

	2.4 Analog Output Function Group
	Analog Output Configuration Functions
	One-Shot Analog Output Functions

	2.5 Digital Input Function Group
	Digital Input Configuration Functions
	One-Shot Digital Input Functions
	Continuous Digital Input Functions
	Asynchronous Digital Input Monitoring Functions

	2.6 Digital Output Function Group
	Digital Output Configuration Functions
	One-Shot Digital Output Functions
	Continuous Digital Output Functions
	Asynchronous Digital Output Monitoring Functions

	2.7 Timer/Counter Function Group
	Timer/Counter Functions
	General-Purpose Timer/Counter Functions

	2.8 Digital Input/Output Function Group
	Digital Input/Output Configuration Functions
	Dual-Interrupt System Setting Functions
	Local Interrupt Setting Functions

	2.9 Emergency Shutdown Function Group
	2.10 Watchdog Timer Function Group
	2.11 Hot-system Reset Hold Function Group
	2.12 Calibration Function Group

	3 Building Applications
	3.1 Contiguous Memory Allocation
	3.2 Application Building Fundamentals in Windows
	Using Microsoft® Visual C®/C++®
	Using Microsoft® Visual Basic®

	3.3 Application Building Fundamentals in Linux
	3.4 Application Building Fundamentals Using .NET
	Using Microsoft VB.net.
	Using Microsoft C#
	Creating Windows® PCIS-DASK Application Using Microsoft VB.net.
	Using Callback Functions in a VB.net Application with PCIS-DASK
	Using Callback Functions in a C# Application with PCIS- DASK

	4 Application Hints
	4.1 Analog Input
	One-Shot Analog Input
	Synchronous Continuous Analog Input
	Non-Trigger Non-double-buffered Asynchronous Continuous Analog Input
	Non-Trigger Double-buffered Asynchronous Continuous Analog Input
	Trigger Mode Non-double-buffered Asynchronous Continuous Analog Input
	Trigger Mode Double-buffered Asynchronous Continuous Analog Input

	4.2 Analog Output Programming Hints
	4.3 Digital Input Programming Hints
	One-Shot Digital Input
	Synchronous Continuous Digital Input
	Non-double-buffered Asynchronous Continuous Digital Input
	Double-buffered Asynchronous Continuous Digital Input
	Multiple-buffered Asynchronous Continuous Digital Input

	4.4 Digital Output Programming Hints
	One-Shot Digital Output
	Synchronous Continuous Digital Output
	Asynchronous Continuous Digital Output
	Pattern Generation Digital Output
	Multiple-buffered Asynchronous Continuous Digital Output

	4.5 DAQ Event Message Programming Hints
	4.6 Interrupt Event Message Programming Hints

	5 Continuous Data Transfer
	5.1 Mechanisms
	5.2 Double-Buffered AI/DI Operation
	Double Buffer Mode Principle
	Single-Buffered Versus Double-Buffered Data Transfer

	5.3 Trigger Mode Data Acquisition for Analog Input

	6 Utilities
	6.1 Win32 Utilities
	NuDAQ Registry/Configuration (PciUtil)
	Data File Converter (DAQCvt)
	Sample Programs Browser

	6.2 PCIS-DASK/X Utilities
	dask_conf

	6.3 Module Installation Script
	6.4 Uninstallation Script
	6.5 Data File Converter (DAQCvt)
	Options for data format conversion
	Options for separator in text file
	Options for Title/Head in text file

	7 Sample Programs
	7.1 Brief Program Descriptions
	7.2 Development Environments
	Visual Basic Sample Programs
	Microsoft C/C++ Sample Programs

	7.3 Execute Sample Programs
	7.4 Detailed Descriptions of Programs
	A/D Conversion, D/A Conversion, D/I, and D/O
	Data I/O Through DMA Data Transfer or Interrupt Operation
	Double Buffer Mode Data I/O Through DMA Transfer or Interrupt Operation
	Trigger Mode Data I/O Through DMA Data Transfer or Interrupt Operation

	8 Distribution of Applications
	8.1 Required Files
	8.2 Automatic Installers
	8.3 Manual Installation

