
PCIS-DASK
Data Acquisition Software Development Kit

For NuDAQ PCI-bus Cards, Windows NT/98/2000

User’s Guide

@Copyright 1997-2000 ADLink Technology Inc.
All Rights Reserved.

Manual Rev. 3.01: Jnue. 04, 2000

The information in this document is subject to change without prior notice in
order to improve reliability, design and function and does not represent a
commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental,
or consequential damages arising out of the use or inability to use the product
or documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All
rights are reserved. No part of this manual may be reproduced by any
mechanical, electronic, or other means in any form without prior written
permission of the manufacturer.

Trademarks
NuDAQ, NuIPC, PCIS-DASK and PCI series products names are registered
trademarks of ADLink Technology Inc. Other product names mentioned herein
are used for identification purposes only and may be trademarks and/or
registered trademarks of their respective companies.

Contents • i

CONTENTS

HOW TO USE THIS MANUAL V

INTRODUCTION TO PCIS-DASK............................. 1
1.1 ABOUT THE PCIS-DASK SOFTWARE...1

1.2 PCIS-DASK HARDWARE SUPPORT ...2

1.3 PCIS-DASK LANGUAGE SUPPORT ...3

THE FUNDAMENTALS OF BUILDING WINDOWS
NT/98/2000 APPLICATIONS WITH PCIS-DASK..... 4

2.1 CREATING A WINDOWS NT/98/2000 PCIS-DASK APPLICATIONS

USING MICROSOFT VISUAL C/C++...4

2.2 CREATING A WINDOWS NT/98/2000 PCIS-DASK APPLICATIONS

USING MICROSOFT VISUAL BASIC..5

PCIS-DASK UTILITIES... 8
3.1 NUDAQ REGISTRY/CONFIGURATION UTILITY (PCIUTIL)8

3.2 PCIS-DASK DATA FILE CONVERTER UTILITY (DAQCVT) 13

3.3 PCIS-DASK SAMPLE PROGRAMS BROWSER (EXAMPLES.EXE) ... 15

PCIS-DASK OVERVIEW ... 17
4.1 GENERAL CONFIGURATION FUNCTION GROUP 18

4.2 ANALOG INPUT FUNCTION GROUP.. 18
4.2.1 Analog Input Configuration Functions...18

4.2.2 One-Shot Analog Input Functions...19
4.2.3 Continuous Analog Input Functions...20

4.2.4 Asynchronous Analog Input Monitoring Functions21

4.3 ANALOG OUTPUT FUNCTION GROUP .. 22
4.3.1 Analog output Configuration Functions ..22

4.3.2 One-Shot Analog Output Functions ...23

ii • Contents

4.4 DIGITAL INPUT FUNCTION GROUP... 23
4.4.1 Digital Input Configuration Functions ..23

4.4.2 One-Shot Digital Input Functions ..24
4.4.3 Continuous Digital Input Functions ..24

4.4.4 Asynchronous Digital Input Monitoring Functions25

4.5 DIGITAL OUTPUT FUNCTION GROUP ... 25
4.5.1 Digital Output Configuration Functions...25

4.5.2 One-Shot Digital Output Functions...26
4.5.3 Continuous Digital Output Functions...27

4.5.4 Asynchronous Digital Output Monitoring Functions27

4.6 TIMER/COUNTER FUNCTION GROUP ... 27

4.7 DIO FUNCTION GROUP... 28
4.7.1 Digital Input/Output Configuration Functions..............................28

4.7.2 Dual-Interrupt System Setting Functions28

PCIS-DASK APPLICATION HINTS........................ 30
5.1 ANALOG INPUT PROGRAMMING HINTS 31

5.1.1 One-Shot Analog input programming Scheme32

5.1.2 Synchronous Continuous Analog input programming Scheme
33

5.1.3 Non-Trigger Non-double-buffered Asynchronous Continuous

Analog input programming Scheme...35
5.1.4 Non-Trigger Double-buffered Asynchronous Continuous

Analog input programming Scheme...37

5.1.5 Trigger Mode Non-double-buffered Asynchronous Continuous
Analog input programming Scheme...40

5.1.6 Trigger Mode Double-buffered Asynchronous Continuous

Analog input programming Scheme...43

5.2 ANALOG OUTPUT PROGRAMMING HINTS................................... 46

5.3 DIGITAL INPUT PROGRAMMING HINTS....................................... 47
5.3.1 One-Shot Digital input programming Scheme.............................48

Contents • iii

5.3.2 Synchronous Continuous Digital input programming Scheme
49

5.3.3 Non-double-buffered Asynchronous Continuous Digital input

programming Scheme..50
5.3.4 Double-buffered Asynchronous Continuous Digital input

programming Scheme..52

5.4 DIGITAL OUTPUT PROGRAMMING HINTS.................................... 55
5.4.1 One-Shot Digital output programming Scheme..........................56

5.4.2 Synchronous Continuous Digital output programming Scheme
57

5.4.3 Asynchronous Continuous Digital output programming

Scheme...58
5.4.4 Pattern Generation Digital output programming Scheme........60

5.5 INTERRUPT EVENT MESSAGE PROGRAMMING HINTS................... 61

CONTINUOUS DATA TRANSFER IN PCIS-DASK 64
6.1 CONTINUOUS DATA TRANSFER MECHANISM 64

6.2 DOUBLE-BUFFERED AI/DI OPERATION 65
6.2.1 Double Buffer Mode Principle...65

Single-Buffered Versus Double-Buffered Data Transfer..........................66

6.3 TRIGGER MODE DATA ACQUISITION FOR ANALOG INPUT 68

SAMPLE PROGRAMS ... 69
7.1 SAMPLE PROGRAMS DEVELOPMENT ENVIRONMENT.................... 77

7.1.1 Visual Basic Sample Programs..77

7.1.2 Microsoft C/C++ Sample Programs ..77

7.2 EXECUTE SAMPLE PROGRAMS.. 78

7.3 THE DETAILED DESCRIPTIONS OF THESE SAMPLE PROGRAMS 78
7.3.1 A/D conversion, D/A conversion, D/I, and D/O.............................79

7.3.2 Data I/O through DMA Data Transfer or Interrupt operation....80

iv • Contents

7.3.3 Double buffer mode data I/O through DMA transfer or Interrupt
operation ..81

7.3.4 Trigger Mode Data I/O through DMA Data Transfer or Interrupt

operation ..82

How to use this manual • v

How to Use This Manual
This manual is to help you use the PCIS-DASK software driver
for NuDAQ PCI-bus data acquisition cards. The manual
describes how to install and use the software library to meet your
requirements and help you program your own software
applications. It is organized as follows:

l Chapter 1, "Introduction to PCIS-DASK" describes the
hardware and language support of PCIS-DASK.

l Chapter 2, "The Fundamentals of Building Windows NT/98
Applications with PCIS-DASK" describes the fundamentals
of creating PCIS-DASK applications in Windows NT and
Windows 98.

l Chapter 3, "PCIS-DASK Utilities" describes the utilities
PCIS-DASK provides.

l Chapter 4, "PCIS-DASK Overview" describes the classes of
functions in PCIS-DASK and briefly describes each function.

l Chapter 5, "PCIS-DASK Application Hints" provides the
programming schemes showing the function flow of that
PCIS-DASK performs analog I/O and digital I/O.

l Chapter 6, "Continuous Data Transfer in PCIS-DASK"
describes the mechanism and techniques that PCIS-DASK
uses for continuous data transfer.

l Chapter 7, "Sample Programs" describes some sample
programs in the software package.

Introduction to PCIS-DASK • 1

1

Introduction to PCIS-DASK

1.1 About the PCIS-DASK Software
PCIS-DASK is a software development kit for NuDAQ PCI-bus
data acquisition cards. It contains a high performance data
acquisition driver for developing custom applications under
Windows NT, Windows 98 and Windows 2000 environments.

The memory and data buffer management capabilities free
developers from dealing with there complex issues. That is,
PCIS-DASK is constructed to provide a simple programming
interface in communication with the NuDAQ PCI-bus data
acquisition cards. The easy-to-use functions provided by PCIS-
DASK allow a programmer to use the features of the card in a
high level way.

Using PCIS-DASK also makes you take advantage of the power
and features of Microsoft Win32 System for your data acquisition
applications, including running multiple applications and using
extended memory. Also, using PCIS-DASK under Visual Basic
environment makes it easy to create custom user interfaces and
graphics.

In addition to the software drivers, some sample programs are
provided for your reference to save a lot of programming time
and get some other benefits as well.

2 • Introduction to PCIS-DASK

1.2 PCIS-DASK Hardware Support
ADLink will periodically upgrade PCIS-DASK for new NuDAQ
PCI-bus data acquisition cards and NuIPC CompactPCI cards.
Please refer to Release Notes for the cards that the current
PCIS-DASK actually supports. The following cards are those
which PCIS-DASK supports currently or will support in the near
future:

• PCI-6208A : 8-channel 16-bit current output card

• PCI-6208V/16V : 8/16-channel 16-bit voltage output card

• PCI-6308A : Isolated 8-channel voltage and current output
card

• PCI-6308V : Isolated 8-channel voltage output card

• PCI-7200/cPCI-7200 : high-speed 32-bit digital I/O card with
bus mastering DMA transfer capability

• PCI-7230/cPCI-7230 : 32-channel isolated digital I/O card

• PCI-7233/PCI-7233H : Isolated 32 channels DI card with COS
detection

• PCI-7234 : 32-channel isolated digital output card

• PCI-7248/cPCI-7248 : 48-bit digital I/O card

• cPCI-7249R : 3U CompactPCI 48 parallel digital I/O card

• PCI-7250 : 8 relay output and 8 isolated input card

• cPCI-7252 : 8 relay output and 16 isolated input card

• PCI-7296 : 96-bit digital I/O card

• PCI-7300A/cPCI-7300A : 40 Mbytes/sec Ultra-high speed 32
channels digital I/O card with bus
mastering DMA transfer supporting
scatter gather technology

• PCI-7396 : High driving capability 96 channels DIO card

• PCI-7432/cPCI-7432 : 32 isolated channels DI & 32 isolated
channels DO card

Introduction to PCIS-DASK • 3

• PCI-7433/cPCI-7433 : 64 isolated channels DI card

• PCI-7434/cPCI-7434 : 64 isolated channels DO card

• cPCI-7432R : Isolation 32 Digital Inputs & 32 Digital Outputs
with Rear I/O

• cPCI-7433R : Isolation 64 Digital Inputs Module with Rear I/O

• cPCI-7434R : Isolation 64 Digital Outputs Module with Rear I/O

• PCI-8554 : 16-CH Timer/Counter & DIO card

• PCI-9111 : advanced multi-function card

• PCI-9112/cPCI-9112 : advanced multi-function card with bus
mastering DMA transfer capability

• PCI-9113 : 32 isolated channels A/D card

• PCI-9114 : 32-channel high gain multi-function card

• PCI-9118 : 333KHz high speed multi-function card with bus
mastering DMA transfer capability

• PCI-9812/10 : 20MHz Ultra-high speed A/D card with bus
mastering DMA transfer capability

• cPCI-9812/10 : 20MHz Ultra-high speed A/D card with bus
mastering DMA transfer capability

1.3 PCIS-DASK Language Support
PCIS-DASK is DLL (Dynamic-Link Library) version for using
under Windows NT, Window 98 and Windows 2000. It can work
with any Windows programming language that allows calls to a
DLL, such as Microsoft Visual C/C++ (4.0 or above), Borland
C++ (5.0 or above), or Microsoft Visual Basic (4.0 or above), etc.
PCIS-DASK also provides a PCIS-DASK function prototype file,
Dask.pas for use with Borland Delphi 2.x (32-bit) or above.

4 • The Fundamentals of Building Windows NT/98 Applications

2

The Fundamentals of
Building WindowsNT/98/2000
Applications with PCIS-DASK

2.1 Creating a Windows NT/98/2000 PCIS-DASK
Applications Using Microsoft Visual C/C++

To create a data acquisition application using PCIS-DASK and
Microsoft Visual C/C++, follow these steps after entering Visual
C/C++:

step 1. Open the project in which you want to use PCIS-DASK.
This can be a new or existing project

step 2. Include header file DASK.H in the C/C++ source files that
call PCIS-DASK functions. DASK.H contains all the
function declarations and constants that you can use to
develop your data acquisition application. Incorporate
the following statement in your code to include the
header file.

 #include “DASK.H”

step 3. Build your application.

The Fundamentals of Building Windows NT/98 Applications • 5

Setting the appropriate compile and link options, then
build your application by selecting the Build command
from Build menu (Visual C/C++ 4.0). Remember to link
PCIS-DASK’s import library, PCI-DASK.LIB.

2.2 Creating a Windows NT/98/2000 PCIS-DASK
Applications Using Microsoft Visual Basic

To create a data acquisition application using PCIS-DASK and
Visual Basic, follow these steps after entering Visual Basic:

step 1. Open the project in which you want to use PCIS-DASK.
This can be a new or existing project

Open a new project by selecting the New Project
command from the File menu. If it is an existing project,
open it by selecting the Open Project command from the
File menu. Then the Open Project dialog box appears.

Changed directory to the place the project file located.
Double-click the project file name in the File Name list to
load the project.

6 • The Fundamentals of Building Windows NT/98 Applications

step 2. Add file DASK.BAS into the project if this file is not
included in the project. This file contains all the
procedure declarations and constants that you can use
to develop your data acquisition application.

From the File menu, select the Add File command. The Add
File window appears, displaying a list of files in the current
directory.

Select DASK.BAS from the Files list by double clicking on it.
If you can't find this file in the list, make sure the list is
displaying files from the correct directory. By default,
DASK.BAS is installed in C:\ADLink\PCI-DASK\INCLUDE.

step 3. Design the interface for the application.

To design the interface, you place the desired elements, such
as command button, list box, text box, etc., on the Visual
Basic form. These are standard controls from the Visual Basic
Toolbox. To place a control on a form, you just move pointer
to Toolbox, select the desired control and draw it on the form.
Or you can double-click the control icon in the Toolbox to
place it on the form.

step 4. Set properties for the controls.

The Fundamentals of Building Windows NT/98 Applications • 7

To view the property list, click the desired control and then
choose the Properties command from the View menu or press

F4, or you can also click the Properties button on the
toolbar.

step 5. Write the event code.

The event code defines the action you want to perform when
an event occurs. To write the event code, double-click the
desired control or form to view the code module and then add
code you want. You can call the functions that declared in the
file DASK.BAS to perform data acquisition operations.

step 6. Run your application.

To run the application, choose Start from the Run menu, or

click the Start icon on the toolbar (you can also press
F5).

step 7. Distribute your application.

Once you have finished a project, you can save the
application as an executable (.EXE) file by using the Make
EXE File command on the File menu. And once you have
saved your application as an executable file, you've ready to
distribute it. When you distribute your application, remember
also to include the PCIS-DASK’s DLL and driver files. These
files should be copied to their appropriate directory as section
1.4.1 described.

8 • PCIS-DASK Utilities

3

PCIS-DASK Utilities
This chapter introduces the tools that accompanied with the
PCIS-DASK package.

3.1 NuDAQ Registry/Configuration utility (PciUtil)

PciUtil is used for the users to register PCIS-DASK drivers
(Windows NT4 only), remove installed drivers (Windows NT4
only), and set/modify the allocated buffer sizes of AI, AO, DI and
DO. The default location of this utility is <InstallDir>\Util directory.

[PciUtil in Windows NT]

The PciUtil main window is shown as the following window. If any
PCIS-DASK/NT driver has been registered, it will be shown on
the Registered Driver list.

PCIS-DASK Utilities • 9

To register one of PCIS-DASK drivers, click “New …” button
and a Driver Configuration window appears.

In this window, users can select the driver you want to register
and input the parameters in the box corresponding to AI, AO, DI,
or DO for the requirement of your applications. The “Buffer
Allocated” of AI, AO, DI, DO represent the sizes of contiguous
Initially Allocated memory for continuous analog input, analog
output, digital input, digital output respectively. Its unit is KB, i.e.
1024 bytes. Device driver will try to allocate these sizes of
memory at system startup time. The size of initially allocated
memory is the maximum memory size that DMA or Interrupt
transfer can be performed. It will induce an unexpected result in
that DMA or Interrupt transfer performed exceeds the initially
allocated size.

After the device configurations of the driver you select is finished,
click “OK” to register the driver and return to the PciUtil main
window. The driver you just registered will be shown on the
registered driver list as the following figure:

10 • PCIS-DASK Utilities

Using PciUtil to change the buffer allocated settings of one of
the PCIS-DASK drivers, select the driver from the Registered
Driver list and click “Modify …” button and then a “Driver
Configuration” window is shown as below.

Inside the allocated buffer size fields of AI, AO, DI and DO are
the originally set values. Type the value in the box corresponding
to AI, AO, DI, or DO according to the requirement of your
applications, and then click “OK” button.

PCIS-DASK Utilities • 11

To remove a registered driver, select the driver from the
Registered Driver list in The PciUtil main window and click
“Remove” button. The selected driver will be deleted from the
registry table.

[PciUtil in Windows 98]
This utility is used to set/modify the allocated buffer sizes of AI,
AO, DI and DO. The allocated buffer sizes of AI, AO, DI, DO
represent the sizes of contiguous Initially Allocated memory for
continuous analog input, analog output, digital input, digital output
respectively. Its unit is page KB, i.e. 1024 bytes. Device driver will
try to allocate these sizes of memory at system startup time. The
size of initially allocated memory is the maximum memory size
that DMA or Interrupt transfer can be performed. It will induce an
unexpected result in that DMA or Interrupt transfer performed
exceeds the initially allocated size.

The “Driver Configuration” window is shown as below.

Using PciUtil to change the buffer allocated settings of one of
the PCIS-DASK drivers, select the driver from the Card Type

combo box.

Inside the allocated buffer size fields of AI, AO, DI and DO are
the originally set values. Type the value in the box corresponding
to AI, AO, DI, or DO according to the requirement of your
applications, and then click “Apply” button.

12 • PCIS-DASK Utilities

[PciUtil in Windows 2000]
This utility is used to set/modify the allocated buffer sizes of AI,
AO, DI and DO. The allocated buffer sizes of AI, AO, DI, DO
represent the sizes of contiguous Initially Allocated memory for
continuous analog input, analog output, digital input, digital output
respectively. Its unit is page KB, i.e. 1024 bytes. Device driver will
try to allocate these sizes of memory at system startup time. The
size of initially allocated memory is the maximum memory size
that DMA or Interrupt transfer can be performed. It will induce an
unexpected result in that DMA or Interrupt transfer performed
exceeds the initially allocated size.

The “Driver Configuration” window is shown as below.

Using PciUtil to change the buffer allocated settings of one of
the PCIS-DASK drivers, select the driver from the Card Type
combo box.

Inside the allocated buffer size fields of AI, AO, DI and DO are
the originally set values. Type the value in the box corresponding
to AI, AO, DI, or DO according to the requirement of your
applications, and then click “Apply” button.

PCIS-DASK Utilities • 13

3.2 PCIS-DASK Data File Converter utility (DAQCvt)
The data files, generated by the PCIS-DASK functions
performing continuous data acquisition followed by storing the
data to disk, is written in binary format. Since a binary file can’t
be read by the normal text editor and can’t be used to analyze
the accessed data by Excel, PCIS-DASK provides a convenient
tool DAQCvt to convert the binary file to the file format read
easily. The default location of this utility is <InstallDir>\Util
directory. The DAQCvt main window is as the following figure:

The DAQCvt main window includes two frames. The upper
frame, Input File frame is used for the source data file and the
lower frame is used for the destination file.

To load the source binary data file, type the binary data file
name in File Path field or click Browser button to select the
source file from Input File frame, and then click Load button. As
the file is loaded, the information related to the data file, e.g. data

14 • PCIS-DASK Utilities

type, data width, AD Range, … etc., are shown in the
corresponding fields in “Input File” frame, and the default
converted data file path and format are also listed as the figure
below.

The default destination file with a .cvt extension is located in the
same directory as the source one. To change the default setting,
type the file path you wish or click the Browser button from
Output File frame to select the destination file location.

DAQCvt provides three types of data format conversion.

Scaled data to text file :
The data in hexadecimal format is scaled to engineering unit
(voltage, ample, … etc) according to the card type, data width
and data range and then written to disk in text file format.
This type is available for the data accessed from continuous
AI operation only.

Scaled data to binary file (float) :
The data in hexadecimal is scaled to engineering unit
(voltage, ample, … etc) according to the card type, data width
and data range and then written to disk in binary file format.
This type is available for the data accessed from continuous

PCIS-DASK Utilities • 15

AI operation only.

Binary codes to text file :
The data in hexadecimal format or converted to a decimal
value is written to disk in text file format. If the original data
includes channel information, the raw value will be handled
to get the real data value. This type is available for the data
accessed form continuous AI and DI operations.

The data separator in converted text file is selectable among
space, comma and Tab.

If you want to add title/head which includes the card type
information at the beginning of file, check the “Title/Head” box.

After setting the properties (File Path, Format, … etc) related to
the converted file, you can push Start Convert button from the
Output File frame to perform the file conversion.

3.3 PCIS-DASK Sample Programs Browser
(Examples.exe)
PCIS-DASK provides a sample program browser,
Examples.exe, for you to view and execute the sample
programs that PCIS-DASK package includes. The default
location of this utility is <InstallDir>\Samples directory. After
Examples.exe utility is running, select the device you wish to
operate from the device list in the left frame, and then double
click the icon of the sample you wish to execute to run this
sample program.

16 • PCIS-DASK Utilities

PCIS-DASK Overview • 17

4

PCIS-DASK Overview
This chapter describes the classes of functions in PCIS-DASK
and briefly describes each function.

PCIS-DASK functions are grouped to the following classes:

• General Configuration Function Group

• Analog Input Function Group
 - Analog Input Configuration functions
 - One-Shot Analog Input functions
 - Continuous Analog Input functions
 - Asynchronous Analog Input Monitoring functions

• Analog Output Function Group

• Digital Input Function Group
 - Digital Input Configuration functions
 - One-Shot Digital Input functions
 - Continuous Digital Input functions
 - Asynchronous Digital Input Monitoring functions

• Digital Output Function Group
 - Digital Output Configuration functions
 - One-Shot Digital Output functions
 - Continuous Digital Output functions
 - Asynchronous Digital Output Monitoring functions

• Timer/Counter Function Group

• DIO Function Group
 - Digital Input/Output Configuration function
 - Dual-Interrupt System Setting function

18 • PCIS-DASK Overview

4.1 General Configuration Function Group
Use these functions to initializes and configures data acquisition
card.

Register_Card Initializes the hardware and software
states of an NuDAQ PCI-bus data
acquisition card. Register_Card must be
called before any other DASK library
functions can be called for that card.

Release_Card Tells DASK library that this registered card
is not used currently and can be released.
This would make room for new card to
register.

4.2 Analog Input Function Group

4.2.1 Analog Input Configuration Functions

AI_9111_Config Informs PCIS-DASK library of the
trigger source and trigger mode
selected for the analog input operation
of PCI9111. You must call this function
before calling function to perform
continuous analog input operation of
PCI9111.

AI_9112_Config Informs PCIS-DASK library of the
trigger source selected for the analog
input operation of PCI9112. You must
call this function before calling function
to perform continuous analog input
operation of PCI9112.

AI_9113_Config Informs PCIS-DASK library of the
trigger source selected for the analog
input operation of PCI9113. You must
call this function before calling function

PCIS-DASK Overview • 19

to perform continuous analog input
operation of PCI9113.

AI_9114_Config Informs PCIS-DASK library of the
trigger source selected for the analog
input operation of PCI9114. You must
call this function before calling function
to perform continuous analog input
operation of PCI9114.

AI_9118_Config Informs PCIS-DASK library of the
trigger source, trigger mode, input
mode, and conversion mode selected
for the analog input operation of
PCI9118. You must call this function
before calling function to perform
continuous analog input operation of
PCI9118.

AI_9812_Config Informs PCIS-DASK library of the
trigger source, trigger mode, and
trigger properties selected for the
analog input operation of PCI9812.
You must call this function before
calling function to perform continuous
analog input operation of PCI9812.

AI_InitialMemoryAllocated
Gets the actual size of analog input
memory that is available in the device
driver.

4.2.2 One-Shot Analog Input Functions

AI_ReadChannel Performs a software triggered A/D
conversion (analog input) on an analog
input channel and returns the value
converted (unscaled).

20 • PCIS-DASK Overview

AI_VReadChannel Performs a software triggered
A/D conversion (analog input)
on an analog input channel and
returns the value scaled to a
voltage in units of volts.

AI_VoltScale Converts the result from an
AI_ReadChannel call to the
actual input voltage.

4.2.3 Continuous Analog Input Functions

AI_ContReadChannel Performs continuous A/D
conversions on the specified
analog input channel at a rate
as close to the rate you
specified.

AI_ContScanChannels Performs continuous A/D
conversions on the specified
continuous analog input
channels at a rate as close to
the rate you specified. This
function is only available for
those cards that support auto-
scan functionality.

AI_ContReadMultiChannels Performs continuous A/D
conversions on the specified
analog input channels at a rate
as close to the rate you
specified. This function is only
available for those cards that
support auto-scan functionality.

AI_ContReadChannelToFile Performs continuous A/D
conversions on the specified
analog input channel at a rate
as close to the rate you
specified and saves the
acquired data in a disk file.

PCIS-DASK Overview • 21

AI_ContScanChannelsToFile Performs continuous A/D
conversions on the specified
continuous analog input
channels at a rate as close to
the rate you specified and
saves the acquired data in a
disk file. This function is only
available for those cards that
support auto-scan functionality.

AI_ContReadMultiChannelsToFile
Performs continuous A/D
conversions on the specified
analog input channels at a rate
as close to the rate you
specified and saves the
acquired data in a disk file.
This function is only available
for those cards that support
auto-scan functionality.

AI_ContVScale Converts the values of an array
of acquired data from an
continuous A/D conversion call
to the actual input voltages.

AI_ContStatus Checks the current status of
the continuous analog input
operation.

4.2.4 Asynchronous Analog Input Monitoring Functions

AI_AsyncCheck Checks the current status of
the asynchronous analog
input operation.

AI_AsyncClear Stops the asynchronous
analog input operation.

22 • PCIS-DASK Overview

AI_AsyncDblBufferMode Enables or Disables double
buffer data acquisition mode.

AI_AsyncDblBufferHalfReady Checks whether the next half
buffer of data in circular buffer
is ready for transfer during an
asynchronous double-
buffered analog input
operation.

AI_AsyncDblBufferTransfer Copies half of the data of
circular buffer to user buffer.
You can execute this function
repeatedly to return
sequential half buffers of the
data.

4.3 Analog Output Function Group

4.3.1 Analog output Configuration Functions

AO_6208A_Config Informs PCIS-DASK library of the
current range selected for the analog
output operation of PCI6208A. You
must call this function before calling
function to perform current output
operation.

AO_6308A_Config Informs PCIS-DASK library of the
current range selected for the analog
output operation of PCI6308A. You
must call this function before calling
function to perform current output
operation.

AO_6308V_Config Informs PCIS-DASK library of the
polarity (unipolar or bipolar) that the
output channel is configured for the
analog output and the reference

PCIS-DASK Overview • 23

voltage value selected for the analog
output channel(s) of PCI6308V. You
must call this function before calling
function to perform current output
operation.

AO_9111_Config Informs PCIS-DASK library of the
polarity (unipolar or bipolar) that the
output channel is configured for the
analog output of PCI9111. You must
call this function before calling function
to perform voltage output operation.

AO_9112_Config Informs PCIS-DASK library of the
reference voltage value selected for
the analog output channel(s) of
PCI9112. You must call this function
before calling function to perform
voltage output operation.

4.3.2 One-Shot Analog Output Functions

AO_WriteChannel Writes a binary value to the specified
analog output channel.

AO_VWriteChannel Accepts a voltage value, scales it to
the proper binary value and writes a
binary value to the specified analog
output channel.

AO_VoltScale Scales a voltage to a binary value.

4.4 Digital Input Function Group

4.4.1 Digital Input Configuration Functions

24 • PCIS-DASK Overview

DI_7200_Config Informs PCIS-DASK library of the
trigger source and trigger properties
selected for the digital input operation
of PCI7200. You must call this
function before calling function to
perform continuous digital input
operation of PCI7200.

DI_7300A_Config/ DI_7300B_Config
Informs PCIS-DASK library of the
trigger source and trigger properties
selected for the digital input operation
of PCI7300A Rev.A or PCI7300A
Rev.B. You must call this function
before calling function to perform
continuous digital input operation of
PCI7300A Rev.A or PCI7300A Rev.B.

DI_InitialMemoryAllocated
Gets the actual size of digital input
DMA memory that is available in the
device driver.

4.4.2 One-Shot Digital Input Functions

DI_ReadLine Reads the digital logic state of the
specified digital line in the specified
port.

DI_ReadPort Reads digital data from the specified
digital input port.

4.4.3 Continuous Digital Input Functions

DI_ContReadPort Performs continuous digital
input on the specified digital
input port at a rate as close to
the rate you specified.

PCIS-DASK Overview • 25

DI_ContReadPortToFile Performs continuous digital
input on the specified digital
input port at a rate as close to
the rate you specified and
saves the acquired data in a
disk file.

DI_ContStatus Checks the current status of
the continuous digital input
operation.

4.4.4 Asynchronous Digital Input Monitoring Functions

DI_AsyncCheck Checks the current status of
the asynchronous digital input
operation.

DI_AsyncClear Stops the asynchronous
digital input operation.

DI_AsyncDblBufferMode Enables or Disables double
buffer data acquisition mode.

DI_AsyncDblBufferHalfReady Checks whether the next half
buffer of data in circular buffer
is ready for transfer during an
asynchronous double-
buffered digital input
operation.

DI_AsyncDblBufferTransfer Copies half of the data of
circular buffer to user buffer.
You can execute this function
repeatedly to return
sequential half buffers of the
data.

4.5 Digital Output Function Group

4.5.1 Digital Output Configuration Functions

26 • PCIS-DASK Overview

DO_7200_Config Informs PCIS-DASK library of the
trigger source and trigger properties
selected for the digital input operation
of PCI7200. You must call this
function before calling function to
perform continuous digital output
operation of PCI7200.

DO_7300A_Config/ DO_7300B_Config
Informs PCIS-DASK library of the
trigger source and trigger properties
selected for the digital input operation
of PCI7300A Rev.A or PCI7300A
Rev.B. You must call this function
before calling function to perform
continuous digital output operation of
PCI7300A Rev.A or PCI7300A Rev.B.

EDO_9111_Config Informs PCIS-DASK library of the
mode of EDO channels of PCI9111.

DO_InitialMemoryAllocated
Gets the actual size of digital output
DMA memory that is available in the
device driver.

4.5.2 One-Shot Digital Output Functions

DO_WriteLine Sets the specified digital output line in the
specified digital output port to the specified
state. This function is only available for
those cards that support digital output
read-back functionality.

DO_WritePort Writes digital data to the specified digital
output port.

DO_ReadLine Reads the specified digital output line in
the specified digital output port.

PCIS-DASK Overview • 27

DO_ReadPort Reads digital data from the specified
digital output port.

4.5.3 Continuous Digital Output Functions

DO_ContWritePort Performs continuous digital output on the
specified digital output port at a rate as
close to the rate you specified.

DO_ContStatus Checks the current status of the
continuous digital output operation.

DO_PGStart Performs pattern generation operation.

DO_PGStop Stops pattern generation operation.

4.5.4 Asynchronous Digital Output Monitoring Functions

DO_AsyncCheck Checks the current status of the
asynchronous digital output operation.

DO_AsyncClear Stops the asynchronous digital output
operation.

4.6 Timer/Counter Function Group
CTR_Setup Configures the selected

counter to operate in the
specified mode.

CTR_Read Reads the current contents of
the selected counter.

CTR_Clear Sets the output of the selected
counter to the specified state.

CTR_8554_ClkSrc_Config Sets the counter clock source.

28 • PCIS-DASK Overview

CTR_8554_CK1_Config Sets the source of CK1.

CTR_8554_Debounce_Config Sets the debounce clock.

4.7 DIO Function Group

4.7.1 Digital Input/Output Configuration Functions

DIO_PortConfig This function is only used by the
Digital I/O cards whose I/O port can
be set as input port or output port.
This function informs PCIS-DASK
library of the port direction selected
for the digital input/output operation.
You must call this function before
calling functions to perform digital
input/output operation.

4.7.2 Dual-Interrupt System Setting Functions

DIO_SetDualInterrupt Controls two interrupt sources of Dual
Interrupt system.

DIO_SetCOSInterrupt Sets the ports used for COS interrupt
detection.

DIO_INT1_EventMessage Controls the interrupt sources of
INT1 of Dual Interrupt system
and notifies the user’s application
when an interrupt event occurs.
The notification is performed
through a user-specified callback
function or the Windows
PostMessage API.

DIO_INT2_EventMessage Controls the interrupt sources of
INT2 of Dual Interrupt system
and notifies the user’s application
when an interrupt event occurs.

PCIS-DASK Overview • 29

The notification is performed
through a user-specified callback
function or the Windows
PostMessage API.

30 • PCIS-DASK Application Hints

5

PCIS-DASK Application Hints
This chapter provides the programming schemes showing the
function flow of that PCIS-DASK performs analog I/O and digital
I/O.

The figure below shows the basic building blocks of a PCIS-
DASK application. However, except using Register_Card at the
beginning and Release_Card at the end, depending on the
specific devices and applications you have, the PCIS-DASK
functions comprising each building block vary.

The programming schemes for analog input/output and digital
input/output are described individually in the following sections.

 Regiser_Card

Configuration Function

AI/AO/DI//DO
Operation Function

 Release_Card

PCIS-DASK Application Hints • 31

5.1 Analog Input Programming Hints
PCIS-DASK provides two kinds of analog input operation
nonbuffered single-point analog input readings and buffered
continuous analog input operation.

The nonbuffered single-point AI uses software polling method
to read data from the device. The programming scheme for this
kind of AI operation is described in section 5.1.1.

The buffered continuous analog input uses interrupt transfer
or DMA transfer method to transfer data from device to user’s
buffer. The maximum number of count in one transfer depends
on the size of initially allocated memory for analog input in the
driver. The driver allocates the memory at system boot time (in
Window NT) or Windows startup time (in Window 98). We
recommend the applications use AI_InitialMemoryAllocated
function to get the size of initially allocated memory before
performing continuous AI operation.

The buffered continuous analog input includes:

- synchronous continuous AI

- non-triggered non-double-buffered asynchronous continuous AI

- non-triggered double-buffered asynchronous continuous AI

- triggered non-double-buffered asynchronous continuous AI

- triggered double-buffered asynchronous continuous AI

They are described in section 5.1.2 to 5.1.6 section respectively.
About the special consideration and performance issues for the
buffered continuous analog input, please refer to the Continuous
Data Transfer in PCIS-DASK chapter for the details.

32 • PCIS-DASK Application Hints

5.1.1 One-Shot Analog input programming Scheme

This section described the function flow typical of nonbuffered
single-point analog input readings. While performing one-shot AI
operation, most of the cards (except PCI-9118 series cards) don’t
need to include AI configuration step at the beginning of your
application.

[Example Code Fragment]

card = Register_Card(PCI_9118, card_number);
…

AI_9118_Config(card,Input_Signal|Input_Mode,0,0,0);
AI_ReadChannel(card, channelNo, range, &analog_input[i]);

…
Release_Card(card);

AI_9118_Config
(only needed by PCI-
9118 series cards)

Voltage reading ? YesNo

AI_VReadChannelAI_ReadChannel

Another reading ?Yes

No

PCIS-DASK Application Hints • 33

5.1.2 Synchronous Continuous Analog input programming
Scheme

This section described the function flow typical of synchronous
analog input operation. While performing continuous AI
operation, the AI configuration function has to be called at the
beginning of your application. In addition, for synchronous AI, the
SyncMode argument in continuous AI functions has to be set as
SYNCH_OP.

 [Example Code Fragment]

card = Register_Card(PCI_9112, card_number);
…

AI_xxxx_Config
(xxxx means the card
type, e.g.
AI_9112_Config)

Yes

Scale to voltage? No

AI_ContVScale

Sample multiple
continuous chans?

NoYes

AI_ContReadChannel/
AI_ContReadChannelToFile

AI_ContScanChannels/
AI_ContScanChannelsToFile

With SyncMode

=SYNCH_OP

With SyncMode

=SYNCH_OP

34 • PCIS-DASK Application Hints

AI_9112_Config(card,TRIG_INT_PACER);
AI_ContScanChannels (card, channel, range, ai_buf, data_size,
(F64)sample_rate, SYNCH_OP); or
AI_ContReadChannel(card, channel, range, ai_buf, data_size,
(F64)sample_rate, SYNCH_OP)

…
Release_Card(card);

PCIS-DASK Application Hints • 35

5.1.3 Non-Trigger Non-double-buffered Asynchronous
Continuous Analog input programming Scheme

This section described the function flow typical of non-trigger,
non-double-buffered asynchronous analog input operation. While
performing continuous AI operation, the AI configuration function
has to be called at the beginning of your application. In addition,
for asynchronous AI, the SyncMode argument in continuous AI
functions has to be set as ASYNCH_OP.

AI_xxxx_Config
(xxxx means the card type,
e.g. AI_9112_Config)

No

AI_AsyncCheck

Operation complete?

Yes

AI_AsyncClear

Sample multiple
continuous chans?

NoYes

AI_ContReadChannel /
AI_ContReadChannel ToFile

AI_ContScanChannels/
AI_ContScanChannelsToFile

With SyncMode
=ASYNCH_OP

With SyncMode
=ASYNCH_OP

[Example Code Fragment]

36 • PCIS-DASK Application Hints

card = Register_Card(PCI_9112, card_number);
…

AI_9112_Config(card,TRIG_INT_PACER);
AI_AsyncDblBufferMode (card, 0); //non-double-buffered AI
AI_ContScanChannels (card, channel, range, ai_buf, data_size,
(F64)sample_rate, ASYNCH_OP); or
AI_ContReadChannel(card, channel, range, ai_buf, data_size,
(F64)sample_rate, ASYNCH_OP)
do {
 AI_AsyncCheck(card, &bStopped, &count);

 } while (!bStopped);

AI_AsyncClear(card, &count);
 …

Release_Card(card);

PCIS-DASK Application Hints • 37

5.1.4 Non-Trigger Double-buffered Asynchronous
Continuous Analog input programming Scheme

This section described the function flow typical of non-trigger,
double-buffered asynchronous analog input operation. While
performing continuous AI operation, the AI configuration function
has to be called at the beginning of your application. For
asynchronous AI, The SyncMode argument in continuous AI
functions has to be set as ASYNCH_OP. In addition, double-
buffered AI operation is enabled by setting Enable argument of
AI_AsyncDblBufferMode function to 1. To learn more about
double buffer mode, please refer to section 5.2 Double-Buffered
AI/DI Operation for the details.

38 • PCIS-DASK Application Hints

AI_xxxx_Config
(xxxx means the card type,
e.g. AI_9112_Config)

AI_AsyncDblBufferHalfReady

Next half buffer
ready for transfer?

Yes

No

AI_AsyncDblBufferTransfer

Want to stop
the operation?

AI_AsyncClear

Yes

No

With Enable=TRUE

AI_AsyncDblBufferMode

AI_ContReadChannel /
AI_ContReadChannel ToFile

AI_ContScanChannels/
AI_ContScanChannelsToFile

Sample multiple
continuous chans?

NoYes

With SyncMode
=ASYNCH_OP

With SyncMode
=ASYNCH_OP

PCIS-DASK Application Hints • 39

[Example Code Fragment]

card = Register_Card(PCI_9112, card_number);
…

AI_9112_Config(card,TRIG_INT_PACER);
AI_AsyncDblBufferMode (card, 1); // Double-buffered AI
AI_ContScanChannels (card, channel, range, ai_buf, data_size,
(F64)sample_rate, ASYNCH_OP); or
AI_ContReadChannel(card, channel, range, ai_buf, data_size,
(F64)sample_rate, ASYNCH_OP)
do {
 do {
 AI_AsyncDblBufferHalfReady(card, &HalfReady, &fstop);
 } while (!HalfReady);

 AI_AsyncDblBufferTransfer(card, ai_buf);
 …
} while (!clear_op);

AI_AsyncClear(card, &count);
…
Release_Card(card);

40 • PCIS-DASK Application Hints

5.1.5 Trigger Mode Non-double-buffered Asynchronous
Continuous Analog input programming Scheme

This section described the function flow typical of trigger mode
double-buffered asynchronous analog input operation. A trigger
is an event that occurs based on a specified set of conditions. An
interrupt mode or DMA-mode Analog input operation can use a
trigger to determinate when acquisition stop. The trigger mode
data acquisition programming is almost the same as the non-
trigger mode asynchronous analog input programming. Using
PCIS-DASK to perform trigger mode data acquisition, the
SyncMode of continuous AI should be set as ASYNCH_OP.

PCIS-DASK Application Hints • 41

AI_xxxx_Config / With Trigger mode enebled
(xxxx means the card type, e.g.
AI_9118_Config)

AI_AsyncCheck

Operation complete?

Yes

AI_AsyncClear

AI_AsyncDblBufferMode

AI_ContReadChannel /
AI_ContReadChannel ToFile

AI_ContScanChannels/
AI_ContScanChannelsToFile

Sample multiple
continuous
chans?

NoYes

With SyncMode
=ASYNCH_OP

With SyncMode
=ASYNCH_OP

With Enable=TRUE

No

[Example Code Fragment]

card = Register_Card(PCI_9118, card_number);
…

AI_9118_Config(card, P9118_AI_BiPolar|P9118_AI_SingEnded,
P9118_AI_DtrgPositive|P9118_AI_EtrgPositive|
P9118_AI_AboutTrgEn, 0, postCount)
AI_AsyncDblBufferMode (card, 0); //non-double-buffered AI

42 • PCIS-DASK Application Hints

AI_ContScanChannels (card, channel, range, ai_buf, data_size,
(F64)sample_rate, ASYNCH_OP); or
AI_ContReadChannel(card, channel, range, ai_buf, data_size,
(F64)sample_rate, ASYNCH_OP)
do {
 AI_AsyncCheck(card, &bStopped, &count);

 } while (!bStopped);

AI_AsyncClear(card, &count);
 …

Release_Card(card);

PCIS-DASK Application Hints • 43

5.1.6 Trigger Mode Double-buffered Asynchronous
Continuous Analog input programming Scheme

This section described the function flow typical of trigger mode
double-buffered asynchronous analog input operation. A trigger
is an event that occurs based on a specified set of conditions. An
interrupt mode or DMA-mode Analog input operation can use a
trigger to determinate when acquisition stop. The trigger mode
data acquisition programming is almost the same as the non-
trigger mode asynchronous analog input programming. Using
PCIS-DASK to perform trigger mode data acquisition, the
SyncMode of continuous AI should be set as ASYNCH_OP. In
addition, double-buffered AI operation is enabled by setting
Enable argument of AI_AsyncDblBufferMode function to 1. To
learn more about double buffer mode, please refer to section 5.2
Double-Buffered AI/DI Operation for the details.

44 • PCIS-DASK Application Hints

AI_xxxx_Config / With Trigger mode enebled
(xxxx means the card type, e.g.
AI_9118_Config)

AI_AsyncDblBufferMode

With Enable=TRUE

With SyncMode
=ASYNCH_OP

AI_AsyncDblBufferHalfReady

Next Buffer ready
for transfer? /
Operation Complete?

Yes

No

AI_AsyncDblBufferTransfer

Want to stop
the operation ?

AI_AsyncClear

Yes

No

AI_ContReadChannel /
AI_ContReadChannel ToFile

AI_ContScanChannels/
AI_ContScanChannelsToFile

Sample multiple
continuous chans?

NoYes
With SyncMode
=ASYNCH_OP

[Example Code Fragment]

PCIS-DASK Application Hints • 45

card = Register_Card(PCI_9118, card_number);
…

AI_9118_Config(card,P9118_AI_BiPolar|P9118_AI_SingEnded,
P9118_AI_DtrgPositive|P9118_AI_EtrgPositive|
P9118_AI_AboutTrgEn,0,postCount)
AI_AsyncDblBufferMode (card, 1); Double-buffered AI
AI_ContScanChannels (card, channel, range, ai_buf, data_size,
(F64)sample_rate, ASYNCH_OP); or
AI_ContReadChannel(card, channel, range, ai_buf, data_size,
(F64)sample_rate, ASYNCH_OP)
do {
 do {
 AI_AsyncDblBufferHalfReady(card, &HalfReady, &fstop);
 } while (!HalfReady && !fstop);

 AI_AsyncDblBufferTransfer(card, ai_buf);
 …
} while (!clear_op && !fstop);

AI_AsyncClear(card, &count);
AI_AsyncDblBufferTransfer(card, ai_buf);
…
Release_Card(card);

46 • PCIS-DASK Application Hints

5.2 Analog Output Programming Hints
This section described the function flow typical of single-point
analog output conversion. While performing the following
operation, the AO configuration function has to be called at the
beginning of your application:

a. Use PCI-6208A, PCI-6308A to perform current output
b. Use the analog output function that can convert a voltage

value to a binary value and then write it to device, the AO
configuration function has to be called at the beginning of your
application.

[Example Code Fragment]

card = Register_Card(PCI_6208A, card_number);
…

AO_6208A_Config(card, P6208_CURRENT_4_20MA);
AO_WriteChannel(card, chan, out_value);

…
Release_Card(card);

AO_6208A_Config /
AO_9112_Config

Output voltage? YesNo

AO_VWriteChannelAO_WriteChannel

Another outputting?Yes

No

PCIS-DASK Application Hints • 47

5.3 Digital Input Programming Hints
PCIS-DASK provides two kinds of digital input operation
nonbuffered single-point digital input operation and buffered
continuous digital input operation.
The nonbuffered single-point DI uses software polling method
to read data from the device. The programming scheme for this
kind of DI operation is described in section 5.3.1.
The buffered continuous DI uses DMA transfer method to
transfer data from device to user’s buffer. The maximum number
of count in one transfer depends on the size of initially allocated
memory for digital input in the driver. The driver allocates the
memory at system boot time (in Window NT) or Windows startup
time (in Window 98). We recommend the applications use
DI_InitialMemoryAllocated function to get the size of initially
allocated memory before performing continuous DI operation.
The buffered continuous analog input includes synchronous
continuous DI, non-double-buffered asynchronous continuous DI
and double-buffered asynchronous continuous DI. They are
described in section 5.3.2 to 5.3.4 section respectively. About the
special consideration and performance issues for the buffered
continuous digital input, please refer to the Continuous Data
Transfer in PCIS-DASK chapter for the details.

48 • PCIS-DASK Application Hints

5.3.1 One-Shot Digital input programming Scheme

This section described the function flow typical of non-buffered
single-point digital input readings. While performing one-shot DI
operation, the devices whose I/O port can be set as input or out
put port (PCI-7248 and PCI7296) need to include port
configuration function at the beginning of your application.

[Example Code Fragment]

card = Register_Card(PCI_7248, card_number);
//port configured
DIO_PortConfig(card ,Channel_P1A, INPUT_PORT);
DIO_PortConfig(card, Channel_P1B, INPUT_PORT);
DIO_PortConfig(card, Channel_P1CL, INPUT_PORT);
DIO_PortConfig(card, Channel_P1CH, INPUT_PORT);
//DI operation
DI_ReadPort(card, Channel_P1A, &inputA);
…
Release_Card(card);

DIO_PortConfig
(Only needed by PCI-
7248, PCI-7249 and PCI-
7296 cards)

Input data form Line?
YesNo

DI_ReadLineDI_ReadPort

Another reading ?Yes

No

Port configured as
input port

PCIS-DASK Application Hints • 49

5.3.2 Synchronous Continuous Digital input programming
Scheme

This section described the function flow typical of synchronous
digital input operation. While performing continuous DI operation,
the DI configuration function has to be called at the beginning of
your application. In addition, for synchronous DI, the SyncMode
argument in continuous DI functions has to be set as
SYNCH_OP.

DI_xxxx_Config
(xxxx means the card type,
e.g. DI_7200_Config)

DI_ContReadPort /
DI_ContReadPort ToFile

With SyncMode=SYNCH_OP

[Example Code Fragment]

card = Register_Card(PCI_7200, card_number);
…

DI_7200_Config(card,TRIG_INT_PACER, DI_NOWAITING,
DI_TRIG_FALLING, IREQ_FALLING);
DI_AsyncDblBufferMode (card, 0); //non-double-buffered mode
DI_ContReadPort(card, 0, pMem, data_size, (F64)sample_rate,
SYNCH_OP)

…
Release_Card(card);

50 • PCIS-DASK Application Hints

5.3.3 Non-double-buffered Asynchronous Continuous
Digital input programming Scheme

This section described the function flow typical of non-double-
buffered asynchronous digital input operation. While performing
continuous DI operation, the DI configuration function has to be
called at the beginning of your application. In addition, for
asynchronous DI operation, the SyncMode argument in
continuous DI functions has to be set as ASYNCH_OP.

DI_xxxx_Config
(xxxx means the card type,
e.g. DI_7200_Config)

DI_ContReadPort /
DI_ContReadPort ToFile

DI_AsyncCheck

Operation complete?

Yes

No

With SyncMode=ASYNCH_OP

DI_AsyncClear

[Example Code Fragment]

card = Register_Card(PCI_7200, card_number);
…

PCIS-DASK Application Hints • 51

DI_7200_Config(card,TRIG_INT_PACER, DI_NOWAITING,
DI_TRIG_FALLING, IREQ_FALLING);
DI_AsyncDblBufferMode (card, 0); // non-double-buffered mode
DI_ContReadPort(card, 0, pMem, data_size, (F64)sample_rate,
ASYNCH_OP)
do {
 DI_AsyncCheck(card, &bStopped, &count);

 } while (!bStopped);

DI_AsyncClear(card, &count);
 …

Release_Card(card);

52 • PCIS-DASK Application Hints

 5.3.4 Double-buffered Asynchronous Continuous Digital
input programming Scheme

This section described the function flow typical of double-buffered
asynchronous digital input operation. While performing
continuous DI operation, the DI configuration function has to be
called at the beginning of your application. For asynchronous DI,
the SyncMode argument in continuous DI functions has to be set
as ASYNCH_OP. In addition, double-buffered AI operation is
enabled by setting Enable argument of DI_AsyncDblBufferMode
function to 1. To learn more about double buffer mode, please
refer to the Double-Buffered AI/DI operation section for the
details.

PCIS-DASK Application Hints • 53

DI_xxxx_Config
(xxxx means the card type,
e.g. DI_7200_Config)

DI_ContReadPort/
DI_ContReadPortToFile

DI_AsyncDblBufferHalfReady

Next half buffer
ready for transfer?

Yes

No

With SyncMode=ASYNCH_OP

DIAsyncDblBufferMode

DI_AsyncDblBufferTransfer

Want to stop

the operation?

DI_AsyncClear

Yes

No

With Enable=TRUE

[Example Code Fragment]

card = Register_Card(PCI_7200, card_number);

54 • PCIS-DASK Application Hints

…
DI_7200_Config(card,TRIG_INT_PACER, DI_NOWAITING,
DI_TRIG_FALLING, IREQ_FALLING);
DI_AsyncDblBufferMode (card, 1); // Double-buffered mode
DI_ContReadPort(card, 0, pMem, data_size, (F64)sample_rate,
ASYNCH_OP)
do {
 do {
 DI_AsyncDblBufferHalfReady(card, &HalfReady);
 } while (!HalfReady);

 DI_AsyncDblBufferTransfer(card, pMem);

} while (!clear_op);

DI_AsyncClear(card, &count);
 …

Release_Card(card);

PCIS-DASK Application Hints • 55

5.4 Digital Output Programming Hints
PCIS-DASK provides three kinds of digital output operation
nonbuffered single-point digital output operation, buffered
continuous digital output operation and pattern generation.
The nonbuffered single-point DO uses software polling method
to write data to the device. The programming scheme for this
kind of DO operation is described in section 5.4.1.
The buffered continuous DO uses DMA transfer method to
transfer data from user’s buffer to device. The maximum number
of count in one transfer depends on the size of initially allocated
memory for digital output in the driver. The driver allocates the
memory at system boot time (in Window NT) or Windows startup
time (in Window 98). We recommend the applications use
DO_InitialMemoryAllocated function to get the size of initially
allocated memory before start performing continuous DO
operation.
The buffered continuous digital output includes synchronous
continuous DO and asynchronous continuous DO. They are
described in section 5.4.2 and 5.4.3 section individually. About
the special consideration and performance issues for the
buffered continuous digital output, please refer to the Continuous
Data Transfer in PCIS-DASK chapter for the details.
The Pattern Generation DO outputs digital data pattern
repeatedly at a predetermined rate. The programming scheme
for this kind of DO operation is described in section 5.4.4.

56 • PCIS-DASK Application Hints

5.4.1 One-Shot Digital output programming Scheme

This section described the function flow typical of non-buffered
single-point digital output operation. While performing one-shot
DO operation, the cards whose I/O port can be set as input or out
put port (PCI-7248, PCI7249 and PCI-7296) need to include port
configuration function at the beginning of your application.

[Example Code Fragment]

card = Register_Card(PCI_7248, card_number);
//port configured
DIO_PortConfig(card ,Channel_P1A, OUTPUT_PORT);
DIO_PortConfig(card, Channel_P1B, OUTPUT_PORT);
DIO_PortConfig(card, Channel_P1CL, OUTPUT_PORT);
DIO_PortConfig(card, Channel_P1CH, OUTPUT_PORT);
//DO operation
DO_WritePort(card, Channel_P1A, outA_value);
…
Release_Card(card);

DIO_PortConfig
(only needed by PCI-7248,
PCI-7249 and PCI-7296

Output data to Line? YesNo

DO_WriteLineDO_WritePort

Another outputting ?Yes

No

Port configured as
output port

PCIS-DASK Application Hints • 57

5.4.2 Synchronous Continuous Digital output
programming Scheme

This section described the function flow typical of synchronous
digital output operation. While performing continuous DO
operation, the DO configuration function has to be called at the
beginning of your application. In addition, for synchronous DO
operation, the SyncMode argument in continuous DO functions
for synchronous mode has to be set as SYNCH_OP.

DO_xxxx_Config
(xxxx means the card type,
e.g. DO_7200_Config)

DO_Cont WritePort

With SyncMode=SYNCH_OP

[Example Code Fragment]

card = Register_Card(PCI_7200, card_number);
…

DO_7200_Config(card, TRIG_INT_PACER, OREQ_DISABLE,
OTRIG_LOW);
DO_AsyncDblBufferMode (card, 0); //non-double-buffered mode
DO_ContWritePort(card, 0, DoBuf, count, 1, (F64)sample_rate,
SYNCH_OP);

…
Release_Card(card);

58 • PCIS-DASK Application Hints

5.4.3 Asynchronous Continuous Digital output
programming Scheme

This section described the function flow typical of asynchronous
digital output operation. While performing continuous DO
operation, the DO configuration function has to be called at the
beginning of your application. In addition, for asynchronous DO
operation, the SyncMode argument in continuous DO functions
for asynchronous mode has to be set as ASYNCH_OP.

DO_xxxx_Config
(xxxx means the card type,
e.g. DO_7200_Config)

DO_ContWritePort

 DO_AsyncCheck

Operation complete?

Yes

No

With SyncMode=ASYNCH_OP

DO_AsyncClear

[Example Code Fragment]

card = Register_Card(PCI_7200, card_number);
…

DO_7200_Config(card, TRIG_INT_PACER, OREQ_DISABLE,
OTRIG_LOW);

PCIS-DASK Application Hints • 59

DO_ContWritePort(card, 0, DoBuf, count, 1, (F64)sample_rate,
ASYNCH_OP);
do {
 DO_AsyncCheck(card, &bStopped, &count);

 } while (!bStopped);

DO_AsyncClear(card, &count);
 …

Release_Card(card);

60 • PCIS-DASK Application Hints

5.4.4 Pattern Generation Digital output programming
Scheme

This section described the function flow typical of pattern
generation for digital output. While performing pattern generation
of DO, the DO configuration function has to be called at the
beginning of your application.

DO_xxxx_Config
(xxxx means the card type,
e.g. DO_7300B_Config)

DO_PGStart

Complete pattern
generation

[Example Code Fragment]

card = Register_Card(PCI_7300A_RevB, card_number);
…

DO_7300B_Config (card, 16, TRIG_INT_PACER,
P7300_WAIT_NO, P7300_TERM_ON, 0, 0x40004000);
//start pattern generation
DO_PGStart (card, out_buf, 10000, 5000000);

…
//stop pattern generation
DO_PGStop (card);
Release_Card(card);

DO_PGStop

PCIS-DASK Application Hints • 61

5.5 Interrupt Event Message Programming Hints
PCIS-DASK provides two methods to perform interrupt
occurrence notification for NuDAQ DIO cards that have dual
interrupt system.
The Event Message method handles event notification through
user-defined callbacks and/or the Windows Message queue (for
VB5, through user-defined callbacks only). When a user-
specified interrupt event occurs, PCIS-DASK calls the user-
defined callback (if defined) and/or puts a message into the
Windows Message queue, if you specified a window handle.
After receiving the message, the user’s application can carry out
the appropriate task.
The event message mechanism is easy and safe in Windows 98
and NT systems; however, the time delay between the event and
notification is highly variable and depends largely on how loaded
your system is. In addition, if a callback function is called,
succeeding events will not be handled until your callback has
returned. If the time interval between interrupt events is smaller
than the time taken for callback function processing, the
succeeding interrupt events will not be handled. Therefore this
mechanism is not suitable for the frequent interrupt occurrence
condition.
The Event Status checking and waiting method handles
interrupt event status checking through Win32 wait functions,
such as WaitForSingleObject or WaitForMultipleObjects. This
method is useful for the situation that the interrupt event occurs
very often, and the applications written in the language that
doesn’t support function pointers (e.g. VB4).

1. Through user-defined callbacks and the Windows
Message queue

[Example Code Fragment]

card = Register_Card(PCI_7230, card_number);

//INT1 event notification is through window message
DIO_INT1_EventMessage (card, INT1_EXT_SIGNAL, hWnd,
WM_INT, NULL);

62 • PCIS-DASK Application Hints

//INT2 event notification is through a callback function
DIO_INT2_EventMessage (card, INT2_EXT_SIGNAL, hWnd,
NULL, (void *) cbfn);
… .
//window message handling function
long PASCAL MainWndProc(hWnd, message, wParam,
lParam)
{
 switch(message) {
 … .
 case WM_INT: //interrupt event occurring message
 … .
 break;
 … .
 case WM_DESTROY:

//Disable interrupts
DIO_INT1_EventMessage (card, INT1_DISABLE,
hMainWnd, NULL, NULL);
DIO_INT2_EventMessage (card, INT2_DISABLE,
hMainWnd, NULL, NULL);
//Release card
if (card >= 0) Release_Card(card);
PostQuitMessage(0);

break;
… .
 }

 }
… .
//call back function
LRESULT CALLBACK cbfn()
{
 … .
}

2. Through a Win32 wait function

[Example Code Fragment]

card = Register_Card(PCI_7230, card_number);

PCIS-DASK Application Hints • 63

DIO_SetDualInterrupt(card, INT1_EXT_SIGNAL,
INT2_EXT_SIGNAL, hEvent);

… .
//wait for INT1 event
if (WaitForSingleObject(hEvent[0], INFINITE) ==

WAIT_OBJECT_0) {
 ResetEvent(hEvent[0]);

… …
 }
 … ..
//wait for INT2 event
if (WaitForSingleObject(hEvent[1], INFINITE) ==

WAIT_OBJECT_0) {
 ResetEvent(hEvent[1]);

… …
}
… . .
if (card >= 0) Release_Card(card);

64 • Continuous Data Transfer in PCIS-DASK

6

Continuous Data Transfer in
PCIS-DASK
The continuous data transfer functions in PCIS-DASK input or
output blocks of data to or from a plug-in NuDAQ PCI device. For
input operations, PCIS-DASK must transfer the incoming data to
a buffer in the computer memory. For output operations, PCIS-
DASK must transfer outgoing data from a buffer in the computer
memory to the NuDAQ PCI device. This chapter describes the
mechanism and techniques that PCIS-DASK uses for continuous
data transfer and the considerations for selecting the continuous
data transfer mode (sync. or async., double buffered or not,
triggered or non-triggered mode).

6.1 Continuous Data Transfer Mechanism
PCIS-DASK uses two mechanisms to perform the continuous
data transfer. The first one, interrupt transfer, transfers data
through the interrupt mechanism. The second one is to use the
DMA controller chip to perform a hardware transfer of the data.
Whether PCIS-DASK uses interrupt or DMA depends on the
device. If the device support both of these two mechanisms,
PCIS-DASK decides on the data transfer method that typically
takes maximum advantage of available resources. For example,
PCI-9112 supports interrupt and DMA for data transfers. The
DMA data transfer is typically faster, so PCIS-DASK takes
advantage of it. PCI-9111 supports FIFO Half-Full and EOC
interrupt transfer modes. PCIS-DASK takes FIFO Half-Full
interrupt transfer mode, because the CPU is interrupted do data
transfer only when the FIFO becomes half-full.

Continuous Data Transfer in PCIS-DASK • 65

6.2 Double-Buffered AI/DI Operation
PCIS-DASK uses double-buffering techniques in its driver
software for continuous input of large amounts of data.

6.2.1 Double Buffer Mode Principle

The data buffer for double-buffered continuous input operation is
a circular buffer logically. It is logically divided into two equal
halves. The double-buffered input begins when device starts
writing data into the first half of the circular buffer (Figure 6-1a).
After device begins writing to the second half of the circular
buffer, you can copy the data from the first half into the transfer
buffer (user buffer) (Figure 6-1b). You now can process the data
in the transfer buffer according to application needs. After the
board has filled the second half of the circular buffer, the board
returns to the first half buffer and overwrites the old data. You
now can copy the second half of the circular buffer to the transfer
buffer (Figure 6-1c). The data in the transfer buffer is again
available for process. The process can be repeated endlessly to
provide a continuous stream of data to your application (Figure 6-
1d).

66 • Continuous Data Transfer in PCIS-DASK

Incoming DMA
input data Circular Buffer

Transfer Buffer

a b

c d

> > >

> > >> >

Empty Buffer Untransferred Data Transferred Data

> >

Figure 7-1

The PCIS-DASK double buffer mode functions were designed
according to the principle described above. If you use
AI_AsyncDblBufferMode/DI_AsyncDblBufferMode to
enable double buffer mode, the following continuous AI/DI
function will perform double-buffered continuous AI/DI. You can
call
AI_AsyncDblBufferHalfReady/DI_AsyncDblBufferHalf
Ready to check if data in the circular buffer is half full and ready
for copying to the transfer buffer. Then you can call
AI_AsyncDblBufferTransfer/DI_AsyncDblBufferTrans
fer to copy data from the ready half buffer to the transfer buffer.

Single-Buffered Versus Double-Buffered Data Transfer

Single-buffered data transfer is the most common method for
continuous data transfer. In single-buffered input operations, a
fixed number of samples are acquired at a specified rate and
transferred into user’s buffer. After the user’s buffer stores the

Continuous Data Transfer in PCIS-DASK • 67

data, the application can analyze, display, or store the data to the
hard disk for later processing. Single-buffered operations are
relatively simple to implement and can usually take advantage of
the full hardware speed of the device. However, the major
disadvantage of single-buffered operation is that the maximum
amount of data that can be input at any one time is limited to the
amount of initially allocated memory allocated in driver and the
amount of free memory available in the computer.
In double-buffered operations, as mentioned above, the data
buffer is configured as a circular buffer. Therefore, unlike single-
buffered operations, double-buffered operations reuse the same
buffer and are able to input or output an infinite number of data
points without requiring an infinite amount of memory. However,
there exits the undesired result of data overwritten for double-
buffered data transfer. The device might overwrite data before
PCIS-DASK has copied it to the transfer buffer. Another data
overwritten problem occurs when an input device overwrites data
that PCIS-DASK is simultaneously copying to the transfer buffer.
Therefore, the data must be processed by the application at least
as fast as the rate at which the device is reading data. For most
of the applications, this requirement depends on the speed and
efficiency of the computer system and programming language.
Hence, double buffering might not be practical for high-speed
input applications.

68 • Continuous Data Transfer in PCIS-DASK

6.3 Trigger Mode Data Acquisition for Analog Input
A trigger is an event that occurs based on a specified set of
conditions. An interrupt mode or DMA-mode analog input
operation can use a trigger to determinate when acquisition stops
or starts.
PCIS-DASK also provides two buffering methods for trigger
mode AI – double-buffering and single-buffering. However, the
single buffer in trigger mode AI is different from that in non-trigger
mode AI. It is a circular buffer just like that in double buffer mode
but the data stored in the buffer can be processed only when the
continuous data reading is completed. The buffer will be reused
until the data acquisition operation is completed. Therefore, to
protect the data you want to get from being overwritten, the size
of the single buffer should be the same as or larger than the
amount of data you wish to access. For example, if you want to
perform single-buffered middle-trigger AI with PCI-9812, and the
amount of data you want to collect before and after the trigger
event are 1000 and 3000 respectively, the size of single buffer is
at least 4000 in order to get all the data you want to collect.
Since the data are handled after the input operation is completed,
the desired data loss problem hardly occurs.
Since PCIS-DASK uses asynchronous AI to perform trigger
mode data acquisition, the SyncMode of continuous AI should be
set as ASYNCH_OP.

Sample Programs • 69

7

Sample Programs
There are several sample programs provided in this software
diskette. They could help you to program your own applications
by using PCIS-DASK easily. The brief descriptions of these
programs are specified as follows:

SDK6208V D/A conversion of PCI-6208V/16V
Visual C/C++ Program

SDK6208A D/A conversion of PCI-6208A
Visual C/C++ Program

VB6208 D/A conversion of PCI-6208A
Visual Basic Program

VB6216 D/A conversion of PCI-6208V/16V
Visual Basic Program

SDK7200Wave Digital input of PCI-7200/cPCI-7200
through DMA transfer
Visual C/C++ Program

SDK7200DbfWav Double buffer mode digital input of PCI-
7200/cPCI-7200 through DMA transfer
Visual C/C++ Program

VB7200Dma Digital input of PCI-7200/cPCI-7200
through DMA transfer
Visual Basic Program

SDK7200HdSk HandShanking mode digital input of PCI-
7200/cPCI-7200 through DMA transfer
Visual C/C++ program

SDK7230 D/I, and D/O of PCI-7230/cPCI-7230
Visual C/C++ Program

70 • Sample Programs

SDK7230Int D/I, and D/O of PCI-7230/cPCI-7230
through Interrupt operation
Visual C/C++ Program

SDK7230DbEvt D/I, and D/O of PCI-7230/cPCI-7230
through Interrupt operation (Dual Interrupt
Events)
Visual C/C++ Program

VB7230 D/I, and D/O of PCI-7230/cPCI-7230
Visual Basic Program

SDK7234 D/O of PCI-7234
Visual C/C++ Program

VB7234 D/O of PCI-7234
Visual Basic Program

SDK7248 D/I, and D/O of PCI-7248/cPCI-7248
Visual C/C++ Program

SDK7248Int D/I, and D/O of PCI-7248/cPCI-7248
through Interrupt operation
Visual C/C++ Program

SDK7248DbEvt D/I, and D/O of PCI-7248/cPCI-7248
through Interrupt operation (Dual Interrupt
Events)
Visual C/C++ Program

VB7248 D/I, and D/O of PCI-7248/cPCI-7248
Visual Basic Program

SDK7250 D/I, and D/O of PCI-7250/51
Visual C/C++ Program

VB7250 D/I, and D/O of PCI-7250/51
Visual Basic Program

SDK7252 D/I, and D/O of cPCI-7252
Visual C/C++ Program

VB7252 D/I, and D/O of cPCI-7252
Visual Basic Program

SDK7296 D/I, and D/O of PCI-7296
Visual C/C++ sample program

SDK7296Int D/I, and D/O of PCI-7296 through
Interrupt operation
Visual C/C++ Program

SDK7296DbEvt D/I, and D/O of PCI-7296 through
Interrupt operation (Dual Interrupt Events)
Visual C/C++ Program

Sample Programs • 71

VB7296 D/I, and D/O of PCI-7296
Visual Basic Program

SDK7300Wave Digital input of PCI-7300A_Rev.A/cPCI-
7300A_Rev.A through DMA transfer
Visual C/C++ Program

SDK7300Wave Digital input of PCI-7300A_Rev.B/cPCI-
7300A_Rev.B through DMA transfer
Visual C/C++ program

SDK7432 D/I, and D/O of PCI-7432/cPCI-7432
Visual C/C++ sample program

SDK7432Int D/I, and D/O of PCI-7432/cPCI-7432
through Interrupt operation
Visual C/C++ Program

SDK7432DbEvt D/I, and D/O of PCI-7432/cPCI-7432
through Interrupt operation (Dual Interrupt
Events)
Visual C/C++ Program

VB7432 D/I, and D/O of PCI-7432/cPCI-7432
Visual Basic Program

SDK7433 D/I of PCI-7433/cPCI-7433
Visual C/C++ sample program

SDK7433Int D/I of PCI-7433/cPCI-7433 through
Interrupt operation
Visual C/C++ Program

SDK7433DbEvt D/I of PCI-7433/cPCI-7433 through
Interrupt operation (Dual Interrupt Events)
Visual C/C++ Program

VB7433 D/I of PCI-7433/cPCI-7433
Visual Basic Program

SDK7434 D/O of PCI-7434/cPCI-7434
Visual C/C++ sample program

VB7434 D/O of PCI-7434/cPCI-7434
Visual Basic Program

SDK8554 Timer/counter of PCI-8554
Visual C/C++ sample program

SDKEventCnt Event counter of PCI-8554
Visual C/C++ sample program

VB8554 Timer/counter of PCI-8554
Visual Basic Program

72 • Sample Programs

SDK9111 A/D conversion, D/A conversion, D/I, and
D/O of PCI9111
Visual C/C++ Program

SDK9111Int Analog input of PCI-9111 through
Interrupt operation
Visual C/C++ Program

SDK9111DbfPreTrg Pre-trigger with Double buffer mode
analog input of PCI-9111 through Interrupt
operation
Visual C/C++ Program

SDK9111SpreTrg Pre-trigger with Double buffer mode
analog input of PCI-9111 through Interrupt
operation
Visual C/C++ Program

VB9111 A/D conversion, D/A conversion, D/I, and
D/O of PCI9111
Visual Basic Program

VB9111Int Analog input of PCI-9111 through
Interrupt operation Visual Basic Program

VB9111PreTrg Pre-trigger with Double buffer mode
analog input of PCI-9111 through Interrupt
operation
Visual Basic Program

VB9111Scan Autoscan Analog input of PCI-9111
Visual Basic Program

SDK9112 A/D conversion, D/A conversion, D/I, and
D/O of PCI9112/cPCI-9112
Visual C/C++ program

SDK9112DMA Analog input of PCI-9112/cPCI-9112
through DMA data transfer
Visual C/C++ Program

SDK9112DbfDma Double buffer mode analog input of PCI-
9112/cPCI-9112 through DMA data
transfer
Visual C/C++ sample program

VB9112 A/D conversion, D/A conversion, D/I, and
D/O of PCI9112/cPCI-9112
Visual Basic Program

Sample Programs • 73

VB9112DbfDma Double buffer mode analog input of PCI-
9112/cPCI-9112 through DMA data
transfer
Visual Basic Program

SDK9113 A/D conversion, D/A conversion, D/I, and
D/O of PCI9113
Visual C/C++ Program

SDK9113Int Analog input of PCI-9113 through
Interrupt operation
Visual C/C++ Program

SDK9113DbfDma Double buffer mode analog input of PCI-
9113 through DMA data transfer
Visual C/C++ sample program

VB9113 A/D conversion, D/A conversion, D/I, and
D/O of PCI9113
Visual Basic Program

VB9113Int Analog input of PCI-9113 through
Interrupt operation Visual Basic Program

VB9113Scan Autoscan Analog input of PCI-9113
Visual Basic Program

SDK9114 A/D conversion, D/A conversion, D/I, and
D/O of PCI9114
Visual C/C++ Program

SDK9114Int Analog input of PCI-9114 through
Interrupt operation
Visual C/C++ Program

VB9114 A/D conversion, D/A conversion, D/I, and
D/O of PCI9114
Visual Basic Program

VB9114Int Analog input of PCI-9114 through
Interrupt operation
Visual Basic Program

VB9114Scan Autoscan Analog input of PCI-9114
Visual Basic Program

SDK9118 A/D conversion, D/A conversion, D/I, and
D/O of PCI9118
Visual C/C++ Program

74 • Sample Programs

SDK9118DbfAboutTrg About trigger with Double buffer mode
analog input of PCI-9118 through DMA
data transfer
Visual C/C++ Program

SDK9118BurstDma Analog input of PCI-9118 through Burst
Mode DMA data transfer
Visual C/C++ Program

SDK9118DbfDma Double buffer mode analog input of PCI-
9118 through DMA data transfer
Visual C/C++ Program

SDK9118HRDbfDma Double buffer mode analog input of PCI-
9118HR through DMA data transfer
Visual C/C++ Program

SDK9118ScanDma Autoscan Analog input of PCI-9118
through DMA data transfer
Visual C/C++ Program

SDK9118HRScanDma Autoscan Analog input of PCI-9118HR
through DMA data transfer
Visual C/C++ Program

SDK9118DbfPreTrg Pre-trigger with Double buffer mode
analog input of PCI-9118 through DMA
data transfer
Visual C/C++ Program

SDK9118DbfPostTrg Post trigger with Double buffer mode
analog input of PCI-9118 through DMA
data transfer
Visual C/C++ sample program

SDK9118AboutTrg About trigger with Single buffer mode
analog input of PCI-9118 through DMA
data transfer
Visual C/C++ Program

SDK9118HRAboutTrg About trigger with Single buffer mode
analog input of PCI-9118HR through
DMA data transfer
Visual C/C++ Program

SDK9118PostTrg Post trigger with Single buffer mode
analog input of PCI-9118 through DMA
data transfer
Visual C/C++ Program

Sample Programs • 75

VB9118 A/D conversion, D/A conversion, D/I, and
D/O of PCI9118
Visual Basic Program

VB9118AboutTrg About trigger with Single buffer mode
analog input of PCI-9118 through DMA
data transfer
Visual Basic Program

VB9118PostTrg Post trigger with Single buffer mode
analog input of PCI-9118 through DMA
data transfer
Visual Basic sample program

VB9118Dma Analog input of PCI-9118 through DMA
data transfer
Visual Basic Program

VB9118HRDma Analog input of PCI-9118HR through
DMA data transfer
Visual Basic Program

SDK9812SoftTrg Software trigger with Single buffer mode
analog input of PCI-9812/cPCI-9812
through DMA data transfer
Visual C/C++ Program

SDK9812PreTrg Pre-trigger with Single buffer mode analog
input of PCI-9812/cPCI-9812 through
DMA data transfer
Visual C/C++ Program

SDK9812PostTrg Post trigger with Single buffer mode
analog input of PCI-9812/cPCI-9812
through DMA data transfer
Visual C/C++ Program

SDK9812MidTrg Middle trigger with Single buffer mode
analog input of PCI-9812/cPCI-9812
through DMA data transfer
Visual C/C++ Program

SDK9812DelayTrg Delay trigger with Single buffer mode
analog input of PCI-9812/cPCI-9812
through DMA data transfer
Visual C/C++ Program

76 • Sample Programs

SDK9812DbfMidTrg Middle trigger with Double buffer mode
analog input of PCI-9812/cPCI-9812
through DMA data transfer
Visual C/C++ Program

SDK9812DbfPreTrg Pre-trigger with Double buffer mode
analog input of PCI-9812/cPCI-9812
through DMA data transfer
Visual C/C++ Program

SDK9812DbfPostTrg Post trigger with Double buffer mode
analog input of PCI-9812/cPCI-9812
through DMA data transfer
Visual C/C++ Program

SDK9812DbfDelayTrg Delay trigger with Double buffer mode
analog input of PCI-9812/cPCI-9812
through DMA data transfer
Visual C/C++ Program

VB9812 Analog input of PCI-9812/cPCI-9812
through DMA data transfer
Visual Basic Program

Note 1: ADLink will periodically upgrades PCIS-DASK to add support
for new NuDAQ PCI-bus data acquisition cards and NuIPC
CompactPCI cards and the additional sample programs for the
new devices will be included. Please refer to Release Notes for
the card types that the current release of PCIS-DASK actually
supports.

Note 2: PCIS-DASK provides a sample program browser, Examples.exe,
for you to view and execute the sample programs that PCIS-
DASK package includes. The default location of this utility is
<InstallDir>\Samples directory. After Examples.exe utility is
running, you can double click the icon of the sample you wish to
execute to execute this sample program.

Sample Programs • 77

7.1 Sample Programs Development Environment

7.1.1 Visual Basic Sample Programs

There are several Visual Basic sample programs provided for
each card in this software package. The following files are
included in each sample program (Using VB9112DMA as an
example):

• VB project file --- VB9112D.VBP
• VB form files --- VB9112D.FRM
• Executable file --- VB9112D.EXE

You must have 32-bit Microsoft Visual Basic 4.0 Professional
Edition or above to deal with these sample programs. Please
refer to Visual Basic Manual or related reference books to get the
information about how to use Visual Basic 4.0.
If you don’t install 32-bit Microsoft Visual Basic 4.0, but want to
execute the VB sample programs, please install “VB4 Runtime”
package first. The VB4 Runtime package includes the required
library and DLL files to run the VB sample programs. You can
find this package in the root directory of “ADLink All-In-One
Compact Disc” CD or from the setup main window of this CD.
After the installation of VB4 Runtime package, the VB4 samples
can be executed on the system with no VB4 installed.
PCIS-DASK includes another kind of samples, Microsoft C/C++
sample programs, which will be described in the next section.
The C/C++ samples provide the similar functions as those
provided by VB samples. Preferably, they can be run directly and
don’t need to install any additional package. So, if you just want
to test the PCIS-DASK package, please use Microsoft C/C++
sample programs.

7.1.2 Microsoft C/C++ Sample Programs

We provide several Microsoft C/C++ sample programs for each
card in this package. The following files are included in each
sample program (Using SDK7200WAV as an example):

• C source file --- 7200WAV.C

78 • Sample Programs

• Workspace file --- 7200WAV.MDP
• Resource script file --- 7200WAV.RC, RESOURCE.H
• Make file --- 7200WAV.MAK
• Executable file --- 7200WAV.EXE

You can use any editor or Microsoft Visual C++ 4.0 to view or
modify these source files. However, to build the executable
7200WAV.EXE, you must have Microsoft Visual C++ 4.0 or
above. Please refer to Visual C++ Manual or related reference
books to get the information about how to use Visual C++.

7.2 Execute Sample Programs
To run the sample programs, please follow these steps:

step 1. Open the sample program
You can use Microsoft Visual C++ 4.0 or Visual Basic 4.0 to open
and execute the sample programs. Or you can run the
executable files directly.

step 2. Option Setting
According to your requirements, select the testing functions, e.g.
A/D, D/A, etc., testing channels, sampling rate and transfer
count, etc.

step 3. Push “start” button to run the program.

7.3 The Detailed Descriptions of these Sample
Programs

There are four kinds of sample programs provided in this
software package. The descriptions of these three types are the
following (Using the screens of VB 9112, SDK 9112DMA, SDK
9112CDMA and SDK 9118 DbfPreTrg as the figure examples) :

Sample Programs • 79

7.3.1 A/D conversion, D/A conversion, D/I, and D/O

This kind of samples is used to demonstrate how to use PCIS-
DASK to operate software trigger with program polling data
mode and Read/Write data from digital input/output channels on
PCI-9112. The main screen of this kind of programs is shown
below (Figure 7.2):

Figure 7.2

Analog Input (A/D) : This is used to show the results of A/D
conversion. You can select the Input channels (allows multiple
channels) and the input range (gain) you want to test from the
main screen.

80 • Sample Programs

Analog output (D/A): This is used to show the results of D/A
conversion. Turning the turner to set the output voltage. You can
also choose the output waveform (sine or square).

D/I and D/O: This is used to show the results of Read/Write data
from/to digital input/output channels. To set the output value,
click the channel lights. The red light means “on” and the white
light means “off”.

7.3.2 Data I/O through DMA Data Transfer or Interrupt
operation

This kind of programs is used to demonstrate how to use PCIS-
DASK to operate data I/O through DMA data transfer or Interrupt
operation. The main screen of this kind of programs is shown
below (Figure 7.3):

Sample Programs • 81

Figure 7.3

In this kind of programs you can select Input channels, Input
range (PCI-7200 does not have these two options), sampling
rate, and data size (transfer count) as you wish. To view the
input data, push “Data Value” button in the main screen as data
transfer is finished (Figure 7.4).

Figure 7.4

7.3.3 Double buffer mode data I/O through DMA transfer or
Interrupt operation

This kind of programs is used to demonstrate how to use PCIS-
DASK to operate double-buffered data I/O through DMA transfer

82 • Sample Programs

or Interrupt operation. The screen of this kind of programs is
shown below (Figure 7.5) :

Figure 7.5

In this kind of programs you can select Input channel, input range
(PCI-7200 does not have this two options), sampling rate, and
data size (transfer count) as you wish. To view the input data,
push “Data Value” button in the main screen after you stop the
double-buffered operation.

7.3.4 Trigger Mode Data I/O through DMA Data Transfer or
Interrupt operation

This kind of programs is used to demonstrate how to use PCIS-
DASK to operate Trigger Mode data I/O through DMA data
transfer or Interrupt operation. Except an additional input item,
postCount, the running steps and the main screen of this kind of

Sample Programs • 83

programs (Figure 7.6) are almost the same as those mentioned
in section 7.3.2 (For Single-Buffer Mode) or section 7.3.3 (For
Double-Buffer Mode). Please refer to these two sections for the
details. This additional item, postCount , represents the number
of data accessed after a specific trigger event or the counter
value for deferring to access data after a specific trigger event.
Please refer to the description of AI configuration functions
(AI_9111_Config, AI_9118_Config, AI_9812_Config) for the
details.

Figure 7.6

Note: Except VB9812, all the trigger mode data acquisition sample
programs use external digital trigger source to provide trigger
signal. Please refer to the user’s manuals of these cards you want
to operate for the detailed description of trigger mode data
acquisition.

