
Advance Technologies; Automate the World.

Manual Rev. 2.04

Revision Date: June 13, 2008

Part No: 50-1H001-1020

PCI-8372+/8366+
cPCI-8312H

SSCNET Motion Control Card
User’s Manual

Copyright 2008 ADLINK TECHNOLOGY INC.

All Rights Reserved.

The information in this document is subject to change without prior
notice in order to improve reliability, design, and function and does
not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, spe-
cial, incidental, or consequential damages arising out of the use or
inability to use the product or documentation, even if advised of
the possibility of such damages.

This document contains proprietary information protected by copy-
right. All rights are reserved. No part of this manual may be repro-
duced by any mechanical, electronic, or other means in any form
without prior written permission of the manufacturer.

Trademarks

Product names mentioned herein are used for identification pur-
poses only and may be trademarks and/or registered trademarks
of their respective companies.

Getting Service from ADLINK
Customer Satisfaction is top priority for ADLINK Technology Inc.
Please contact us should you require any service or assistance.

ADLINK TECHNOLOGY INC.
Web Site: http://www.adlinktech.com
Sales & Service: Service@adlinktech.com
TEL: +886-2-82265877
FAX: +886-2-82265717
Address: 9F, No. 166, Jian Yi Road, Chungho City,

Taipei, 235 Taiwan

Please email or FAX this completed service form for prompt and
satisfactory service.

Company Information

Company/Organization
Contact Person
E-mail Address
Address
Country
TEL FAX:
Web Site

Product Information
Product Model

Environment
OS:
M/B: CPU:
Chipset: Bios:

Please give a detailed description of the problem(s):

Table of Contents i

Table of Contents
Table of Contents... i

List of Tables... v

List of Figures ... vii

1 Introduction .. 1
1.1 Specifications... 4
1.2 Environmental Conditions.. 9
1.3 Software Support ... 10

Programming Library .. 10
Motion Creator .. 10

2 Installation .. 11
2.1 What You Have.. 11
2.2 PCI-8372+/8366+ Outline Drawing.................................... 12
2.3 cPCI-8312(H) Outline Drawing .. 13
2.4 Hardware Installation ... 15

Installation Procedures ... 15
LED Status ... 15
KernelUpdate Utility of SSCNET card 16
SSCNET Communication Test Utility 19

2.5 Software Driver Installation.. 21
2.6 CN1 Pin Assignment: SSCNet Connector on PCB............ 22
2.7 CN5 Pin Assignment: PCI-8372+/8366+ I/O Connector.... 23
2.8 SP1 Pin Assignment: cPCI-8312(H) I/O Connector 24
2.9 CN3 Pin Assignment: TTL output Connector on bracket... 25
2.10 HS1A - HS2B Pin Assignments: HSL Communication Signal

(RJ-45)... 26

3 Signal Connections.. 27
3.1 SSCNet Servo Driver Connection...................................... 27
3.2 Encoder Feedback Signals: EA, EB and EZ 29
3.3 PEL, MEL, ORG, EMG and General Purpose DI 32
3.4 General Purpose DO ... 36
3.5 TTL Output... 37
3.6 Analog Output.. 38
3.7 Analog Input (cPCI-8312(H) Only)..................................... 38

ii Table of Contents

3.8 Pulse Output (cPCI-8312(H) Only) 39

4 Operation Theory .. 41
4.1 Architecture.. 41

HOST PC and SSCNET Board 41
SSCNet Communication ... 41

4.2 Frame Architecture .. 42
Frame Introduction .. 42

4.3 Single Motion ... 44
Single axis velocity motion .. 44
Single axis P to P motion .. 45
Multi axes velocity motion ... 47
Multi axes P to P motion ... 48
Linear Interpolation ... 48
Circular Interpolation ... 53
Change Velocity on the Fly ... 54
Position Compensation on the Fly 57

4.4 Home move.. 59
Declaration for Beginning of Motion List 60
Add Trajectory pieces ... 61
Declaration for End of Motion List 68
Start/Stop command ... 69

4.5 Motion Related IO.. 69
Position control and feedback 70
Velocity Feedback .. 72
Motion DIO status ... 72
Software limit .. 73
Motion Status .. 74
Motion Input as General Input 76

4.6 General Purpose IO... 77
Encoder Counter ... 77
DIO ... 81
DA ... 81
AD ... 82
Analog channel auto calibration 82

4.7 Driver Management ... 84
Driver parameter ... 84
Data monitoring .. 86
Servo Information ... 93
Servo On ... 94

Table of Contents iii

Driver information ... 94
Servo Alarm .. 95

4.8 Control Gain Tuning... 95
Control Gains .. 96
Mechanical resonance suppression filter 98
Low pass filter ... 101

4.9 Interrupt control.. 102
4.10 Position Compare Function ... 105
4.11 Interlock Function .. 106
4.12 Absolute Position System .. 108
4.13 Compared Trigger Output.. 109
4.14 Sequence Motion Control .. 114

Conceptual Flow Chart ... 115
Coding Example 1: Using C Language 120
Coding Example 2: Compare Start Condition 124

5 Motion Creator.. 131
5.1 Overview.. 131
5.2 Main Window ... 131

Component description ... 132
Operation Steps .. 137

5.3 General Purpose IO Operation Window (PCI-8372+/8366+) .
137

Component description ... 138
Operation Steps .. 139

5.4 General Purpose IO Operation Window (cPCI-8312H) ... 140
Operation Steps .. 141
Pulse Output Page ... 142
Component description ... 143

5.5 Tuning Window .. 143
Component Description .. 144
Operation Steps .. 149
Example .. 149

5.6 XY-Interpolation Window ... 150
Component description ... 151
Operation steps .. 151

5.7 Two-Axes Operation Window .. 152
Component description ... 152
Operation Steps .. 154

5.8 Single Axis Operation Window .. 155

iv Table of Contents

Component description ... 155
Motion I/O Configration Window 157
Interrupt Configration Window 158
Operation Steps .. 159

5.9 Driver Parameter Configuration Window 160
Component description ... 160
Operation Steps .. 162

6 Appendix.. 163
6.1 MR-J2S-B Alarm List ... 163
6.2 MR-J2S-B Warning List ... 165
6.3 Driver Parameter List .. 166
6.4 Handshake Procedure ... 168

Card Initial Procedure ... 168
Card Close Procedure .. 169
Card Soft Reset Procedure ... 170
Motion Command Procedure 170
Motion Command Timing .. 172

6.5 cPCI-8312H High Speed Link Initial Guide...................... 174

Warranty Policy ... 175

List of Tables v

List of Tables
Table 1-1: Specifications ... 4
Table 1-2: Vibration Resistance ... 9
Table 2-1: CN1 Pin Assignment .. 22
Table 2-2: CN5 Pin Assignment .. 23
Table 2-3: SP1 Pin Assignment ... 24
Table 2-4: CN3 Pin Assignment .. 25
Table 2-5: HS1A - HS2B Pin Assignment 26
Table 3-1: Encoder Feedback Signals: EA, EB and EZ 29
Table 3-2: Encoder Power ... 31
Table 3-3: PEL, MEL, ORG, EMG and General Purpose DI ... 32
Table 3-4: General Purpose DO Pinout 36
Table 3-5: TTL Output Pinout .. 37
Table 3-6: Analog Output Pinout ... 38
Table 3-7: Analog Input Pinout .. 38
Table 3-8: Pulse Output Pinout .. 39
Table 4-1: start_tr_move Data Table 44
Table 4-2: set_position_compensate Values 58
Table 4-3: Axis Status .. 74
Table 4-4: Motion Status .. 75
Table 4-5: Encoder Resistor .. 78
Table 4-6: MR-J2SB Parameters ... 84
Table 4-7: Monitoring Targets .. 88
Table 4-8: Axis Parameters ... 91
Table 4-9: Data Array Offset .. 93
Table 4-10: Servo Bit Information .. 93
Table 4-11: Selectable Gains .. 98
Table 4-12: Notch Frequency Settings 99
Table 4-13: Notch Gain Settings .. 100
Table 4-14: Suppression Control Settings 100
Table 4-15: Axis Interrupts ... 104
Table 4-16: System Interrupts ... 104
Table 4-17: GPIO Interrupts .. 104
Table 4-18: Pattern Index .. 118
Table 4-19: Sequences .. 120
Table 6-1: MR-J2S-B Alarm List .. 163
Table 6-2: MR-J2S-B Warning List .. 165
Table 6-3: Driver Parameter List .. 166
Table 6-4: Card Initial Procedure ... 168

vi List of Tables

Table 6-5: Card Close Procedure .. 169
Table 6-6: Card Soft Reset Procedure 170
Table 6-7: Motion Command Procedure 171

List of Figures vii

List of Figures
Figure 1-1: SSCNet II High-Speed Connections.......................... 1
Figure 1-2: Block Diagram ... 2
Figure 1-3: Flowchart for Building an Application 3
Figure 2-1: PCI-8372+/8366+ Mechanical Drawing................... 12
Figure 2-2: cPCI-8312(H) Mechanical Drawing 13
Figure 2-3: SSCNET Communication Test Utility 20
Figure 3-1: Wiring for 6 Axes (PCI-8372+/8366+) 27
Figure 3-2: Wiring for 12 Axes (PCI-8372+)............................... 27
Figure 3-3: Wiring for cPCI-8312(H) .. 28
Figure 3-4: SSCNet Cable: .. 28
Figure 3-5: Encoder Feedback Signals...................................... 30
Figure 3-6: Line Drive Output Connection 30
Figure 3-7: Open Collector Output Connection.......................... 31
Figure 3-8: Source Type .. 34
Figure 3-9: Skin Type... 35
Figure 3-10: General Purpose DO ... 36
Figure 3-11: TTL Output .. 37
Figure 3-12: D/A Output Signals .. 38
Figure 3-13: Analog Input .. 39
Figure 3-14: Wiring Diagram for OUT and DIR Signals 40
Figure 3-15: OUT/DIR SIgnal Selection....................................... 40
Figure 4-1: Frame Flowchart.. 43
Figure 4-2: Constant Jerk Graph ... 45
Figure 4-3: Single Axis Motion ... 46
Figure 4-4: Motion Function Graphs .. 47
Figure 4-5: 2-Axis Linear Interpolation....................................... 49
Figure 4-6: 2-Axis Linear Interpolation Example........................ 50
Figure 4-7: 3-Axis Linear Interpolation....................................... 51
Figure 4-8: 3-Axis Linear Interpolation Example........................ 52
Figure 4-9: Circular interpolation.. 54
Figure 4-10: Stop a Moving Axis.. 55
Figure 4-11: Stop with Deceleration... 55
Figure 4-12: Immediate Stop ... 55
Figure 4-13: Moving Change ... 56
Figure 4-14: Change with S-Curve Velocity................................. 56
Figure 4-15: Position Compensation on the Fly........................... 57
Figure 4-16: Mode 0 Home .. 59
Figure 4-17: Example 2-D Trajectory... 63

viii List of Figures

Figure 4-18: Example 1 - Arc Trajectory 64
Figure 4-19: Velocity vs. Time.. 64
Figure 4-20: Example 2 - Arc Trajectory 65
Figure 4-21: Velocity vs. Time.. 65
Figure 4-22: Adding Dwell Example... 66
Figure 4-23: Velocity vs. Time.. 66
Figure 4-24: Line & Line... 67
Figure 4-25: Line & Arc .. 67
Figure 4-26: Arc & Arc.. 67
Figure 4-27: Smoothing Example... 68
Figure 4-28: Velocity vs. Time.. 68
Figure 4-29: Move Ratio Control .. 71
Figure 4-30: Pulse Input (Encoder Counter) Circuit 77
Figure 4-31: Line Driver Circuit .. 78
Figure 4-32: Open Collector Circuit.. 79
Figure 4-33: A/B Phase Timing.. 80
Figure 4-34: OUT/DIR Pulses .. 80
Figure 4-35: DA Output .. 81
Figure 4-36: Notch Filter .. 99
Figure 4-37: Interrupt Control... 103
Figure 4-38: DSP Action Graph ... 107
Figure 4-39: Interlock Area... 107
Figure 4-40: Trigger Output.. 110
Figure 4-41: Triggering Frequency Under 500Hz 111
Figure 4-42: Positive Move .. 113
Figure 4-43: Negative Move... 114
Figure 4-44: Conceptual Flow Chart - Timing A......................... 116
Figure 4-45: Conceptual Flow Chart - Timing B......................... 117
Figure 4-46: Conceptual Flow Chart - Pattern 117
Figure 4-47: Conceptual Flow Chart - Buffers A 119
Figure 4-48: Conceptual Flow Chart - Buffers B 119
Figure 4-49: Coding Example 1 ... 120
Figure 4-50: Coding Example 2 ... 124
Figure 4-51: Test Results... 129
Figure 5-1: Motion Creator Main Window 132
Figure 5-2: Load Servo Parameter From File 132
Figure 5-3: Save Servo Parameter to File................................ 133
Figure 5-4: Card List Table .. 133
Figure 5-5: Axis Information ... 134
Figure 5-6: Software Version Information 135

List of Figures ix

Figure 5-7: General Purpose IO Operation Window 137
Figure 5-8: General Purpose IO Operation Window 140
Figure 5-9: Pulse Output.. 143
Figure 5-10: Tuning Window.. 144
Figure 5-11: Trigger Setting Frame.. 144
Figure 5-12: Parameter Tuning Frame 145
Figure 5-13: Channel Selection Frame 146
Figure 5-14: Motion Frame .. 146
Figure 5-15: Display Frame ... 147
Figure 5-16: Response Diagram.. 148
Figure 5-17: Play Button .. 148
Figure 5-18: Stop Button.. 148
Figure 5-19: XY-Interpolation Window 150
Figure 5-20: Two-Axes Operation Window 152
Figure 5-21: Single Axis Operation Window 155
Figure 5-22: Motion I/O Configration Window............................ 157
Figure 5-23: Interrupt Configration Window 158
Figure 5-24: Driver Parameter Configuration Window 160
Figure 6-1: PCI-8372+ Single Motion Command Timing Chart 172

x List of Figures

Introduction 1

1 Introduction
PCI-8372+/8366+ is a PCI bus interface card designed for per-
sonal computer or industrial computer accompanied with a Mitsub-
ishi MR-J2S-B type or SSCNET type servo amplifier. PCI-8372+
can control up to 12 servo amplifiers, where as PCI-8366+ can
control up to 6 servo amplifiers.

cPCI-8312H is a CompactPCI bus interface card in 6U size. It con-
trols up to 12 SSCNET axes and two HSL network ports in one
board.

The connection between the motion control board and the ampli-
fier is done via high-speed serial communication of the SSCNet II
protocol. SSCNet II connections offer the following advantages
over pulse train type connections:

Wiring is simplified because servo amplifiers are connected
by multi-drop method and the communication distance is up
to 30 meters.
Parameter management and the construction of absolute
positioning system (ABS) are greatly simplified.
Since commands are transmitted in serial data format,
noise-reduction is better, thus reliability is improved. Also
the control resolution is increased.
Users can retrieve abundant information from the servo sys-
tem through SSCNet II. No longer are you restricted to com-
mands and feedback. You can now also monitor servo
status, alarm status and tuning servo parameters.

Figure 1-1: SSCNet II High-Speed Connections

2 Introduction

Since all axes are synchronized within the SSCNet cycle,
multi-axis interpolation has better synchronicity than tradi-
tional pulse train control.

The on-board DSP controls all calculations necessary for perform-
ing various motion functions, thus, the host CPU loading is greatly
reduced. These motion functions include single axis (jog, P to P
move, change velocity/position on the fly, etc.), multi axes (circu-
lar, linear interpolation, etc.) and continuous motion.

Motion Creator, a Microsoft Windows based software is provided
with the SSCNET board card to support in application develop-
ments. Motion Creator will be helpful in debugging a motion con-
trol system during the design phase of a project.

Figure 1-2: Block Diagram

DSP
Bus

Controller

Aux
I/O

SSCNET
Controller

C
om

puter
B

us

DA

PEL
MEL
ORG
DIO

EA
EB
EZ

Servo
Motor 7~12

Servo
Motor 1~6

DPRAM

SDRAM

Flash ROM

FPGA

PWR
Monitor LED x 2 TTLDO

SSCNET

Board
Sync.

CN4CN3

CN1

CN2

Daughter
Board

I/F
Encoder

I/O

SC
SI 68 pins

Isolation

Bracket

Servo
Motor 7~12

CN5

Introduction 3

Figure 1-3: Flowchart for Building an Application

4 Introduction

1.1 Specifications

Item Description

System

Bus Type for PCI board PCI Rev. 2.2, 33MHz
Bus width for PCI 32-bit

Bus Voltage 5V
Memory usage 16KByte

IRQ on PCI board Assigned by PCI controller

General Specifications

Operating temperature 0°C - 60°C

Storage temperature -20°C -80°C

Humidity 5 - 95%, non-condensing

Power Consumption PCI-8372+/8366+: +5V @ 1A
typical

DSP
Type TI TMS320C6711
Clock 200 MHz

DSP performance 1200 MFLOPS

Board Interface I/O Connector 68-pin VHDIC
SSCNet Connector 3M 10220-52A2JL

Driver Communication

Protocol SSCNET II
Bit Rate 5.625Mhz

Physical layer RS-485
Maximum working length 30m for each 6 axes

Error detection CRC

Servo Loop

Max. No of controllable axes 8372: 12; 8366: 6
Servo update rate 0.888ms

Servo Data Monitors

Current position
Droop (deviation)

Velocity Command
Velocity feedback
Torque command

Servo alarm number …etc
Servo parameter tuning Parameter read/write

Table 1-1: Specifications

Introduction 5

Motion Function

Motion Velocity Profile Trapezoidal & S-Curve

Single motion

Jog move
Single axis P to P motion

Change P/V on the fly
Linear interpolation: up to 4 axes

2-axis Circular interpolation
Home move 1 home mode

Continuous motion

Start / End motion list
Add linear trajectory

Add arc trajectory: 2 axes
Add Dwell

Smooth Trajectory
Start/Sop command

Motion IO status read/configure
Motion status

Application Functions

Move Ratio In unit of Pulse per mm
Software Limit Each axis has 2 soft limits

Position Compare Each axis has 2 comparators
Interlock 2 axes interlock system

System error check Watchdog timer

Interrupt
During operation stop Possible to select conditions

where interrupt occurs
During alarms, etc. Yes

Item Description

Table 1-1: Specifications

6 Introduction

Optical Isolated Digital Input

+Limit Switch x 12 (PEL) Sink or source type are
selectable in all chan-
nels (all channels must
be the same)
Input voltage range: 0 -
24V

Logic H: 14.4 - 24V
Logic L: 0 - 5V

Input resistor: 4.7kOhm @
0.5W
DI change of state
detection
Isolated voltage:
500Vrms
Bandwidth: 10kHz
(0.1ms)

-Limit Switch x 12 (MEL)
Proximity dog x 12 (ORG)

General Purposed Input x 2
(PCI board only)

Emergency Stop x 1

Digital Output DO x 2

Output type:
Open-collec-

tor (PC3H7)
Sink Current: 6.5mA
Min.
Isolated voltage: 500
VDC
Bandwidth: 10kHz (0.1
ms)

Item Description

Table 1-1: Specifications

Introduction 7

Analog Out DA x 2

Resolution: 16 bits
Settling Time: 10mS
Max.
Output Range: ±10V
Output Coupling: DC
Output Impedance:
30W Max.
Output Driving: ±5mA
max.
Power On State: Float-
ing
Calibration: Self-Cali-
bration
Gain Error: ±3% Max.
Offset Error:

1mV Max. for PCI
board

Analog In AD x 2 (Avaialble for cPCI
board)

Resolution: 16 bits, no
missing code
Sampling Rate: 250kS/
s
Programmable Input
Range: ±10V, ±5V,
±2.5V
Calibration: Self-Cali-
bration
Gain Error: ±0.03%
Max.
Offset Error: 0.2mV
Max.

Item Description

Table 1-1: Specifications

8 Introduction

Encoder Interface 32-bit Encoder input (A,B,Z)
x 3 channel (PCI)

Incremental Encoder
Input Max. Speed:
5Mhz
Input Voltage: 0 - 5Vdc
Logic H: 3 - 5V
Logic L: 0 - 2.4V
Input resistor: 220Ω @
0.125W
Isolated voltage:
500Vrms

Pulse Output
2 channel differential pulses
output (Available for cPCI

board)

OUT/DIR, CW/CCW,
AB phase selectable
Max. Output Fre-
quence: 4.16Mhz
Isolated voltage: 500
Vrms

Aux. DIO
6 TTL Level Digital Output

(at CN3 on Extension
bracket of PCI board only)

Voltage output high:
Typical: 5V, Min: 2.4v
@ 15mA
Voltage output low:
Typical: 0.3V @ 24mA,
Max: 0.5V

Item Description

Table 1-1: Specifications

Introduction 9

1.2 Environmental Conditions

Ambient Temperature Operation: 0 - 55°C
Ambient Temperature Storage: -20 - 75°C
Ambient Humidity Operation: 10 - 90%RH, avoid condensa-
tion
Ambient Humidity Storage: 10 - 90%RH, avoid condensa-
tion
Vibration Resistance

Confirms to JIS C 0911

Shock resistance: Confirms to JIS C 0912 (10g, 3 direc-
tions, 3 times)
Noise resistance: Noise voltage 1500V.P.P, Noise frequency
25 - 60Hz using noise simulator
Operating tmosphere: Minimal corrosive gas, dust
Cooling method: Self-cooling

Note: *One Octave: from initial frequency to double initial frequen-
cy or half initial frequency. For example: 10Hz -> 20Hz, 20Hz
-> 40Hz -> 20Hz, 20Hz -> 10Hz. Each change is referred to
as an octave.

Frequency Acceleration Amplitude of Vibration Sweep

10~55Hz - 0.075mm 10 times*
55~150Hz 1G - (1 ctave/minute)

Table 1-2: Vibration Resistance

10 Introduction

1.3 Software Support

1.3.1 Programming Library
For customers who are programming their own applications, we
provide Windows 95/98/NT/2000/XP DLLs for the PCI-8372+/
8366+ and cPCI-8312 (H). It is shipped with these boards.

1.3.2 Motion Creator
Motion Creator is a Windows-based utility to setup cards, motors
and system. It can also help users debug hardware and software
problems. It also can let users set I/O logic parameters, which can
be loaded in their own program. This product is bundled with this
card. Refer to Chapter 5 for details.

Installation 11

2 Installation
This chapter describes how to install the PCI-8372+/8366+ or
cPCI-8312 (H). Please follow these steps below to install the
board.

2.1 What You Have
In addition to this User’s Guide, the package should also include
the following items:

SSCNET Motion Control Card
ADLINK All-in-one Compact Disc for driver installation
User’s Manual and Function Library. You can find the PDF
files in the installed directory

If any of these items are missing or damaged, contact the dealer
from whom you purchased the product from. Save the shipping
materials and carton in case you want to ship or store the product
in the future.

12 Installation

2.2 PCI-8372+/8366+ Outline Drawing

Figure 2-1: PCI-8372+/8366+ Mechanical Drawing

Installation 13

2.3 cPCI-8312(H) Outline Drawing

Figure 2-2: cPCI-8312(H) Mechanical Drawing

SC1-1: SSCNET connector for Axis 0-5
SC1-2: SSCNET connector for Axis 6-11
H1A, H1B: First HSL Set
H2A, H2B: Second HSL Set
SP1: Daughter Board connector
L1: Board Status LED in Green
L2: Board Status LED in Red

14 Installation

RST: Board Reset Button
SW1: CardID
JP5-JP7: H1A,H1B Communication Mode Selection
JP8-JP10: H2A, H2B Communication Mode Selection

Installation 15

2.4 Hardware Installation

2.4.1 Installation Procedures
1. Turn off your computer and all accessories (printer,

modem, monitor, etc.) connected to computer. Remove
the cover from your computer.

2. Hardware installation:

For PCI board: Select a 32-bit PCI expansion slot. PCI
slots are shorter than ISA or EISA slots and are usually
white or ivory.
For CompactPCI board: Carefully push the board into
the cPCI system through the groove. Be aware that the
pin on the slot would be bent.

3. Before handling the PCI-8372+/8366+ or cPCI-8312 (H),
discharge any static electric charge on your body by
touching the metal case of the computer. Hold the edge
and do not touch the components.

4. Position the board into the PCI/CompactPCI slot you
selected.

5. For PCI/CompactPCI borad, secure the card in place at
the rear panel of the system unit using screws removed
from the slot.

2.4.2 LED Status
Please carefully read the following.

There are two LEDs present on the card’s bracket, Red and
Green. These LEDs indicate the operation status of the card. If
the system is turned on, these LEDs will blink together. This
means it finishes the self-testing mode.

This sequence of self-testing is executed automatically when the
system is reset or powered up. The procedure takes about two
seconds. Over two seconds, the LEDs will be turned off. If not,
there is something wrong with this board. This abnormality means
that the card fails or the system’s power supply may be unstable.
Users have to try downloading the DSP kernel again by KernelUp-

16 Installation

date.EXE utility or change the power supply. If this board still in the
faulty situation, please try to test it in another platform or replace a
new board for testing again.

If the application runs the MDSP_initial() function and it is suc-
cessfully executed, the LEDs will turn on and off about every 1
second. If the application program calls the MDSP_close() func-
tion, the two LEDs will be turn off.

2.4.3 KernelUpdate Utility of SSCNET card
To Reset DSP: Press Step 1 then Step 1-1

To Update Kernel: Press Step 1 - Step 4 (Ignore Step 1-1)

1. Select a card and initial it

Installation 17

2. Press “HPI boot”

18 Installation

3. Press “Flash DL” button and select a kernel4.hex

Installation 19

4. Wait the value become 0 and displays Download Fin-
ished

5. Press “ROM Boot” and wait about 5 sec and done.

2.4.4 SSCNET Communication Test Utility
We provide a test utility for SSCNET communication. After initial-
ized, you can check the communication error counts from the dia-
log. Once it has communication errors, please disconnect the
driver one by one and use a new cable to verify it.

20 Installation

Figure 2-3: SSCNET Communication Test Utility

Installation 21

2.5 Software Driver Installation
1. Auto-Run from the ADLINK ALL-In-One CD, choose

Motion Control and then SSCNET series baord

2. Follow the installation wizard

3. Shut down your computer, and insert the SSCNET
series board into a slot and then power up the computer

4. When the installation is completed, the following folder
will be created in the directory specified during installa-
tion (default directory "C:\Program Files\ADLINK\SSC-
NET").

Library: this folder contains files required for a project
when programming an application.
DSPKernel: this folder contents a DSP kernel program
with default settings. If a recovery of your system is
required, use the Motion Creator utility to download the
DSP kernel firmware.
Utility: Some utility for the board
Manual: An user's manual for a product
Driver: pci8372.sys and pci8366.sys

5. Execute "Motion Creator" in the Startup menu to confirm
your hardware version by clicking the card list

22 Installation

2.6 CN1 Pin Assignment: SSCNet Connector on PCB
Receptacle: 10220-52A2JL

Manufacturer: 3M

No Name I/O Function No Name I/O Function

1 GND - Signal Ground 11 GND - Signal Ground
2 TXD1+ O Transmit+ 12 TXD1- O Transmit -
3 TXD2+ O Transmit+ 13 TXD2- O Transmit -
4 RXD1+ I Receive + 14 RXD1- I Receive -
5 GND - Signal Ground 15 GND - Signal Ground
6 RXD2+ I Receive + 16 RXD2- I Receive -
7 EMG1+ O Emergency1+ 17 EMG1- O Emergency1-
8 EMG2+ O Emergency2+ 18 EMG2- O Emergency2-
9 NC - 19 NC -
10 NC - 20 NC -

Table 2-1: CN1 Pin Assignment

Installation 23

2.7 CN5 Pin Assignment: PCI-8372+/8366+ I/O Connector

Note: *MDI# is for general purpose input if it is not used for motion.

No Name I/O Function Axis No Name I/O Function Axis
1 A.COM - Analog Ground 35 DA1 I Analog Output

2 PEL1/MDI1 I Positive End Limit 36 DA2 I Analog Output

3 MEL1/MDI2 I Minus End Limit 37 PEL2/MDI4 I Positive End Limit

4 ORG1/MDI3 I Origin Signal 38 MEL2/MDI5 I Minus End Limit

5 PEL3/MDI7 I Positive End Limit 39 ORG2/MDI6 I Origin Signal

6 MEL3/MDI8 I Minus End Limit 40 PEL4/MDI10 I Positive End Limit

7 ORG3/MDI9 I Origin Signal 41 MEL4/MDI11 I Minus End Limit

8 PEL5/MDI13 I Positive End Limit 42 ORG4/MDI12 I Origin Signal

9 MEL5/MDI14 I Minus End Limit 43 PEL6/MDI16 I Positive End Limit

10 ORG5/MDI15 I Origin Signal 44 MEL6/MDI17 I Minus End Limit

11 IPT_COM I Common for Digital Input 45 ORG6/MDI18 I Origin Signal

12 EA1+ I Encoder A-Phase (+) 46 EA2+ I Encoder A-Phase (+)

13 EA1- I Encoder A-Phase (-) 47 EA2- I Encoder A-Phase (-)

14 EB1+ I Encoder B-Phase (+) 48 EB2+ I Encoder B-Phase (+)

15 EB1- I Encoder B-Phase (-) 49 EB2- I Encoder B-Phase (-)

16 EZ1+ I Encoder Z-Phase (+) 50 EZ2+ I Encoder Z-Phase (+)

17 EZ1- I Encoder Z-Phase (-) 51 EZ2- I Encoder Z-Phase (-)

18 PEL7/MDI19 I Positive End Limit 52 PEL8/MDI22 I Positive End Limit

19 MEL7/MDI20 I Minus End Limit 53 MEL8/MDI23 I Minus End Limit

20 ORG7/MDI21 I Origin Signal 54 ORG8/MDI24 I Origin Signal

21 PEL9/MDI25 I Positive End Limit 55 PEL10/MDI28 I Positive End Limit

22 MEL9/MDI26 I Minus End Limit 56 MEL10/MDI29 I Minus End Limit

23 ORG9/MDI27 I Origin Signal 57 ORG10/MDI30 I Origin Signal

24 PEL11/MDI31 I Positive End Limit 58 PEL12/MDI34 I Positive End Limit

25 MEL11/MDI32 I Minus End Limit 59 MEL12/MDI35 I Minus End Limit

26 ORG11/MDI33 I Origin Signal 60 ORG12/MDI36 I Origin Signal

27 IPT_COM I Common for Digital Input 61 IPT_COM I Common for Digital Input

28 DO_COM I Common for Digital Output 62 DI1 I General Digital Input

29 EA3+ I Encoder A-Phase (+) 63 DI2 I General Digital Input

30 EA3- I Encoder A-Phase (-) 64 EMG I Emergency Stop Signal

31 EB3+ I Encoder B-Phase (+) 65 EMG_COM - Emergency Stop Common

32 EB3- I Encoder B-Phase (-) 66 DO1 O General Digital Output

33 EZ3+ I Encoder Z-Phase (+) 67 DO2 O General Digital Output

34 EZ3- I Encoder Z-Phase (-) 68 DO_COM - Common for Digital Output

Table 2-2: CN5 Pin Assignment

24 Installation

2.8 SP1 Pin Assignment: cPCI-8312(H) I/O Connec-
tor

No Name I/O Function Axis No Name I/O Function Axis

1 DO_COM - Common for
Digital Output 35 DO1 O General Digital Output

2 PEL1/MDI1 I Positive End Limit 36 DO2 O General Digital Output

3 MEL1/MDI2 I Minus End Limit 37 PEL2/MDI4 I Positive End Limit

4 ORG1/MDI3 I Origin Signal 38 MEL2/MDI5 I Minus End Limit

5 PEL3/MDI7 I Positive End Limit 39 ORG2/MDI6 I Origin Signal

6 MEL3/MDI8 I Minus End Limit 40 PEL4/MDI10 I Positive End Limit

7 ORG3/MDI9 I Origin Signal 41 MEL4/MDI11 I Minus End Limit

8 PEL5/MDI13 I Positive End Limit 42 ORG4/MDI12 I Origin Signal

9 MEL5/MDI14 I Minus End Limit 43 PEL6/MDI16 I Positive End Limit

10 ORG5/MDI15 I Origin Signal 44 MEL6/MDI17 I Minus End Limit

11 IPT_COM/

EMG_COM -

Common
for

Digital
Input

45 ORG6/MDI18 I Origin
Signal

12 EA1+ I Encoder A-Phase (+) 46 EA2+ I Encoder A-Phase (+)

13 EA1- I Encoder A-Phase (-) 47 EA2- I Encoder A-Phase (-)

14 EB1+ I Encoder B-Phase (+) 48 EB2+ I Encoder B-Phase (+)

15 EB1- I Encoder B-Phase (-) 49 EB2- I Encoder B-Phase (-)

16 EZ1+ I Encoder Z-Phase (+) 50 EZ2+ I Encoder Z-Phase (+)

17 EZ1- I Encoder Z-Phase (-) 51 EZ2- I Encoder Z-Phase (-)

18 PEL7/MDI19 I Positive End Limit 52 PEL8/MDI22 I Positive End Limit

19 MEL7/MDI20 I Minus End Limit 53 MEL8/MDI23 I Minus End Limit

20 ORG7/MDI21 I Origin Signal 54 ORG8/MDI24 I Origin Signal

21 PEL9/MDI25 I Positive End Limit 55 PEL10/MDI28 I Positive End Limit

22 MEL9/MDI26 I Minus End Limit 56 MEL10/MDI29 I Minus End Limit

23 ORG9/MDI27 I Origin Signal 57 ORG10/MDI30 I Origin Signal

24 PEL11/MDI31 I Positive End Limit 58 PEL12/MDI34 I Positive End Limit

25 MEL11/MDI32 I Minus End Limit 59 MEL12/MDI35 I Minus End Limit

26 ORG11/MDI33 I Origin Signal 60 ORG12/MDI36 I Origin Signal

27 IPT_COM/

EMG_COM -

Common
for

Digital
Input

61 EMG I
Emergency

Stop
Signal

28 P_GND - Common for
Pulse Interface 62 AD1 I Analog Input

29 OUT1+ O Pulse signal (+) 63 DIR1+ O Dir. signal (+)

30 OUT1- O Pulse signal (-) 64 AD2 I Analog Input

Table 2-3: SP1 Pin Assignment

Installation 25

Note: *MDI# is for general purpose input if it is not used for motion

2.9 CN3 Pin Assignment: TTL output Connector on
bracket

31 OUT2+ O Pulse signal (+) 65 DIR1- O Dir. signal (-)

32 OUT2- O Pulse signal (-) 66 DA1 O Analog Output

33 DIR2+ O Dir. signal (+) 67 DA2 O Analog Output

34 DIR2- O Dir. signal (-) 68 A_COM - Analog Ground

No Name I/O Function Axis No Name I/O Function Axis

1 GND - Signal Ground 2 GND - Signal Ground
3 TDO1 O TTL Output 1 4 TDO2 O TTL Output 2
5 TDO3 O TTL Output 3 6 TDO4 O TTL Output 4
7 TDO5 O TTL Output 5 8 TDO6 O TTL Output 6
9 +5V - +5V Supply 10 NC - Not connected pin

Table 2-4: CN3 Pin Assignment

No Name I/O Function Axis No Name I/O Function Axis

Table 2-3: SP1 Pin Assignment

26 Installation

2.10 HS1A - HS2B Pin Assignments: HSL Communi-
cation Signal (RJ-45)

PIN Signal

PIN 1 NC
PIN 2 NC
PIN 3 TXD+
PIN 4 RXD-
PIN 5 RXD+
PIN 6 TXD-
PIN 7 NC
PIN 8 NC

Table 2-5: HS1A - HS2B Pin Assignment

Signal Connections 27

3 Signal Connections
Signal connections of all I/O’s are described in this chapter. Refer
to the contents of this chapter before wiring any cables between
the 8372+/8366+ and any motor drivers

3.1 SSCNet Servo Driver Connection

Figure 3-1: Wiring for 6 Axes (PCI-8372+/8366+)

Figure 3-2: Wiring for 12 Axes (PCI-8372+)

PCI-8372+
PCI-8366+

28 Signal Connections

Figure 3-3: Wiring for cPCI-8312(H)

Figure 3-4: SSCNet Cable:

 SSCNET Servo-amp (MR-J2S-B) for 6 drivers Max.

SSCNET Cable
MR-J2HBUS

SSCNET Servo-amp (MR-J2S-B) for 6 drivers Max.

SSCNET Cable
MR-J2HBUS

SC1

SC2

MPC-
8372/66
CPCI-

8312(H)

cPCI-8312(H)

Signal Connections 29

3.2 Encoder Feedback Signals: EA, EB and EZ

The encoder feedback signals include EA, EB, and EZ signals.
EA and EB are used for position counting, and EZ is used for zero
position indexing. The input circuit of the EA, EB, and EZ signals
is shown in the diagram below.

Pin No. Name Description

CN5 SP1
12 12 EA1+ Encoder A-Phase (+)
13 13 EA1- Encoder A-Phase (-)
14 14 EB1+ Encoder B-Phase (+)
15 15 EB1- Encoder B-Phase (-)
16 16 EZ1+ Encoder Z-Phase (+)
17 17 EZ1- Encoder Z-Phase (-)
46 46 EA2+ Encoder A-Phase (+)
47 47 EA2- Encoder A-Phase (-)
48 48 EB2+ Encoder B-Phase (+)
49 49 EB2- Encoder B-Phase (-)
50 50 EZ2+ Encoder Z-Phase (+)
51 51 EZ2- Encoder Z-Phase (-)
29 -- EA3+ Encoder A-Phase (+)
30 -- EA3- Encoder A-Phase (-)
31 -- EB3+ Encoder B-Phase (+)
32 -- EB3- Encoder B-Phase (-)
33 -- EZ3+ Encoder Z-Phase (+)
34 -- EZ3- Encoder Z-Phase (-)

Table 3-1: Encoder Feedback Signals: EA, EB and EZ

30 Signal Connections

Figure 3-5: Encoder Feedback Signals

Please note that the voltage across each differential pair of
encoder input signals (EA+, EA-), (EB+, EB-) and (EZ+, EZ-)
should be at least 3.5V or higher. Therefore, the output current
must be observed when connecting to the encoder feedback or
motor driver feedback as not to over drive the source. The differ-
ential signal pairs are converted to digital signals EA, EB and EZ
and then fed to the FPGA.

Below are examples of connecting the input signals with an exter-
nal circuit. The input circuit can be connected to an encoder or
motor driver, if it is equipped with: (1) a differential line driver or (2)
an open collector output

Connection to Line Driver Output
To drive the SSCNET board encoder input, the driver output must
provide at least 3.5V across the differential pairs with at least 6 mA
driving capacity. The ground level of the two sides must also be
tied together.

Figure 3-6: Line Drive Output Connection

Signal Connections 31

Connection to Open Collector Output
To connect with an open collector output, an external power sup-
ply is necessary. Some motor drivers can provide the power
source. The connection between the SSCNET board, encoder,
and the power supply is shown in the diagram below. Note that an
external current limiting resistor R is necessary to protect the
SSCNET board input circuit. The following table lists the sug-
gested resistor values according to the encoder power supply

If=6mA max.

Figure 3-7: Open Collector Output Connection

Encoder Power (VDD) External Resistor R

+5V 0 Ohms (None)

+12V 1.8kΩ
+24V 4.3kΩ
Table 3-2: Encoder Power

32 Signal Connections

3.3 PEL, MEL, ORG, EMG and General Purpose DI

Pin No. Name Description

CN5 SP1
2 2 PEL1/MDI1 Positive End Limit / Axis 0
3 3 MEL1/MDI2 Minus End Limit / Axis 0
4 4 ORG1/MDI3 Origin Signal / Axis 0

37 37 PEL2/MDI4 Positive End Limit / Axis 1
38 38 MEL2/MDI5 Minus End Limit / Axis 1
39 39 ORG2/MDI6 Origin Signal / Axis 1
5 5 PEL3/MDI7 Positive End Limit / Axis 2
6 6 MEL3/MDI8 Minus End Limit / Axis 2
7 7 ORG3/MDI9 Origin Signal / Axis 2

40 40 PEL4/MDI10 Positive End Limit / Axis 3
41 41 MEL4/MDI11 Minus End Limit / Axis 3
42 42 ORG4/MDI12 Origin Signal / Axis 3
8 8 PEL5/MDI13 Positive End Limit / Axis 4
9 9 MEL5/MDI14 Minus End Limit / Axis 4

10 10 ORG5/MDI15 Origin Signal / Axis 4
43 43 PEL6/MDI16 Positive End Limit / Axis 5
44 44 MEL6/MDI17 Minus End Limit / Axis 5
45 45 ORG6/MDI18 Origin Signal / Axis 5
18 18 PEL7/MDI19 Positive End Limit / Axis 6
19 19 MEL7/MDI20 Minus End Limit / Axis 6
20 20 ORG7/MDI21 Origin Signal / Axis 6
52 52 PEL8/MDI22 Positive End Limit / Axis 7
53 53 MEL8/MDI23 Minus End Limit / Axis 7
54 54 ORG8/MDI24 Origin Signal / Axis 7
21 21 PEL9/MDI25 Positive End Limit / Axis 8
22 22 MEL9/MDI26 Minus End Limit / Axis 8
23 23 ORG9/MDI27 Origin Signal / Axis 8
55 55 PEL10/MDI28 Positive End Limit / Axis 9
56 56 MEL10/MDI29 Minus End Limit / Axis 9

Table 3-3: PEL, MEL, ORG, EMG and General Purpose DI

Signal Connections 33

Note: MDI# is for general purpose input if it is not used for motion

57 57 ORG10/MDI30 Origin Signal / Axis 9
24 24 PEL11/MDI31 Positive End Limit / Axis 10
25 25 MEL11/MDI32 Minus End Limit / Axis 10
26 26 ORG11/MDI33 Origin Signal / Axis 10
58 58 PEL12/MDI34 Positive End Limit / Axis 11
59 59 MEL12/MDI35 Minus End Limit / Axis 11
60 60 ORG12/MDI36 Origin Signal / Axis 11
62 -- DI1 General Digital Input
63 -- DI2 General Digital Input
27 27 IPT_COM Common for Digital Input
11 11 IPT_COM Common for Digital Input
61 -- IPT_COM Common for Digital Input
64 61 EMG Emergency Stop Signal
65 11,27 EMG_COM Emergency Stop Common

Pin No. Name Description

Table 3-3: PEL, MEL, ORG, EMG and General Purpose DI

34 Signal Connections

Figure 3-8: Source Type

Control
Circuit

Inside PCI-8372

+12/24 V

GND

PEL1

MEL1

ORG1

DI

IPT
COM

EMG

EMG
COM

SSCNET Board

Signal Connections 35

Figure 3-9: Skin Type

36 Signal Connections

3.4 General Purpose DO

Figure 3-10: General Purpose DO

Note: For Example: R=4.7K and PWR=24V

Pin No. Name Description

CN5 SP1
28 1 DO_COM Common for Digital Output
66 35 DO1 General Digital Output
67 36 DO2 General Digital Output
68 -- DO_COM Common for Digital Output

Table 3-4: General Purpose DO Pinout

Signal Connections 37

3.5 TTL Output
The PCI-8372+/8366+ provides 6 general-purposed TTL digital
outputs. The TTL output is available via CN3 of the bracket. Pin
definition is defined in the below.

Figure 3-11: TTL Output

Pin No. Name Function

1 DGND Digital ground
2 DGND Digital ground
3 TDO1 Digital Output 1
4 TDO2 Digital Output 2
5 TDO3 Digital Output 3
6 TDO4 Digital Output 4
7 TDO5 Digital Output 5
8 TDO6 Digital Output 6
9 VCC VCC +5V

Table 3-5: TTL Output Pinout

PCI-8372+
PCI-8366+

38 Signal Connections

3.6 Analog Output

The SSCNET board has two bipolar analog output channels.

Figure 3-12: D/A Output Signals

3.7 Analog Input (cPCI-8312(H) Only)

The cPCI-8312(H) provides two single-ended analog input chan-
nels. The analog signal input range can be set as ±10V, ±5V or
±2.5V by software.

Pin No. Name Description

CN5 SP1
1 68 A_COM Common for Digital Output
35 66 DA1 Analog Output 1
36 67 DA2 Analog Output 2

Table 3-6: Analog Output Pinout

Pin No. Name Description

SP1
68 A_COM Common for Digital Output
62 AD1 Analog Input 1
64 AD2 Analog Input 2

Table 3-7: Analog Input Pinout

Signal Connections 39

Figure 3-13: Analog Input

3.8 Pulse Output (cPCI-8312(H) Only)

There are two axis pulse output signals on the cPCI-8312(H). For
each axis, two pairs of OUT and DIR signals are used to transmit
the pulse train and to indicate the direction. The OUT and DIR sig-
nals can also be programmed as CW and CCW signal pairs. In
this section, the electrical characteristics of the OUT and DIR sig-
nals are detailed. Each signal consists of a pair of differential sig-
nals. For example, OUT2 consists of OUT2+ and OUT2- signals.

Pin No. Name Description

SP1
28 P_GND Common ground of pulse interface
29 OUT1+ Pulse signal (+)
30 OUT1- Pulse signal (-)
63 DIR1+ Dir Signal (+)
65 DIR1- Dir Signal (-)
31 OUT2+ Pulse signal (+)
32 OUT2- Pulse signal (-)
33 DIR2+ Dir Signal (+)
34 DIR2- Dir Signal (-)

Table 3-8: Pulse Output Pinout

40 Signal Connections

Figure 3-14: Wiring Diagram for OUT and DIR Signals

Warning: The sink current must not exceed 20mA or the 2631 will be
damaged!

Non-differential type wiring example:
Choose either OUT/DIR+ and OUT/DIR- to connect to driver’s
OUT/DIR

Figure 3-15: OUT/DIR SIgnal Selection

Notice that users can choose one pair of OUT/DIR from SSCNET
board to connect driver’s OUT/DIR. For example: Choose (+) pair,
then OUT+ must be connected to driver’s OUT pin and DIR+ must
be connected to driver’s DIR pin. Of course, OUT- and DIR- are
useless. You can ignore it.

Operation Theory 41

4 Operation Theory
This chapter describes the detail operation of the SSCNET board
card

4.1 Architecture

4.1.1 HOST PC and SSCNET Board
The communication between the host PC and the SSCNET board
is through a 16Kbyte Dual Port RAM that is integrated inside the
SSCNET board. Both the Host CPU and DSP can read/write on it.

For the hardware level, the SSCNET board is a small microcom-
puter. It has its own processor (the DSP), address and data bus,
its data memory, and peripherals use for SSCNet communication
protocol. Thus, the host CPU does not pay any attention on the
DSP. Only when the application program requests information or
sends command motions to the SSCNet control board, the host
PC needs to perform the read/write functions to the DPRAM.

4.1.2 SSCNet Communication
The SSCNET board controls servomotors through the SSCNet
communication. The communication is a master-slave architec-
ture. Every 0.888 ms, the SSCNET board (master) sends a com-
mand, in which the position command is involved, to each servo
driver (the slave) and in return the servo drivers report back to the
SSCNET board, providing the SSCNET board with information
about its position, velocity, and other specified servo data.

Communication is synchronous within the control cycle of
the controller and the sending/receiving is executed every
control cycle with CRC check.
Broadcast transmission is conducted from the SSCNET
board to the servo amplifier
Transmission from the servo driver to the SSCNET board is
conducted through a time-division system, and SSCNET
board reads data in a batch format.

42 Operation Theory

4.2 Frame Architecture
In this section, the frame architecture, which is the basis of all
motion functions, is described.

4.2.1 Frame Introduction
A frame is a mathematical description of a piece of motion trajec-
tory. When user gives a motion command, for example:
start_sr_move(), the motion command will be translated into sev-
eral frames. Each frame represents some pieces of the whole
motion trajectory. Then, the frame data is downloaded to the SSC-
NET board.

As mentioned in previous sections, the SSCNET board is
equipped with a DSP. It is in charge of calculating the frame data,
so that the original motion trajectory information can be retrieved.

This is an example to illustrate how a frame works.

Suppose a user want an axis to move 10mm in distance. The
acceleration time is 0.5 sec, deceleration time is 0.2 sec, and max-
imum velocity is 5mm/sec. So, he would call the function
start_tr_move() function and provide the correct parameters in his
application program. The library then splits the motion command
into several frames, and downloads these frames to the SSCNET
board. See flow chart below:

Operation Theory 43

Figure 4-1: Frame Flowchart

Example of start_tr_move:
[Step 1]:

User calls start_tr_move(0, 10.0, 0, 5.0, 0, 0.5, 0.3) in his program.

The meaning of each parameter:

Axis No = 0, Dist = 10.0 mm, Stat velocity = 0,

Maximum velocity = 5.0 mm/sec, Final velocity = 0, Tacc = 0.5,
Tdec = 0.3

[Step 2]:

DLL function start_tr_move() is invoked to solve the frames of this
motion command. Assumes that the absolution position before

44 Operation Theory

start_tr_move is ‘0’. Start_tr_move will be disassembled into 3
frames.

(1)X(t) = 10 * t^2 , t = 0 ~ 0.5
(2)X(t) = 1.25 + 5 * t , t = 0 ~ 1.6
(3)X(t) = 9.25 + 5*t - 16.666667 * t^2 , t = 0 ~ 0.3

[Step 3]:

Download frame data to the SSCNET board.

[Step 4]:

The DSP of the SSCNET board calculates the frame data to
obtain the trajectory information.

4.3 Single Motion
In this section, single motion functions are discussed. Single
motion means the motion is commanded by one function call only.
For example, start_sr_move(), this function will allow an axis to
move a certain distance with a specified speed and accel/decel
time.

Single motion functions can be categorized into the following types
according to their functionality.

4.3.1 Single axis velocity motion
In this section, the following functions are discussed.

tv_move(Axis, StrVel, MaxVel, Tacc)
sv_move(Axis, StrVel, MaxVel, Tacc, Tlacc)

The single axis velocity motion function will allow the axis to accel-
erate from a starting velocity, ‘StrVel’, to a specified constant
velocity, ’MaxVel’. The axis will continue to travel at this constant
velocity until the velocity is changed by inserting the function

t0 t1 t2 t3 Period
(1) 0 0 10 0 0.5
(2) 1.25 5 0 0 1.6
(3) 9.25 5 -16.667 0 0.3

Table 4-1: start_tr_move Data Table

Operation Theory 45

tv_change(), sv_change() or stopped by the functions tv_stop(),
sv_stop(), emg_stop().

Two kinds of acceleration method are available. By using
tv_move(), the acceleration is constant as shown in the in left dia-
gram below. By using sv_move(), the derivative of acceleration,
the ‘jerk’, is a constant as Illustrated in the right diagram below.

Figure 4-2: Constant Jerk Graph

4.3.2 Single axis P to P motion
In this section, the following functions are discussed.

start_tr_move(Axis, Dist, StrVel, MaxVel, FinVel,
Tacc, Tdec)

start_sr_move(Axis, Dist, StrVel, MaxVel, FinVel,
Tacc, Tdec, Tlacc, Tldec)

start_ta_move(Axis, Pos, StrVel, MaxVel, FinVel,
Tacc, Tdec)

start_sa_move(Axis, Pos, StrVel, MaxVel, FinVel,
Tacc, Tdec, Tlacc, Tldec)

Single axis P-to-P motion functions will allow the axis to move a
specified distance or move to a specified position. The first four
functions are pretty straightforward. ‘t’, ’r’, ’s’ and ’a’ characterizes

46 Operation Theory

the function and provides information about the velocity profile
and position method to achieve the target position.

‘t:’ The velocity profile is ‘Trapezoidal’. That is the accelera-
tion and deceleration is a constant (shown in left diagram).
‘s:’ The velocity profile is ‘S-Curve’. This is a derivative of
acceleration, ‘jerk’, and is a constant (shown in right dia-
gram).
‘r:’ The axis moves a distance ‘Relative’ from a specified
point. Specified by parameter ‘Dist’.
‘a:’ The axis moves to an ‘Absolute’ position regardless of
its current position. It is specified by the parameter ‘Pos’.

Figure 4-3: Single Axis Motion

The distance moved during acceleration and deceleration can be
calculated using the following formula. (For both trapezoidal and
S-curve profiles)

Dist_acc = 0.5 * (StrVel + MaxVel) * Tacc
Dist_dec = 0.5 * (FinVel + MaxVel) * Tdec

In some cases, the distance moved may not be long enough. For
example, the ‘Dist ‘ in start_tr_move() is too small or ‘Pos’ in
start_sa_move() is too close to the current position. These 4 func-
tion calls mentioned above automatically slows down the velocity.
The change in the velocity profile is illustrated in the diagram
below.

Operation Theory 47

Figure 4-4: Motion Function Graphs

Case 1 to case 2: The constant velocity period is reduced while
the Tacc, Tdec, StrVel, MaxVel and FinVel remain unchanged.

Case 2 to case 3: The constant velocity period vanished, and,
StrVel, MaxVel and FinVel become smaller according to the ratio
described below. While the Tacc and Tdec remain unchanged.

New_StrVel = K * Original_StrVel
New_MaxVel= K * Original_MaxVel
New_FinVel = K * Original_FinVel
Where K = Dist/(Distacc_needed + Distdec_needed)
= Dist/(Distjust_case)

4.3.3 Multi axes velocity motion
In this section, the following functions are discussed.

tv_move_all(Length, *Axis, *StrVel, *MaxVel,
*Tacc)

sv_move_all(Length, *Axis, *StrVel, *MaxVel,
*Tacc, *Tlacc)

Multi axes velocity motion has exactly the same functionality as a
single axis velocity motion except that multi axes velocity motion
can be applied to 2 or more axes simultaneously with all applied
axes beginning to move at the same time, and according to each
axis’s setting, each axis will move to its constant velocity as speci-
fied.

The parameter ‘Length’ is used to indicate how many axes will be
involved. The axes’ numbers are stored in ‘*Axis’, start velocity in
‘*StrVel’, maximum velocity in ‘*MaxVel’, Tacc in ‘*Tacc’.

48 Operation Theory

Note: 1.Each axis runs independently. Thus, a stop function for
each axis must be issued separately.
2.All axes must be on the same card.

4.3.4 Multi axes P to P motion
In this section, the following functions are discussed.

start_tr_move_all(Length, *Axis, *Dist, *StrVel,
*MaxVel, *FinVel, *Tacc, *Tdec)

start_sr_move_all(Length, *Axis, *Dist, *StrVel,
*MaxVel, *FinVel, *Tacc, *Tdec, *Tlacc,
*Tldec)

start_ta_move_all(Length, *Axis, *Pos, *StrVel,
*MaxVel, *FinVel, *Tacc, *Tdec)

start_sa_move_all(Length, *Axis, *Pos, *StrVel,
*MaxVel, *FinVel, *Tacc, *Tdec, *Tlacc,
*Tldec)

Multi axes P-to-P motion has exactly the same functionality as sin-
gle axis P-to-P motion except that multi axes P-to-P motion can be
applied to 2 or more axes simultaneously with all applied axes
beginning to move at the same time, and according to each axis’s
setting, each axis will move to its position or distance as specified

The parameter ‘Length’ is used to indicate how many axes will be
involved. All motion parameters are passed to its function array
just as single axis P to P motion.

Note: 1.Each axis runs independently. Thus, a stop function for
each axis must be issued separately.
2.All axes must be on the same card.

4.3.5 Linear Interpolation
In this section, the following functions are discussed.

start_line_tr_move(Length, *AxisArray,
*DistArray, StrVel, MaxVel, FinVel, Tacc,
Tdec)

start_line_sr_move(Length, *AxisArray,
*DistArray, StrVel, MaxVel, FinVel, Tacc,
Tdec, Tlacc, Tldec)

start_line_ta_move(Length, *AxisArray, *PosArray,
StrVel, MaxVel, FinVel, Tacc, Tdec)

Operation Theory 49

start_line_sa_move(Length, *AxisArray, *PosArray,
StrVel, MaxVel, FinVel, Tacc, Tdec, Tlacc,
Tldec)

These four functions applies to any 2, any 3 or any 4 of the 12
axes in one card, so that these axes can “start simultaneously, and
reach their ending points at the same time” and the ratio of speed
between these axes is a constant value.

2-Axis Linear Interpolation
As in the diagram below, 2 axes linear interpolation means to
move the XY (or any 2 of the 4 axis) position from P0 to P1. The 2
axes start and stop simultaneously, and the path is a straight line.

Figure 4-5: 2-Axis Linear Interpolation

The speed ratio along X-axis and Y-axis is (ΔX: ΔY), respectively,
and the vector speed is:

When calling the 2 axes linear interpolation functions, it is the vec-
tor speed to define the start velocity, StrVel, and maximum veloc-
ity, MaxVel, Both trapezoidal and S-curve profile are available.

For example:
Axis[0] = 0; Axis[1] = 2 ; Dist[0] = 30

; Dist [1] = 40

50 Operation Theory

start_line_tr_move(2, Axis, Dist, 10.0, 50.0,
15.0, 0.3, 0.2)

This cause the two axes (axes 0 & 2) to perform a linear interpola-
tion movement, in which:

ΔX = 30 mm
ΔY = 40 mm
Start vector speed=10mm/sec, X speed=6mm/sec, Y

speed = 8mm/sec
Max. vector speed=50mm/sec, X speed=30mm/sec,Y

speed=40mm/sec
Final vector speed=15mm/sec, X speed=9mm/sec, Y

speed =12mm/sec
Acceleration time = 0.3 sec
Deceleration time = 0.2 sec

Figure 4-6: 2-Axis Linear Interpolation Example

3-Axis Linear Interpolation
Any 3 of the 12 axes of SSCNET board may perform 3 axes linear
interpolation. As the figure below, 3 axes linear interpolation
means to move the XYZ (if axes 0, 1, 2 are selected and assigned
to be X, Y, Z respectively) position from P0 to P1 and start and
stop simultaneously. The path is a straight line in space.

Operation Theory 51

Figure 4-7: 3-Axis Linear Interpolation

The speed ratio along X-axis, Y-axis and Z-axis is (ΔX: ΔY: ΔZ),
respectively, and the vector speed is:

When calling those 3 axes linear interpolation functions, it is the
vector speed, which defines the start velocity, ‘StrVel’, maximum
velocity, ‘MaxVel’ and final velocity ‘FinVel’. Both trapezoidal and
S-curve profile are available.

For example:
Axis[0] = 0; Axis[1] = 1; Axis[2] = 2 ;
Dist[0] = 10; Dist[0] = 20; Dist [1] = 30
start_line_tr_move(3, Axis, Dist, 10.0, 50.0,

10.0, 0.3, 0.2)

This causes the two axes (axes 0 & 2) to perform a linear interpo-
lation movement, in which:

ΔX = 10 mm
ΔY = 20 mm

52 Operation Theory

ΔZ = 30 mm
Start vector speed=10mm/sec
X spped= 10/ = 2.67 mm/sec
Y spped= 2*10/ = 5.33 mm/sec
z spped= 3*10/ = 8.01 mm/sec
Max. vector speed = 50mm/sec
X spped= 50/ = 13.36 mm/sec
Y spped = 2*50/ = 26.72 mm/sec
z spped = 3*50/ = 40.08 mm/sec
Final speed=10mm/sec
X spped= 10/ = 2.67 mm/sec
Y spped = 2*10/ = 5.33 mm/sec
z spped = 3*100/ = 8.01 mm/sec
Acceleration time = 0.3 sec
Deceleration time = 0.2 sec

Figure 4-8: 3-Axis Linear Interpolation Example

4-Axis Linear Interpolation
In 4 axes linear interpolation, the speed ratio along X-axis, Y-axis,
Z-axis and U-axis Is (ΔX: ΔY: ΔZ: ΔU), respectively, and the vector
speed is:

Axis 0
Velocity

Axis 1
Velocity

Linear
Velocity

0.3 Sec 0.2 Sec

50 mm/sec

13.36 mm/sec

26.72 mm/sec

Axis 2
Velocity 40.08 mm/sec

Operation Theory 53

Note: 1. Each axis runs independently. Thus, a stop function for
each axis must be issued separately.
2. All axes must be of the same card

4.3.6 Circular Interpolation
Any 2 of the 12 axes of SSCNET board can perform circular inter-
polation. As the example below, the circular interpolation means
XY (if axes 0, 1 are selected and assigned to be X, Y respectively)
axes simultaneously start from initial point, (0,0) and stop at end
point,(1800,600). The path between them is an arc, and the Max-
Vel is the tangential speed

For example:
Axis[0] = 0; Axis[1] = 2 ; Dist[0] =

1000 ; Dist [1] = 0
start_arc_tr_move(2, Axis, Dist, -143.1, 10.0,

50.0, 15.0, 0.1, 0.2)
This causes the two axes (axes 0 & 2) to perform

a circular interpolation movement, in which:
Center distance X = 1000 mm
Center distance Y = 0 mm
Moving angle = -143 degree
Start vector speed=10mm/sec
Max. vector speed=50mm/sec
Final vector speed=15mm/sec
Acceleration time = 0.1 sec
Deceleration time = 0.2 sec

54 Operation Theory

Figure 4-9: Circular interpolation

To specify a circular interpolation path, the following parameters
must be clearly defined.

Center point: The coordinate of the center of arc (In absolute
mode) or the off_set distance to the center of arc (In relative
mode)

Angle: The moving angle, either clockwise (-) or counter clock-
wise (+)

4.3.7 Change Velocity on the Fly
In this section, the following functions are discussed.

tv_stop(Axis, Tdec)
sv_stop(Axis, Tdec)
emg_stop(Axis)
tv_change(Axis, SpeedFactor, Tacc)
sv_change(Axis, SpeedFactor, Tacc,)

The first three functions are used to stop a moving axis. The last
two are used to adjust the moving speed of an axis. tv_stop()
function stops the specified ‘Axis’ with a deceleration time period
,’Tdec’, and a “Trapezoidal” velocity profile during deceleration.
See diagram below.

X

Y

(0,0) Center
(1000,0)

(1800,600)

Operation Theory 55

Figure 4-10: Stop a Moving Axis

The sv_stop() function stops a specified ‘Axis’ with deceleration
time period, ’Tdec’, and a “S-Curve” velocity profile during deceler-
ation. See diagram below.

Figure 4-11: Stop with Deceleration

The emg_stop() function stops the a specified ‘Axis’ immediately
without deceleration. See diagram below.

Figure 4-12: Immediate Stop

56 Operation Theory

The tv_change() function changes the moving speed of a specified
‘Axis’ with acceleration time period, ’Tacc’, and a ‘Trapezoidal’
velocity profile during acceleration. The second parameter ‘Speed-
Factor’ is used to define the new speed. For example, if the speci-
fied axis start its motion using tv_move() function and the ‘MaxVel’
is set to be 10 mm/sec. Then tv_change() is applied with ‘Speed-
Factor’ = 1.5. The new speed is 1.5 * 10 = 15 mm/sec. As was
shown below.

Figure 4-13: Moving Change

The sv_change() function changes the moving speed of a speci-
fied ‘Axis’ with acceleration time period, ’Tacc’, with a “S-Curve”
velocity profile during acceleration.

Figure 4-14: Change with S-Curve Velocity

If a second tv_change() or sv_change() function is applied, then
‘SpeedFactor’ will refer to the original ‘MaxVel’, ie, the original
maximum velocity defined at the beginning of the motion function.

Operation Theory 57

Note: 1. All change speed on the fly function calls can be applied
any time when an axis is moving, no matter which function
started its motion.
2. tv_change(), sv_change() with ‘SpeedFactor’ = 0 doesn’t
have the same affect as tv_stop() , sv_stop(). For tv_stop(),
sv_stop() will complete its motion, while tv_change(),
sv_change() will set speed to zero.

4.3.8 Position Compensation on the Fly
In this section, the following function is discussed.

set_position_compensate(I16 axis, F64
Compen_value);

This function can be used to change the target position when an
axis is commanded by the following single axis P-to-P motion
functions:

start_tr_move() , start_ta_move()
start_sr_move() , start_sa_move()

Figure 4-15: Position Compensation on the Fly

58 Operation Theory

Theory of position compensation
This function is to change the target position defined originally by
the previous motion functions. After changing position, the axis will
move to the new target position and totally forget the original posi-
tion. This operation can only be applied on the constant velocity
section. Acceleration and deceleration section is not allowed for
this function. The acceleration and deceleration rate, and StrVel
and MaxVel are kept the same as the original setting

Constrains of position compensation :
1. It is applicable only after start_tr_move(),

start_ta_move() start_sr_move(), and start_sa_move()
functions. The moving distance must be long enough so
that ‘MaxVel’ can be achieved.

2. It will not work if it is applied after the axis has entered
the deceleration region.

3. The rest distance must be long enough for minus posi-
tion compensation. The reset distance must be larger
than deceleration section.

For example:

A trapezoidal absolute motion is applied:
start_ta_move(0, 100, 0, 10, 0, 0.5, 1).

This causes axis 0 to move to position 100mm, and the maximum
velocity is 10 mm/sec. The necessary number of pulses to accel-
erate is 0.5*10*0.5 = 2.5mm. The necessary number of pulses to
decelerate is 0.5*10*1 = 5 mm. Total distance is 100mm and it is
larger than the summation of acceleration and deceleration dis-
tance. That means it can reach the maximum velocity. As for the
deceleration distance is 5mm, the minus compensative command
must be issued 5mm in advanced before end.

Refer to the following table. At position “AppliedPos” the
set_position_compensate (0, Compen_Value) is applied.

Compen_Value AppliedPos Final Position Note

5 10 105 OK

Table 4-2: set_position_compensate Values

Operation Theory 59

4.4 Home move
In this section, the following functions are discussed.

set_home_mode(Axis, HomeMode)
home_move(Axis, StartVel, MaxVel, FinVel, Tacc)

After configuring set_home_mode(), user may use the
home_move() function to command the axis to start returning
home. The ‘StrVel’ defines the starting velocity, the ‘Tacc’ define
the acceleration time and the axis continues traveling at the con-
stant velocity until it reaches the ORG switch.

Note: The sign of ‘MaxVel’ defines the moving direction, while the
sign of ‘StrVel’ and ‘FinVel’ is meaningless. User must care-
fully define the direction of the home return motion, so that
the axis can find the ORG switch correctly.

Mode 0: ORG only

Figure 4-16: Mode 0 Home

15 90 115 OK
-5 95 95 OK
-5 96 100 Not allowed

Compen_Value AppliedPos Final Position Note

Table 4-2: set_position_compensate Values

60 Operation Theory

1. Accelerate from StrVel to MaxVel.

2. Travel with constant velocity ‘MaxVel’ until ORG turns
ON.

3. Slow done to stop.

4. Return and accelerate to ‘FinVel’.

5. Travel with constant velocity ‘FinVel’ until ORG turn Off.

6. Slow done to stop.

7. Searching ORG rising edge with velocity = 1 pulse per
SSCNet cycle time until ORG turn ON, then stop and fin-
Continuous Motion

In this section, the operation of continuous motion is introduced.
To apply continuous motion function user must first construct the
trajectory.

The procedures of constructing a continuous motion trajectory
includes:

Declaration for beginning of motion list
Add Trajectory pieces
Declare end of motion list

Beside on-line construction of the motion trajectory in the applica-
tion program, an off-line method using the “Trajectory generator”
and then save it to file, and using the ‘load_trajectory_file()’ func-
tion to load the motion trajectory will produce the same result.

Load Trajectory file

After constructing the motion trajectory, user should be able to
apply it to the continuous motion operation.

Start/Stop command

4.4.1 Declaration for Beginning of Motion List
In this section, the following function is discussed.

start_motion_list(Length, *AxisArray)

This function is used to declare the variables for the motion list
describing a continuous motion trajectory. After the declaration for

Operation Theory 61

start_motion_list(), user can call the functions discussed in next
section to piece-wisely extend the trajectory.

start_motion_list() automatically checks whether the previous
motion list is finished or not. If the previous list is not completed it
will return an error.

The first parameter ‘Length’ defines the total number of axes that
will be involved in the continuous motion. The second parameter
‘*AxisArray’ is an array, and each array element stores the axis
No.

For example:

If axis 0 and axis 5 are to perform a continuous motion, then the
command line would be: start_motion_list(2, {0,5}) in the program.

If axis 0, axis 1 and axis 5 are to perform a continuous motion,
then the command line would be: start_motion_list(3, {0,1,5}) in
the program.

Note that all specified axis no. must be of the same card. And the
‘Length’ must not exceed ‘4’.

4.4.2 Add Trajectory pieces
In this section, the following functions are introduced.

add_line_tr_move(*DistArray, StrVel, MaxVel,
FinVel, Tacc, Tdec)

add_line_sr_move(*DistArray, StrVel, MaxVel,
FinVel, Tacc, Tdec, Tlacc, Tldec)

add_line_ta_move(*PosArray, StrVel, MaxVel,
FinVel, Tacc, Tdec)

add_line_sa_move(*PosArray, StrVel, MaxVel,
FinVel, Tacc, Tdec, Tlacc, Tldec)

add_arc_tr_move(*CenterArray, Angle, StrVel,
MaxVel, FinVel, Tacc, Tdec)

add_arc_sr_move(*CenterArray, Angle, StrVel,
MaxVel, FinVel, Tacc, Tdec, Tlacc, Tldec)

add_arc_ta_move(*CenterArray, Angle, StrVel,
MaxVel, FinVel, Tacc, Tdec)

add_arc_sa_move(*CenterArray, Angle, StrVel,
MaxVel, FinVel, Tacc, Tdec, Tlacc, Tldec)

62 Operation Theory

add_arc2_sa_move(*AxisArray, *CenterPosArray,
Angle, StrVel, MaxVel, FinVel, Tacc, Tlacc,
Tdec, Tldec)

add_arc2_sr_move(*AxisArray, *CenterDistArray,
Angle, StrVel, MaxVel, FinVel, Tacc, Tlacc,
Tdec, Tldec)

add_arc2_ta_move(*AxisArray ,*CenterPosArray,
Angle, StrVel, MaxVel, FinVel, Tacc, Tdec)

add_arc2_tr_move(*AxisArray, *CenterDistArray,
Angle, StrVel, MaxVel, FinVel, Tacc, Tdec)

add_dwell(Sec)
smooth_enable(Flag, R)

 These functions are used to construct a continuous motion trajec-
tory. After declaration for the motion list, user can call these func-
tions. Each function represents a piece of motion trajectory.

The functions could be categorized into four types of trajectories,
and any combinations of added trajectory functions are possible.

Line: add_line_XX_move
Arc: add_arc_XX_move, add_arc2_XX_move
Dwell: add_dwell
Smooth: smooth_enable

Adding a line trajectory
When any of the following four functions are executed:

add_line_tr_move(),add_line_sr_move()
dd_line_ta_move(), add_line_sa_move()

A straight line will be added into the continuous motion trajectory.
The parameter definitions of this added line functions the same as
those in a single motion linear interpolation. The following is an
example:

For example:

(Suppose both axes 0 & 2 are at position ‘0’)
start_motion_list(2, {0,2})
add_line_tr_move({100,0}, 0, 100, 100, 1.0, 0)
add_line_sr_move({60,80}, 100, 100, 80, 0, 1, 0,

0)
add_line_ta_move({320,110}, 80, 100, 100, 0.5, 0)
add_line_sa_move({320,160} 100, 100, 0, 0, 1.0,

0, 0.5)

Operation Theory 63

end_motion_list()

The resulting 2-D trajectory is:

Figure 4-17: Example 2-D Trajectory

Adding an arc trajectory
When any of the following 8 functions are executed

add_arc_tr_move(), add_arc_sr_move()
add_arc_ta_move(), add_arc_sa_move()
add_arc2_tr_move(), add_arc2_sr_move()
add_arc2_ta_move(), add_arc2_sa_move()

A 2-D arc will be added to the continuous motion trajectory. The
first 4 are used after the start_motion_list() function with
‘Length’=2, and the parameter definitions of this added arc func-
tions the same as those of the single motion circular interpolation.
The last 4 are used after the start_motion_list() function with
‘Length’ > 2. The additional parameter AxisArray defines the 2
axes that this arc belongs to. The following are 2 examples:

Example 1:

(Suppose both axes 0 & 2 are at position ‘0’)
start_motion_list(2, {0,2})
add_line_ta_move({100,0}, 0 , 100, 100, 1.0, 0)
add_arc_ta_move({100,50}, -180, 100 , 100 , 100,

0 , 0)
add_line_tr_move({-100,0}, 100, 100, 100, 0 , 0)
add_arc_sr_move({0,-50} ,-180, 100 , 100, 0 ,0,

1.0 , 0 ,0)
end_motion_list()

64 Operation Theory

Figure 4-18: Example 1 - Arc Trajectory

Figure 4-19: Velocity vs. Time

Example 2:

(Suppose both axes 0 ,1 & 2 are at position ‘0’)
start_motion_list(3, {0,1,2})
add_line_ta_move({100,0,0}, 0 , 100, 100, 1.0, 0)
add_arc2_tr_move({1,2}, {0,50}, 180, 100 , 100 ,

100, 0 , 0)
add_line_ta_move({0,0,0}, 100, 100, 0, 0 , 1)
end_motion_list()

Operation Theory 65

Figure 4-20: Example 2 - Arc Trajectory

Figure 4-21: Velocity vs. Time

Add dwell
When add_dwell() function is executed, the motion will be freezed
for a specified period of time, definied by parameter ‘Sec‘ in unit of
second. The following is an example:

Example:

(Suppose both axes 0 & 2 are at position ‘0’)
start_motion_list(2, {0,2})
add_line_tr_move({100,0}, 0 , 100, 0, 1.0,1.0)

66 Operation Theory

add_dwell(0.5)
add_line_sr_move({60,80}, 0 , 150 , 0 , 0.5 , 0.5

, 0 , 0)
add_dwell(1.0)
add_line_ta_move({320,110}, 80 , 100, 100, 0.5,

0)
end_motion_list()

Figure 4-22: Adding Dwell Example

Figure 4-23: Velocity vs. Time

Smoothing trajectory
When smooth_enable() functions is executed, the motion trajec-
tory thereafter will be “rounded”. The following figures show the
rounding cases.

Operation Theory 67

Figure 4-24: Line & Line

Figure 4-25: Line & Arc

Figure 4-26: Arc & Arc

smooth_enable() function could be executed second or more
rimes in order to disable smoothing or to change smoothing radius
‘R’ as program’s need.

For example:

(Suppose both axes 0 & 2 are at position ‘0’)
start_motion_list(2, {0,2})
add_line_tr_move({100,0}, 0 , 100, 100, 1.0, 0)
add_line_sr_move({60,80}, 100 , 100 , 100 , 0 , 0

, 0 , 0)
smooth_enable(1,50)
add_line_ta_move({320,110}, 100 , 100, 100, 0, 0)
smooth_enable(1,20)
add_line_sa_move({320,160} 100 , 100, 0 ,0, 1.0 ,

0 , 0.5)

68 Operation Theory

end_motion_list()

Figure 4-27: Smoothing Example

Figure 4-28: Velocity vs. Time

Note: 1. Smoothing is also applicable for 3D and 4D.
2. The smoothing trajectory guarantees continuous velocity
and acceleration at the smoothing point.

4.4.3 Declaration for End of Motion List
In this section, the following function is discussed.

end_motion_list()

This function is used to declare the variables for the end of motion
list, describing a continuous motion trajectory. After adding trajec-
tories piece-wisely using the function calls discussed above,
end_motion_list() must be called, so that the motion trajectory can

Operation Theory 69

be translated into frame data such that the SSCNET board can
understand.

This function takes no parameters.

4.4.4 Start/Stop command
In this section, the following functions are discussed.

start_cont_move(Void)
stop_cont_move(Void)

After building a trajectory by either on-line (start/end motion list) or
off-line (load trajectory file) method, user can call the
start_cont_move() function to perform the continuous motion tra-
jectory.

If the user has program a second trajectory by either on-line (start/
end motion list) or off-line (load trajectory file) method, the previ-
ous trajectory will be erased and cannot be retrieved except to
reconstruct it again. The user must be careful with this, especially
when multiple threading programs are implemented.

For example:

(Suppose both axes 0 & 2 are at position ‘0’)
start_motion_list(2, {0,2})
add_line_tr_move({100,0}, 0 , 100, 0, 1.0,1.0)
add_dwell(0.5)
add_line_sr_move({60,80}, 0 , 150 , 0 , 0.5 , 0.5

, 0 , 0)
add_dwell(1.0)
add_line_ta_move({320,110}, 80 , 100, 100, 0.5,

0)
end_motion_list()
start_cont_motion() (* motor start moving after

this command*)

4.5 Motion Related IO
In addition to the SSCNet servo motor control capabilities, the
SSCNET board has other I/O functions and can roughly be divided
into 2 categories. They are the motion related I/O’s and the gen-
eral purposed I/O’s. Motion related I/O’s are input and output sig-
nals dedicated to motion. For example: PEL/MEL, position/velocity

70 Operation Theory

feedback…etc. This section will concentrate on the motion related
I/O and their function calls.

4.5.1 Position control and feedback
In this section, the following functions are discussed.

get_position(Axis,*Pos_F, *Pos_C)
set_position(Axis,Pos)
get_target_pos(Axis,*TargetPos)
get_move_ratio(Axis, *PulsePerMM)
set_move_ratio(Axis, PulsePerMM)

Get position information
The SSCNET board controls servo drivers & motors via an SSC-
Net protocol. For each SSCNet cycle (0.888ms), the SSCNET
board sends a command to and receives a response from the
servo driver. Through command and response, an abundant
amount of information is carried in and out, including position com-
mand and position feedback. The function call get_position() will
retrieve such information.

The parameter ‘*Pos_F’ retrieves the current position feedback,
which is reported from the servo driver through SSCNet communi-
cation.

The parameter ‘*Pos_C’ retrieves the current position command,
which is calculated on each SSCNet cycle (0.888 ms) by the DSP.
The command position is sent to the servo driver on each SSCNet
cycle, and the servo drivers will guild its motor to this position.

Set position
The set_position() function allows users to set a current position
counter value for the servo driver.

Get target position information

The target position is a software maintained variable, which is
updated each time a new motion command is executed. This
recorder value is the position where the servomotor will stop at
when the motion completed.

Operation Theory 71

Since the target position is a software recorder for the motion end
position, it doesn’t work under the following conditions:

Case 1: Velocity motion is applied, because velocity motion
have no end position information.
Case 2: emg_stop(), tv_stop() and sv_stop() are executed,
because motion stop before motion completed.

Once it is executed, the get_target_position() value is meaning-
less unless a position relatived motion function is executed.

Move ratio control
“Move ratio” means “How many command pulses will let the axes
move 1.0 mm”. Refer to the figure below; a servomotor is used to
drive the moving part through a geared mechanism.

1. If the resolution of the motor is 8000 pulses/round, and,

2. The resolution of the gear mechanism is 10 mm/round.
(i.e., part moves 100 mm if motor turns one round).

Then the “move ratio” will be 8000/10 = 800 pulses/mm.

Figure 4-29: Move Ratio Control

All motion commands issued by the SSCNET board are in units of
mm or mm/sec. Users need to set the “move ratio” value using
set_move_ratio() according to the mechanical design.

If user want to check current “move ratio” value, get_move_ratio()
function is helpful.

Note: If the set_cnt_to_axis() function is called to allow an encoder
counter to work as a position feedback source, then the
move ratio will refer to the pulses from the encoder counter
rather than from the SSCNET motor driver.

72 Operation Theory

4.5.2 Velocity Feedback
In this section, the following function is discussed.

get_velocity(Axis,*Vel_F, *Vel_C)

This function is used to retrieve the velocity information. Two
velocity values can be retrieved.

‘*Vel_F’: Feedback velocity, just as for position feedback,
the SSCNET board receives the velocity feedback via SSC-
Net communication and is refreshes on each SSCNet cycle
and is measured by the servo driver.
‘*Vel_C’: Command velocity is calculated by the DSP of the
SSCNET board. For each SSCNet cycle, it is calculated
again.

Notice that the speed resolution is one pulse per 0.888ms. It is
about 1126pps

4.5.3 Motion DIO status
In this section, the following functions are discussed.

set_PEL_config(Axis, Logic, mode)
set_MEL_config(Axis, Logic, mode)
set_ORG_config(Axis, Logic)
set_EMG_config(CardID, Logic)
get_PEL_status(Axis, *status)
get_MEL_status(Axis, *status)
get_ORG_status(Axis, *status)
get_EMG_status(CardID, *status)

The “motion DIO” mentioned here refers to the motions dedicated
to the digital I/O signals including PEL, MEL, ORG, and EMG.
Each axis has its own motion DIO signal except EMG. All axes
from a single card shares the same EMG signal.

End-limit signals
The end-limit signals are used to stop the axis when they are
active. There are two possible stop modes, one is “stop imme-
diately”, and, the other is “decelerate to StrVel then stop”. The
parameter ‘mode’ in set_PEL_config(), set_MEL_config() are
used to select the mode. You can use either an ‘a’ contact
switch or a ‘b’ contact switch by setting the parameter ‘Logic’.

Operation Theory 73

PEL signal indicates the end-limit in the positive (plus) direc-
tion. The MEL signal indicates the end-limit in the negative
(minus) direction. When the axis is moving towards the positive
direction, the axis will be stopped when the PEL signal
becomes active, while the MEL signal is no affect in this case,
and vise versa. When the PEL is active, only the negative
(minus) direction motion is allowed.

The PEL/MEL signals can generate an IRQ, if the interrupt ser-
vice routine is enabled. Refer to section 4.9.

The PEL/MEL status can be monitored through the software
function get_PEL_status() and get_MEL_status().

ORG signal
The ORG signal is used, when the axis is operating under the
home return mode. There 1 home return mode (refer to section
4.4) and only one can be selected by setting the ‘HomeMode’
argument in the software function: set_home_mode().

The logic polarity of the ORG signal is selectable using the
parameter ‘Logic’ of set_ORG_config(). The ORG status can
be monitored using the software function get_ORG_status().

EMG signal
Each SSCNET board has an EMG signal input. Whenever this
EMG signal becomes active, all the axes control by in the card
will stop moving immediately.

The EMG signal is capable of generating an IRQ if an interrupt
service routine is enabled, refer to section 4.9.

The logic polarity of the EMG signal is selectable using the
parameter ‘Logic’ of set_EMG_config(). The EMG status can
be monitored using the software function get_EMG_status().

4.5.4 Software limit
In this section, the following functions are discussed.

set_soft_limit(Axis, PLimit, Mlimit, ON_OFF)
get_soft_limit(Axis, *PLimit, *Mlimit, *ON_OFF)

The SSCNET board provides 2 software limits for each axis, one
for the positive and one for the negative direction. Software limits

74 Operation Theory

are extremely useful in protecting a user’s mechanical system, as
it can operate as a physical limit switch, when configured correctly.

The software limit works because the DSP of the SSCNET board
compares the current feedback position with the setting of the soft-
ware limit value every SSCNet cycle. Once the feedback position
is over the software limit, it stops the axis just as the PEL/MEL sig-
nals would. set_soft_limit() is used to configure the software limit.

‘PLimit’ is used for software limit values in the positive
direction.
‘MLimit’ is used for software limit values in the negative (or
minus) direction.
‘ON_OFF’ is used to enable/disable the software limit func-
tion.

Users can read back current software limit setting using the
get_soft_limit() function.

4.5.5 Motion Status
In this section, the following functions are discussed.

axis_status(Axis,*AxisStatus)
motion_status(Axis, *MotionStatus)

Axis status
The function call axis_status() is used to retrieve the servo driver’s
control status information. The parameter ‘Axis’ applies to the
specified axis.

‘AxisStatus’ – the control status of servo driver.

Bit Name Value & Description

0 Not_In_Control 1: Axis not in control
0: Axis is in control

1 In_Servo_Alarm 1: Axis is in servo alarm
0: Axis is not in servo alarm

2 Not_Ready_ON 1: Axis not Ready ON
0: Axis is Ready ON

Table 4-3: Axis Status

Operation Theory 75

Not_In_Control: (Bit 0)
When initializing the SSCNET board card, the on-board DSP com-
mands the SSCNet controller IC to search all axes for SSCNet
servo drivers. If successful, this bit will be set to ‘0’, which means
this axis has an SSCNet servo driver to control. Otherwise, this bit
will be set to ‘1’. And no motion function could be executed on this
axis.

In_Servo_Alarm: (Bit 1)
If the servo driver is in servo alarm state, this bit will be set to ‘1’,
and no motion function could be executed on this axis.

Not_Ready_ON: (Bit 2), Not_Servo_ON: (Bit 3)
The servo on and ready on status is controllable using the
set_servo_on() function, refer to section 4.8.4.

Motion status
The function call motion_status() is used to retrieve the motion sta-
tus information. It is successful only when the ‘AxisStatus’ in
axis_status() is ‘0’. That is this axis must be in control, no alarm,
and ready/servo on. Check if the return code of motion_status() is
equals to ‘0’. The parameter ‘Axis’ applies to the specified axis
only.

‘MotionStatus’ – the motion status.

3 Not_Servo_ON 1: Axis not Servo ON
0: Axis is Servo ON

Bit Name Description

0 Ready_for_Motion Axis is not moving and it is available for another move
command

1 In_Motion Axis is moving and can’t accept another move command

2 In_Home_Move Axis is in moving in home procedure and can’t accept
another move command

Table 4-4: Motion Status

Bit Name Value & Description

Table 4-3: Axis Status

76 Operation Theory

4.5.6 Motion Input as General Input
In this section, the following functions are discussed.

set_mio_mode(CardID,DI_Channel, Mode);
get_MDI_status(I16 CardID, I16 MDI_Channel);

MDI_Channel
The range is from 0 to 35 (The corresponding pin on SP1 is MDI#
minus one)

Mode
Mode=0 makes the motion input function(EL/ORG) active,
Mode=1 makes motion input function inactive.

For example:

If users want to make Axis3's PEL/MEL no effect in motion, they
can use

 set_mio_mode(CARD0, 9, 1); // PEL
 set_mio_mode(CARD0, 10, 1); // MEL

and the ORG remains its function in motion.

3 In_V_Change After lauching velocity change command, this bit will be
ON till the change is done

4 In_P_Change After lauching position change command, this bit will be
ON till the change is done

5 MEL_ON Axis touches the positive limit switch
6 PEL_ON Axis touches the negative limit switch
7 ORG_ON Axis touched the origin switch
8 EMG_ON Emergency input pin is ON
9 P_Soft_ON Axis is reached the positive software limit

10 M_Soft_ON Axis is reached the negative software limit
11 EZ_ON Axis touched the external Index switch
12 Stop_cmd_end After v_stop() command ends, this bit will be ON
13 Stop_cmd_running This bit will be ON if users lauched a v_stop() command

14 Interlock_Pause Once the axis is paused be interlock procedure, this bit
will be ON

Bit Name Description

Table 4-4: Motion Status

Operation Theory 77

You can get the return code from get_MDI_status(CARD0, 9) and
get_MDI_status(CARD0, 10) to read input status. If you don't set
the mode to 1, you still can read the MDI status by this function.

4.6 General Purpose IO
General purpose I/Os are input and output signals that user can
freely use. For example: encode counters, isolated DIO…etc. In
this section, all general purposed I/Os and their function calls are
discussed.

4.6.1 Encoder Counter
In this section, the following functions are discussed.

set_cnt_iptmode(CardID, EncNo, IptMode)
set_cnt_to_axis(CardID, EncNo, Axis, Resolution)
set_cnt_value(CardID, EncNo, Value)
get_cnt_value(CardID, EncNo, *Value)

Each PCI-8372+/8366+ has 3 encoder counters and can be use to
receive A/B phase signals from a linear encoder. Also these
counters can be programmed to receive CW/CCW, OUT/DIR type
signals.

Input circuit
The input circuits for EA, EB and EZ signals are shown below

Figure 4-30: Pulse Input (Encoder Counter) Circuit

Note: The voltage across each differential pair of encoder input
signals (EA+, EA-), (EB+, EB-) and (EZ+, EZ-) should be at
least 3.5V or higher. Therefore, the output current must be
observed when connecting to the encoder feedback or motor
driver feedback as not to over drive the source.

78 Operation Theory

Below are examples of connecting the input signals with an
external circuit. The input circuit can be connected to an
encoder or motor driver, if it is equipped with: (1) a differential
line driver or (2) an open collector output.

Connection to Line Driver Output
To drive the SSCNET board encoder input, the driver output
must provide at least 3.5V across the differential pairs with at
least 6 mA driving capacity. The ground level of the two sides
must also be tied together.

Figure 4-31: Line Driver Circuit

Connection to Open Collector Output
To connect with an open collector output, an external power
supply is necessary. Some motor drivers can provide the
power source. The connection between the SSCNET board,
encoder, and the power supply is shown in the diagram below.
Note that an external current limiting resistor R is necessary to
protect the SSCNET board input circuit. The following table
lists the suggested resistor values according to the encoder
power supply.

+If=6mA max.

Encoder Power (VDD) External Resistor R

+5V 0 Ω (None)

+12V 1.8kΩ
+24V 4.3kΩ

Table 4-5: Encoder Resistor

Operation Theory 79

Figure 4-32: Open Collector Circuit

Configuring encoder counter
Each encoder counter can be configured to receive one of the
following three types of signals using the function call
set_cnt_iptmode().

1. A/B phase (Quadrature pulse signal)

2. CW/CCW (Dual pulses signal)

3. OUT/DIR (Single Pulse signal)

Set counter channel as position feedback of certain axis
The 3 general-purposed counters may work as position feed-
back source for each axis. The second parameter of the
set_cnt_to_axis() function defines which counter is used, the
third parameter defines which axis, and the last parameter
declares the resolution of the counter in units of pulses. ‘Reso-
lution’ is defined as the number of pulses counted by a counter
when the SSCNet motor rotates one revolution. For example:

set_cnt_to_axis(0, 0, 1, 10000.0), this function will

1. Set counter ‘0’ as position feedback source for axis ‘1’

2. Command the PCI-8372+ encoder to count 10000.0
pulses when motor goes one revolution.

A/B phase
In this mode, the EA signal is 90° phase leading or lagging in
comparison with the EB signal. Where “lead” or “lag’ is the
phase difference between the two signals and is caused by the
turning direction of the motor. The up/down counter counts up

80 Operation Theory

when the phase of the EA signal leads the phase of the EB sig-
nal.

A timing waveform is illustrated below.

Figure 4-33: A/B Phase Timing

CW/CCW Mode
In this mode, the pulse from EA causes the counter to count
up, while EB will cause the counter to count down.

OUT/DIR Mode
In this mode, the pulse from EB decides on whether the
counter should increase or decrease, whereas EA count
the number of pulses.

Figure 4-34: OUT/DIR Pulses

The index input (EZ) signal of the encoder is used as the
“ZERO” index. This signal is common to most rotational
motors. EZ can be used to define the absolute position of the
mechanism. When a rising edge of EZ signal is received, it will
clear the encoder counter value to ‘0’.

Counter value read/write
To read the encoder counter value, use the get_cnt_value()
function. The parameter ‘*Value’ returns the counter value. To
set the encoder counter value, use set_cnt_value(). The
counter value will be set as the parameter ‘Value’.

Operation Theory 81

4.6.2 DIO
In this section, the following functions are discussed.

get_di_status(CardID, ChNo, *Sts)
set_do_value(CardID, ChNo, Value)

Each PCI-8372+ board has 2-isolated digital output and 2 isolated
digital input channels. Use the get_di_status() function to retrieve
the current DI status, and set_do_value() to set the DO value.

4.6.3 DA
In this section, the following functions are discussed.

set_da_config(CardID, ChNo, Cfg)
set_da_value(CardID,ChNo,Value)

Each SSCNET board has 2 analog voltage output channels and
can be independently configured using the set_da_config() func-
tion to set the DA to either be a direct DA output or for a velocity
profile output. The default setting is DA direct output.

By using direct DA output, users can control the DA value using
the set_da_value() function. While using velocity profile output will
cause the DA output value to be proportional to the current com-
mand velocity. E.g. when a motor is rotating at 3000 rpm, the DA
output is 10V and the DA output would be –10V if the rotating
speed is -3000 rpm.

Figure 4-35: DA Output

82 Operation Theory

4.6.4 AD
In this section, the following functions are discussed.

set_ad_function(CardID,Enable, AD_gain, AD_Last,
AD2_src)

get_da_value(CardID,ChNo,*Value)

There are two analog input channels on the cPCI-8212H. It is used
for sensing anlog output device ranged from –10V to +10V. Users
can choose the gain by 1, 2, or 4. It means that the input voltage
range could be +/-10V, +/-5V and +/- 2.5V for optimizing input res-
olution. There is an internal analog input channel which is for dou-
ble checking. It is called AD2. The source of this channel could be
choosed from internal +5V, ground, DA0, or DA1. It is very useful
in debugging.

4.6.5 Analog channel auto calibration
In this section, the following functions are discussed.

tune_ref_5V(CardID, Value)
save_auto_k_value(CardID, Channel, Value)
get_auto_k_value(CardID, Channel, *Value)
tune_ad_offset_gain(CardID, Step, Value)
tune_da_offset(CardID, Step, Value)
reload_auto_k_setting(CardID)

In the past, the calibration of analog I/O needs many VRs to fin-
ished it. Now, SSCNET board has built-in the electric VRs in PLD.
Users needn’t use screw driver to tune the value of offset or gain
anymore. They need only set the values like tuning VR via those
functions we provided. Users needn’t to tune these value because

Operation Theory 83

we have done this when this board is produced. The procedure of
tuning these analog channels are as following:

1. Tune the on board +5V generator to exactly +5.0000V by
measuring it from JP1 connector on daughter board.
PCI-8372+/8366+ don’t have this feature.

2. Execute tune_ad_offset_gain() by Step=1, Value=128.
PCI-8372+/8366+ don’t have this feature.

3. Execute tune_ad_offset_gain() by Step=3, Value=128.
PCI-8372+/8366+ don’t have this feature.

4. Calibrate AD offset using tune_ad_offset_gain() for
Step=0. Check AD2’s value as 0.0. PCI-8372+/8366+
does not have this feature.

5. Calibrate AD offset using tune_ad_offset_gain() for
Step=1. Check AD2’s value as 0.0. PCI-8372+/8366+
does not have this feature.

6. Calibrate AD gain using tune_ad_offset_gain() for
Step=2. Check AD2’s value as 5.0. PCI-8372+/8366+
does not have this feature.

7. Execute tune_da_offset() by Step=1, Value=128.

8. Execute tune_da_offset() by Step=3, Value=128.

9. Calibrate DA offset using tune_da_offset() for Step=0.
Check AD2’s value as 0.0.

10.Calibrate DA offset using tune_da_offset() for Step=1.
Check AD2’s value as 0.0.

11.Calibrate DA offset using tune_da_offset() for Step=2.
Check AD2’s value as 0.0.

12.Calibrate DA offset using tune_da_offset() for Step=3.
Check AD2’s value as 0.0.

13.Execute save_auto_k_value() and the tuning value
above will be saved in EEPROM on the board. These
values will be restored by reload_auto_k_value() when
board is initialized.

84 Operation Theory

4.7 Driver Management

4.7.1 Driver parameter
In this section, the following functions are discussed.

get_servo_para(Axis, ParaNo,*Value)
set_servo_para(Axis, ParaNo, Value)
get_servo_para_all(Axis, *Value)
set_servo_para_all(Axis, *Value)
save_servo_para(I16 Axis)
set_servo_para_default(I16 Axis)

With the SSCNET board, servo parameters read/write becomes
very easy using function calls listed above.

To read a current parameter setting, user can call
get_servo_para() or get_servo_para_all(). get_servo_para()
retrieves certain parameter values, while get_servo_para_all() will
retrieve all parameter settings.

To set a new value for the servo parameters, user can call
set_servo_para() or set_servo_para_all(). set_servo_para() will
set new values for specified parameters only, while
set_servo_para_all() will set all parameters’ value.

After a servo parameter tuning process, user may use
save_servo_para() to store current parameter setting. These val-
ues are stored in a Flash ROM of the SSCNET board.

Whenever the user wants to restore default parameter setting, the
function set_servo_para_default() can be used. This will reset all
parameters to the factory setting.

The following table is a simplified list of parameters. For more
information, refer to the “MR-J2SB Instruction Manual”.

Symbol Name MR-J2SB Instruction
Manual Parameter Unit Setting

Range

*AMS Amp setting Pr.01 0000H~0001H
*REG Regenerative resistor Pr.02 0000H~0011H
*MTY For manufacturer’s settings Pr.03 0080H

Table 4-6: MR-J2SB Parameters

Operation Theory 85

*MCA For manufacturer’s settings Pr.04 0000H
*MTR For manufacturer’s settings Pr.05 1
*FBP Feedback pulse number Pr.06 0,1,6,7,225
*POL Direction of motor rotation Pr.07 0,1
ATU Auto-tuning Pr.08 0000H~0004H
RSP Servo response setting Pr.09 0001H~000FH

TLP Forward rotation torque lim-
its Pr.10 % 0~Maximum

torque

TLN Reverse rotation torque
limits Pr.11 % 0~Maximum

torque

DG2 Moment of inertia ratio of
load Pr.12 0.1 0~3000

PG1 Position control gain 1 Pr.13 rad/sec 4~2000
VG1 Speed control gain 1 Pr.14 rad/sec 20~8000
PG2 Position control gain 2 Pr.15 rad/sec 1~1000
VG2 Speed control gain 2 Pr.16 rad/sec 20~20000

VIC Speed integration compen-
sation Pr.17 msec 1~1000

NCH Mechanical resonance con-
trol filter Pr.18 0~031FH

FFC Feed forward gain Pr.19 % 0~100
INP In position range Pr.20 pulse 0~50000

MBR Electromagnetic brake
sequence output Pr.21 msec 0~1000

MOD Monitor output mode Pr.22 0000H~0B0B
H

OP1 Optional function 1 Pr.23 0000H~0001H
OP2 Optional function 2 Pr.24 0000H~0110H
LPF Low pass filter Pr.25 0000H~1210H
OP4 For manufacturer’s settings Pr.26 0000H
MO1 Monitor output 1 offset Pr.27 mv -999~999
MO2 Monitor output 2 offset Pr.28 Mv -999~999

Symbol Name MR-J2SB Instruction
Manual Parameter Unit Setting

Range

Table 4-6: MR-J2SB Parameters

86 Operation Theory

4.7.2 Data monitoring
In this section, the following functions are discussed.

set_monitor_channel(Axis, Channel_0, Channel_1,
Channel_2, Channel_3)

set_monitor_config(Axis, Trigger_Select,
Trigger_Level, SamplePeriod,
PreTriggerSampleNo, SampleNumber)

get_instant_monitor_data(Axis,*Data_0,*Data_1,*D
ata_2, *Data_3)

start_monitor(Axis)
check_monitor_ready(Axis, *status)
get_monitor_data(Axis, *Data)

The firmware in the SSCNET board gives each axis 4 monitoring
channels. Users can use these monitoring channels to monitor a
variety of I/O data, such as Speed feedback, INP (in position)…
etc.

MOA For manufacturer’s settings Pr.29 0001H
ZSP Zero speed Pr.30 rpm 0~10000
ERZ Error excess alarm level Pr.31 kpulse 1~1000
OP5 Option function 5 Pr.32 0000H~0002H
OP6 For manufacturer’s settings Pr.33 0000H~0113H

VPI PI-PID change position
droop Pr.34 0~50000

TTT For manufacturer’s settings Pr.35 0000H

VDC Speed integration compen-
sation Pr.36 0~1000

OP7 For manufacturer’s settings Pr.37 0010H
ENR Encoder output pulse Pr.38 0~32768

For manufacturer’s settings Pr.39 0000H

*BLK Parameter block Pr.40 0000H~000E
H

Symbol Name MR-J2SB Instruction
Manual Parameter Unit Setting

Range

Table 4-6: MR-J2SB Parameters

Operation Theory 87

To be able to use the monitoring function, users must understand
the configuring and operating procedures.

Configuring procedures:
Configuring procedure is necessary before a monitor function can
be started. There are two main instructions during configuration:

1. set_monitor_channel

This function is used to set the monitoring target. This function
must be executed before monitoring can started.

88 Operation Theory

The first parameter ‘Axis’ specifies the axis. The remaining four
parameters are used for the monitoring targets. The relationship
between set values and monitoring targets are list below.

Value Description Unit

FF Not Used
00 Feedback pulse accumulation Pulse
01 (Reserved)
02 Motor revolution speed 0.1rpm
03 (Reserved)
04 Accumulated pulse Pulse
05 (Reserved)
06 Regenerative load factor %
07 Execution load factor %
08 Peak load factor %
09 Bus voltage
0A Load inertia ratio
0B ABS counter Rev
0C Position within one revolution Pulse
0D (Reserved)
0E F/B present value Pulse
0F (Reserved)
10 Position droop Pulse
11 (Reserved)
12 Speed command 0.1rpm
13 (Reserved) 0.1rpm
14 Speed feedback 0.1rpm
15 (Reserved) 0.1rpm
16 Current command 0.1%
17 Current feedback 0.1%
18 ZCT (Bottom) Pulse
19 (Reserved)
1A Present revolution counts Rev

Table 4-7: Monitoring Targets

Operation Theory 89

1B Origin revolution counts Rev
1C Origin position within one revolution Pulse
1D (Reserved)
1E (Reserved)
1F (Reserved)
20 Alarm status AL-1
21 Alarm status AL-2
22 Alarm status AL-3
23 Alarm status AL-4
24 Alarm status AL-5
25 Alarm status AL-6
26 Alarm status AL-7
27 Alarm status AL-8
28 Alarm status AL-9
29 Alarm status AL-E
2A (Reserved)
2B (Reserved)
2C (Reserved)
2D (Reserved)
2E (Reserved)
2F (Reserved)
30 Alarm history #1,#2
31 Alarm history #3,#4
32 Alarm history #5,#6
33 Alarm history #7,#8
34 Alarm history #9,#10
35 (Reserved)
36 (Reserved)
37 (Reserved)
38 Parameter error NO.Pr01 to Pr16
39 Parameter error NO.Pr17 to Pr32
3A Parameter error NO.Pr33 to Pr40

Value Description Unit

Table 4-7: Monitoring Targets

90 Operation Theory

2. set_monitor_config

This function is used to set the monitoring configuration, such as
sampling period, trigger condition…etc. This function must be exe-
cuted before monitoring can start.

3B (Reserved)
3C (Reserved)
3D (Reserved)
3E (Reserved)
3F (Reserved)
A5 INP (in position) Active: 1, Inactive: 0
B0 Velocity Command Pulse/sec
B2 DA1 Value
B3 DA2 Value
B4 Speed Feedback
B6 External Encoder Feedback
B8 Command Pulse

Value Description Unit

Table 4-7: Monitoring Targets

Operation Theory 91

The first parameter ‘Axis’ specifies which axis. Other parameters
are listed below.

Operating procedures:
There are 2 operation modes, real time data reading and normal
monitoring.

1. get_instant_monitor_data

After the monitoring channels have been set by
set_monitor_channel(), the get_instant_monitor_data() function
can be used to retrieve monitoring data.

Parameter Name Description

Trigger_Select

This variable is used to define the trigger source.
Trigger_Select:
Value = 0: No trigger
Value = 1: CH0 as trigger source, going high
Value = 2: CH1 as trigger source, going high
Value = 3: CH2 as trigger source, going high
Value = 4: CH3 as trigger source, going high
Value = -1: CH0 as trigger source, going low
Value = -2: CH1 as trigger source, going low
Value = -3: CH2 as trigger source, going low
Value = -4: CH3 as trigger source, going low

TriggerLevel Define the trigger level

SamplePeriod

This variable is used to define the sample period.
Value = 1: 0.888 ms
Value = 2: 2 * 0.888 ms
Value = 3: 3 * 0.888 ms
Value = 4: 4 * 0.888 ms

PreTriggerSampleNo
Define the Number of samples before Trigger

Value = 1 ~ 1023

SampleNumber
Define the Total Number of samples

Value = 1 ~ 1023

Table 4-8: Axis Parameters

92 Operation Theory

The first parameter ‘Axis’ specifies which axis. The remaining four
parameters are used to retrieve monitoring data from the monitor-
ing channels.

This function returns a value immediately and carries out real time
monitoring of specified monitoring targets.

2. Normal monitoring

Normal monitoring is data sampling with the help of the on-board
DSP. The DSP take charge of storing all sampled data according
to configuration set by set_monitor_config(). The following steps
are necessary to operate in normal monitoring.

Step 0: Set monitor channel and configuration using function call:
set_monitor_channel(), set_monitor_config()

Step 1: Start normal monitoring using the function call:
start_monitor(). This will start the DSP.

Step 2: Check if the monitoring has completed by calling the func-
tion: check_monitor_ready(). The parameter ‘status’ returns
a value, if the monitoring process has completed.

Step 3: If monitoring has completed, then call get_monitor_data() to
retrieve the monitored data.

The size of the ‘data’ array of the function get_monitor_data(),
which is used to read the monitored data must be 4 times the
value of ‘PreTriggerSampleNo’ in set_monitor_config() and when
the function get_monitor_data() returns a value, the ‘data’ is stored
in the following format.

Operation Theory 93

Table 4-9: Data Array Offset

4.7.3 Servo Information
In this section, the following function is discussed.

get_servo_info(Axis,*ServoInfo)

This function is used to retrieve the servo driver’s status informa-
tion. The parameter ‘*ServoInfo’ carries the information about
servo driver’s status in individual bit’s:

Bit 0 In Ready-ON
Bit 1 In Servo-ON
Bit 2 In course of in-Position

Table 4-10: Servo Bit Information

94 Operation Theory

4.7.4 Servo On
In this section, the following function is discussed.

set_servo_on(Axis,ON_OFF)

After this function is execute with ‘ON_OFF’ = 1, the servo driver
of specified axis starts to control its servomotor. Motion functions
can now be applied to the axis.

In most cases, Servo driver should be at servo ON status, except
that, “Before set_position() function, the servo driver must be at
Servo OFF status.”

4.7.5 Driver information
In this section, the following functions are discussed.

understand_driver(Axis, *Class_Code)
understand_motor(Axis, *MotorType, *Capacity,

*RateRPM, *RateCurrent, *MaxRPM, *MaxTorq,
*PPR, *ENCInfo, *OptionalInfor)

When booting, the SSCNET board will gather some static informa-
tion about the servo driver and servomotor. This information is

Bit 3 In course of zero speed
Bit 4 Pass through Z phase of servo motor
Bit 5 In Torque limit
Bit 6 In Alarm
Bit 7 In warning
Bit 8 Reserve
Bit 9 Reserve

Bit 10 ~ 14 Reserved
Bit 15 In course of Speed limit

Bit 16 ~ 31 Reserved

Table 4-10: Servo Bit Information

Operation Theory 95

kept by the SSCNET board and users can retrieve the info using
the following two functions.

To read the servo driver’s static info, use
understand_driver()
To read servo motor’s static info, use understand_motor()

4.7.6 Servo Alarm
In this section, the following functions are discussed.

get_alarm_no(Axis,*AlarmNo)
alarm_reset(Axis)

When a fault occurs, the servo driver will stop the motor and report
an alarm number on the LED display of the servo driver. The
SSCNET board will also be acknowledged because the servo
driver also reports the alarm condition through SSCNet communi-
cation. If this is the case, users can exam the fault condition by:

1. Examining the return code from the function call.

2. Set an IRQ. Allow a IRQ to be generated, if an alarm
occurs. Refer to section 4.9.

After noticing the occurrence of the alarm, users can use
get_alarm_no() to retrieve the alarm code, which is displayed on
the LED of the servo driver. After removing the alarm condition,
users can use the alarm_reset() function to recover the driver from
the alarm state.

4.8 Control Gain Tuning
In this section, the following functions are discussed.

set_auto_tune(Axis, Mode, RSP, GD2)
get_auto_tune(Axis, *Mode, *RSP, *GD2)
set_control_gain(Axis, PG1, VG1, VIC,PG2, VG2,

FFC)
get_control_gain(Axis, *PG1, *VG1, *VIC,*PG2,

*VG2, *FFC)
set_notch_filter(Axis, Mode, NotchFrequency,

NotchDepth)
get_notch_filter(Axis, *Mode, *NotchFrequency,

*NotchDepth)
set_LP_filter(Axis,ON_OFF)

96 Operation Theory

get_LP_filter(Axis,*ON_OFF)

4.8.1 Control Gains
The first 4 functions are used to set/read the gain controls of the
servomotor control system. There are 6 control gains, and they
are PG1, VG1, VIC, PG2, VG2, and FFC. The following are some
simple description of the control gains, for more information refers
to the “Instruction Manual” of the MR-J2S-B servo driver.

PG1: Position loop gain 1
Increase this value to improve tractability in response to the posi-
tion command.

VG1: Velocity loop gain 1
Normally this gain value does not need to be changed. A higher
set value increases the response level but is likely to generate
vibration and/or noise.

VIC: Velocity integral compensation
Used to set the integral time constant of a speed loop. A higher set
value increases the response level but is likely to generate vibra-
tion and/or noise.

PG2: Position loop gain 2
This gain is used to increase the response due to level load distur-
bance. A higher set value increases the response level but is likely
to generate vibration and/or noise.

VG2: Velocity loop gain 2
Set this gain when vibration occurs to machines with low rigidity or
with large backlash. A higher set value increases the response
level but is likely to generate vibration and/or noise.

FFC: Feed foreword gain
Used to set the velocity feed foreword gain. When it is set to
100%, drop pulses will be almost zero at constant-speed opera-
tion. Note that higher set values will increase response but will
enlarge the overshoot during sudden acceleration/deceleration.

Operation Theory 97

 Auto-Tuning mode
The MR-J2S-B servo driver has as read-time auto tuning function,
which can automatically estimate the machines characteristic and
set the optimum control gain values in real time.

There are two Auto-Tuning modes:

Auto-Tuning mode 1:

In this mode, the load inertia moment of a machine is estimated,
and all control gains are set automatically, creating a machine
response frequency that matches the user’s requirements (RSP).
The servo driver is factory-set to this mode.

Under this mode, set_control_gain() does not work and will return
errors.

Auto-Tuning mode 2:

Under this mode, the user must specify the load inertia moment for
the machine (GD2) with all other control gains set automatically,
creating a machine response frequency that matches the user’s
requirements (RSP).

Under this mode, set_control_gain() does not work and will return
errors.

Manual setting mode
If the user is not satisfied with the adjustment of auto-tuning, he/
she can make manual adjustments.

Manual mode 1:

Under this mode, the user can specify the following control gains
including GD2, PG1, VG2, and VIC, while PG2 VG1 and FFC are
set automatically.

Under this mode, set_control_gain() can be used to set PG1, VG2,
and VIC. Setting for PG2, VG1 and FFC is automatically ignored.

Manual mode 2:

Under this mode, the user can specify all control gains. The func-
tion call set_control_gain() can be used to set PG1, VG2, VIC,
PG2, VG2 and FFC.

98 Operation Theory

The function call set_auto_tune() is used to select the auto-tuning
or manual tuning mode with the parameter ‘Mode’ specifying the
operation mode. If Auto-tuning mode is selected, ‘RSP’ specifies
the user’s machine response frequency requirements, while in
manual mode it’s not applicable. ‘GD2’ specifies the load inertia
moment of a machine.

The function call get_auto_tune() can be used to read set-
tings from the servo driver.
The function call set_control_gain() is used to set the con-
trol gains when manual mode operation is selected.
The function call get_auto_tune() can be used to read set-
tings from the servo driver.
The following table is a list of selectable gains under differ-
ent operation modes:

A: automatically set
M: manually specify
--: Not used
* Interpolation mode is normally not used.

4.8.2 Mechanical resonance suppression filter
The functions set_notch_filter() and get_notch_filter() are related
to the mechanical resonance suppression filter function.

If a mechanical system has a natural resonance point, increasing
the servo system response may cause the mechanical system to
produce resonance (vibration) at its resonance frequency. Using
the notch filter and adaptive vibration suppression control func-
tions can suppress the resonance of the mechanical system.

‘Mode’ Value Description RSP GD2 PG1 VG1 VIC PG2 VG2 FFC

1 Auto-Tuning mode 1 M A A A A A A A
2 Manual mode 2 -- M M M M M M M
3 Auto-Tuning mode 2 M M A A A A A A
4 Manual mode 1 -- M M A M A M A
0* Interpolation mode -- A M M A A A A

Table 4-11: Selectable Gains

Operation Theory 99

Notch filter
The notch filter is a filter function, which decreases the gain of the
specific frequency (notch frequency) and gain decreasing depth.

Figure 4-36: Notch Filter

Note: The machine resonance suppression filter is a delay factor
for the servo system. Hence, vibration may increase if you
set a wrong resonance frequency or a too deep notch.

If the resonance frequency of the machine is unknown, decrease
the notch frequency from a higher to lower order. The optimum
notch frequency is set at the point where vibration is minimal.

The notch frequency is set with the parameter ‘NotchFrequency’.
The setting values and corresponding notch frequency are listed in
the table below.

Setting Frequency Setting Frequency Setting Frequency Setting Frequency

0 Invalid 8 562.5 16 281.3 24 187.5
1 4500 9 500 17 264.7 25 180
2 2250 10 450 18 250 26 173.1
3 1500 11 409.1 19 236.8 27 166.7
4 1125 12 375 20 225 28 160.1
5 900 13 346.2 21 214.3 29 155.2
6 750 14 321.4 22 204.5 30 150
7 642.9 15 300 23 195.7 31 145.2

Table 4-12: Notch Frequency Settings

100 Operation Theory

A deeper notch provides better resonance suppression but
increases the phase delay and may increase vibration.

The notch frequency can be set with the parameter ‘NotchDepth’.
The setting values and corresponding notch gain are listed in the
table below.

Adaptive vibration suppression control
Adaptive vibration suppression control is a function in which the
servo driver detects machine’s resonance and set a adaptive filter
(also a notch filter) automatically to suppress mechanical system
vibration.

Note: This adaptive filter has nothing to do with previous Notch fil-
ter setting.

Since the adaptive filter characteristics (notch frequency and
depth) are set automatically, user need not be conscious of the
resonance frequency of a mechanical system. Also, while adap-
tive vibration suppression control is valid, the servo driver always
detects machine resonance, and if the resonance frequency
changes, it changes the filter characteristics in response to that
frequency.

The Adaptive vibration suppression control function can be set
with the parameter ‘Mode’. The setting value and suppression
control function are listed in the table below.

Setting Depth (Gain)

0 -40db
1 -14db
2 -8db
3 -4db

Table 4-13: Notch Gain Settings

Setting Control Selection

0 Invalid - The adaptive vibration suppres-
sion control is not used.

Table 4-14: Suppression Control Settings

Operation Theory 101

Note: 1. The mode setting does not affect the notch filters function-
ality set by ‘NotchFrequency’ and ‘NotchDepth’
2. Adaptive vibration control is factory-set to be invalid.
3. Adaptive vibration control is useful only when machine
resonance is between 150 ~ 500 Hz. It has no effect on the
resonance frequency outside this range.
4. Under operating conditions in which sudden disturbance
is imposed during operation, the detection of the resonance
frequency may malfunction temporarily, causing machine vi-
bration. In such a case, set the adaptive vibration suppres-
sion control mode to be 3 (Hold) to fix the characteristics of
the adaptive vibration suppression control filter.

4.8.3 Low pass filter
The functions set_LP_filter() and get_LP_filter() are related to low
pass filter functions.

When a ball-screw or the like is used, resonance of high frequency
may occur as the response of the servo system is increased. To
prevent this, the low-pass filer is factory-set to be valid with a
torque command. The filtering frequency of this low pass filter is
automatically adjusted to the value according to the expression
below:

1

Valid_0 - The adaptive vibration sup-
pression control is enabled with normal
sensitivity of detecting machine reso-

nance.

2

Valid_1 - The adaptive vibration sup-
pression control is enabled with large
sensitivity of detecting machine reso-

nance.

3
Hold - filter characteristic generated so
far is held, and detection of machine

resonance is stopped.

Setting Control Selection

Table 4-14: Suppression Control Settings

102 Operation Theory

The low pass filter can be enabled or disabled using the parameter
‘ON_OFF’.

‘ON_OFF’ = 0, Disabled
‘ON_OFF’ = 1, Enabled

Note: In a mechanical system where rigidity is extremely high and
resonance s difficult to occur, setting the low pass filter to be
‘Disabled’ may increase the servo system response to short-
en the settling time.

4.9 Interrupt control
In this section, the following functions are discussed.

int_control(CardID, Flag)
set_int_factor(CardID, Source, IntFactor)
get_int_status(CardID, Source, *IntStatus)
set_int_event(CardID, *HEvent)
link_interrupt(CardID, *callbackAddr)

The SSCNET board can generate an interrupt for certain condi-
tions. Refer to the figure below:

Operation Theory 103

Figure 4-37: Interrupt Control

Users can either set a call back routine that will be executed when
an interrupt occurs, or create a thread to wait for an event that will
be triggered when an interrupt occurs.

To enable or disable the interrupt generated from the SSCNET
board, use the int_control() function. It acts as an ON_OFF switch.
Once disabled, the SSCNET board will cease to generate any
interrupt signals to the host system.

In addition to int_control(), users need to define the conditions
under which an interrupt signal should occurs by using the
set_int_factor() function in order to successfully introduce an inter-
rupt signal to the host system. The SSCNET board has 3 possible
sources of interrupts; it includes the motion axes, general pur-
posed I/O, and the DSP (or system). The second parameter
‘Source’ of set_int_factor() is use to specify the source with
‘IntFactor’ specifying the interrupt conditions for this specified
source.

Refer to the tables below.

104 Operation Theory

“Source” = 0 - 11, for Axis 0 - Axis 11 respectively.

“Source” = 12 for system interrupt

“Source” = 13 for GPIO interrupt

Bit of ‘IntFactor’ Name Description

0 PEL Positive Limit Switch
1 MEL Negative Limit Switch
2 ORG Home Switch
3 RDY Servo Ready
4 INP In Position
5 EZ Index signal passed
6 ZSPD Zero Speed
7 TLC Torque Limit reached
8 ALM Alarm signal on
9 WRN Servo Warning on
10 HOME Home Move completed
11 MTC Motion Completed
12 CPBF Curve Parameter Buffer Full
13 EPD Position deviation is too large
14 CMP1 Position compare1 is true
15 CMP2 Position compare2 is true

Table 4-15: Axis Interrupts

Bit of ‘IntFactor’ Description

0 System Error
1 Emergency Stop
2 Cyclic Timer Interrupt

Table 4-16: System Interrupts

Bit of ‘IntFactor’ Description

0 General purposed DI, Channel 0
1 General purposed DI, Channel 1
8 Compare_Counter_CH0

Table 4-17: GPIO Interrupts

Operation Theory 105

After setting the interrupt source and factors, the interrupt signal
can be detected by using either a call back routine or a event wait-
ing thread.

Note:
For the PCI-8372+, the number of controllable axis is “12”,
Thus:

Source: 0 - 11 is for axis 0 - 11 individually,
Source: 12 for system,
Source: 13 for GPIO.

For the PCI-8366+ the number of controllable axes is “6”,
Source: 0 - 5 is for axis 0 - 5 individually,
Source: 6 for system,
Source: 7 for GPIO.

By call back routine
The link_interrupt() function helps users to set up a call back rou-
tine. Each SSCNET board has its own call back routine. This rou-
tine will be executed once an interrupt occurs. Note, during routine
execution, the next interrupt is on hold until the routine has ended.

By thread
The set_int_event() function helps users to set up a event handle.
This event will be fired once an interrupt occurs. Therefore, users
can create an independent thread to wait for the event handle.

4.10 Position Compare Function
In this section, the following functions are discussed.

set_compare(Axis, CMP1Pos, CMP1Dir, CMP2Pos,
CMP2Dir)

set_single_compare(Axis, Channel, CMP_Pos)
check_compare(Axis, *status)

9 Compare_Counter_CH1
10 Compare_Counter_CH2

Bit of ‘IntFactor’ Description

Table 4-17: GPIO Interrupts

106 Operation Theory

Each axis of the SSCNET board has 2-position compare chan-
nels. After setting the channels using set_compare(), the DSP of
the SSCNET board compares the feedback position on each SSC-
NET cycle with “CMP#Pos” for each channel. The comparison
includes the direction. The user can specify the compare succeed
condition to be any of the following:

Direction = 0, whenever feedback across
ComparePos
Direction = 1, feedback > ComparePos
Direction = 2, feedback >= ComparePos
Direction = 3, feedback < ComparePos
Direction = 4, feedback <= ComparePos

In order to understand the compared status of each specified axis,
a second function check_compare() is helpful. The compared sta-
tus will be reset to false each time set_compare() is executed. If
the comparison of channel1 comes into existence, bit0 of “*status”
will become ‘1’. If the comparison of channel1 comes into exist-
ence, bit1 of “*status” will become ‘1’.

Other method to obtain comparison result is through an interrupt.
When a comparison comes into existence, the SSCNET board will
generate an interrupt signal. Users need to set the interrupt to
enabled and correct the interrupt factor so that the program can
accept interrupt signals.

4.11 Interlock Function
In this section, the following function is discussed.

set_interlock(CardID, Flag, Axis_X, Axis_Y, X1,
X2, Y1, Y2, Time)

get_interlock(CardID, *Enable, *Axis_X, *Axis_Y,
*X1, *X2, *Y1, *Y2, *Time)

The SSCNET board provides one interlock function for each card.
This function is used for collision avoidance for 2-axis operation,
“Axis_X”, “Axis_Y”, and one specific area,”X1”,”X2”,”Y1”,”Y2”.
Once the axis' position is inside this section, it is said that it has
entered into the interlock area. The slow-down and speed-up algo-
rithm is done by the on-board DSP. The following graph explains
this action.

Operation Theory 107

Figure 4-38: DSP Action Graph

Figure 4-39: Interlock Area

Interlock function is much like a crossroad semaphore. In some
applications, two independent axes will work on the same region
occasionally. In the past, users must take care these two axes’
movement to prevent collision. Now, SSCNET motion control card
has this feature inside. Users don’t need to worried about this
problem. The axis will automatically slow down when the other
axis is inside the predefined region and speed up again when the
other axis leave from this region. It is much useful in this situation.

The encoder update rate is one SSCNET cycle. The slow down
action will be token in the same cycle.

Coding Guide
set_interlock(CardID, Enable, Axis_X, Axis_Y, X1,

X2, Y1, Y2, Time);

108 Operation Theory

get_interlock(…) will retrieve above parameters
for users’ to check.

Note: 1. Enable=1 means enable this function and 0 means dis-
able
2. Time means slow down time when interlock happens
3. X1,X2,Y1,Y2 form a interlock region

4.12 Absolute Position System
In this section, the following function is discussed.

get_abs_position(Axis, *ABS_Pos)
save_abs_position(Axis)
clear_abs_data_on_flash(I16 CardID)

SSCNET board provide absolute position system for SSCNET
motor driver. Users need only execute homing procedure once
then the board can keep the absolute position in the ROM. When
the machine restart next time, it will restore the absolute position
of each axis from the ROM. The machine needn’t to doing the
home procedure again.

Mitsubishi servo drivers use a battery to keep its encoder’s value
inside at absolute position mode. The position value is on servo
driver and users must turn on absolute position mode in parameter
“AMS” before using this feature. Of course, users need to install a
battery to keep the position value on driver’s side permanently.

In order to have absolute position feature on SSCNET motion con-
trol card, we must read the absolute position value from servo
driver and retrieve the origin position information from FLASH
ROM of SSCNET motion control card when card is initialized.
After that we will calculate an absolute position of users’ machine
according to these two information.

Operation Theory 109

The formal procedure to use this features are as followings:

Launch home_move() function to complete homing.
Check if the home position is correct
Launch save_abs_position() to store the ABS position as an
origin position reference.
Next time, when SSCNET motion control card starts, users
don’t need to launch home_move() anymore. They can only
launch get_position() function to get an absolute position.

If the servo parameter07 is set to ‘1’, remember to set this ABS
position to operating position counter via the get_abs_position()
and set_position() functions. Don’t use the get_abs_position() in
polling cycle because it is much slower than the get_position()
function.

The Coding Guides are as followings

Physical homing: (Axis doesn’t know its origin position or
program needs)

home_move(Axis0…);
WaitforSingleObject(Axis0Event, TimeOut) or Polling
motion_done();
save_abs_position(Axis0…);

Non-Physical homing (Axis already knew its Origin Position)
set_position(AxisNo…);

4.13 Compared Trigger Output
In this section, the following function is discussed.

map_dout_and_comparator(CardID, Dout_CH, AxisNo,
CompNo, Dout_mode)

set_compare_table_dir(CardID, Table_ChNo, Dir)
link_dout_and_compare_table(CardID, DO_ChNo,

StartI, EndI, *Table_Data)

For some applications, motion control must work with vision sys-
tem. The vision system includes a CCD camera that needs to cap-
ture images at a specific location. These locations are
discontinuous, but very closed at most cases. If users need to per-
form a high speed picture capturing on the fly, they have to con-

110 Operation Theory

sider the continuous compared with triggering pulse output
feature.

Figure 4-40: Trigger Output

SSCNET motion board has a compare mechanism of each axis
that is operated by DSP. DSP will compare the receiving counter
with users’ desired value and do the actions in one SSCNET cycle
if the position is achieved. Besides, we provide triggering pulse
output when the compare condition happens. The triggering pulse
is performed by DO channel. It will output a specific pulse width
when compare condition happens.

First, users must set one of the digital output channels as one
comparator’s triggering output. Map more than one comparators
to single digital output channel is not allowed, but reverse case is
allowed.

Second, users must build up an array that contains the table of
compare points. You can assign a region by giving start and end
index of this array for the table of compare points.

Third, users must assign the compare direction of the table. It is
useful because users needn’t rebuild the table reversely again if
they want to do a reverse comparasion.

The triggering pulse is as below. The pulse width is about 1ms
which is decided by SSCNET cycle time. Our suggestion trigger-
ing frequency is less than 500Hz.

Operation Theory 111

Figure 4-41: Triggering Frequency Under 500Hz

Before using this feature, users must map on-board digital output
channel to axis’ comparator. The mapping could be one ouptput
channel to one comparator or two output channels to one compar-
ator. For example, users can map Dout Channel 0 to axis2’
comparator0 and Dout Channel 1 to axis3’ comparator1. Or users
can map Dout Channel 0 and Channel 1 to the same comparator
for dual synchronous triggering pulse output.

After choosing the output channel and comparator, users must
build a compare point table for digital output channel. Using the
same table to map different digital output channel is allowable.
The first element in compare table must be the smallest. The max-
imum number of point in the table is 100. This value is limited by
DSP firmware. The triggering pulse width is about 1ms and com-
pare accuracy is about +/-1ms.

Finally, set the compare direction in the table. Once users build a
table, the table will remain on SSCNET board. The table can be
compared either from upper side or lower side. The same table
can be reused in different direction by changing the parameter, Dir.
For example, Table contents 100,200,300. If they choose decreas-
ing direction, the compare ordering will be 300,200,100 and vice
versa.

The compare condition will be greater than or equal than depends
on the compare direction

The first elements in compare table must be smallest like this
order –300, -200, -100

112 Operation Theory

< Example: Dual trigger pulses output by
comparing two Table in one axis >

F32
Table_Data1[10]={1500,2000,2500,3000,3500,4
000,4500,5000,5500,6000};

F32
Table_Data2[10]={1800,2300,2800,3300,3800,4
300,4800,5300,5800,6300};

I16 AxisNo=1;
// Normal high setting
map_dout_and_comparator(0, 0, AxisNo, 0 ,1);
map_dout_and_comparator(0, 1, AxisNo, 1 ,1);
// Build Compare Table1,2 from index 0 to 9,

totally 10 points
link_dout_and_compare_table(0, 0, 0,

9,Table_Data1);
link_dout_and_compare_table(0, 1, 0,

9,Table_Data2);
// Set Compare direction increaing
set_compare_table_dir(0, 0, 0);
set_compare_table_dir(0, 1, 0);
// Start Move from 0 to 8000, See results Picture

1
start_tr_move(AxisNo, 8000,0, 60000,0,0,0);
// Wait for last move finished (Users must

handle this by any method)
// Set Compare direction decreasing
set_compare_table_dir(0, 0, 1);
set_compare_table_dir(0, 1, 1);
// Start Move from 8000 to 0, See results Picture

2
start_tr_move(AxisNo, -8000,0, 60000,0,0,0);
<< Results Analyzing >>
Trigger pulse rate = 500/60000 = 8.33ms period

time (1ms tolerance is acceptable)
Real Output in Picture 1 & 2 is about this value.

Results Pictures
Picture one: Positive Move (CH1 in scope is DO Channel 0,
CH2 in scope is DO Channel 1.)

Operation Theory 113

Figure 4-42: Positive Move

Picture two: Negative Move (CH1 in scope is DO Channel
0, CH2 in scope is DO Channel 1.)

114 Operation Theory

Figure 4-43: Negative Move

4.14 Sequence Motion Control
SSCNet has the property of the deterministic time, which is 0.888
ms. Theoretically, the motion command will be passed down to
DSP with hand-shaking way. It takes two or three cycle times to
complete the delivery and execute the motion command. Conse-
quently, it is sure to waste some time and has slower response.

In order to improve the response time, the motion control board
can let users have their own motion patterns downloaded into on-
board DSP and realize the precisely timing control. All motion pat-
terns can be executed in the DSP layer with the on-board RAM.
The delivering time of motion command from computer to SSCNet
board can be eliminated. It can increase the response time and
get high performance control.

First, users depend on the timing chart (velocity profile) of desired
motion to segment them and get many frames. Frame is the basic

Operation Theory 115

unit in this sequence motion control. Properly group some of those
frames into one pattern. Simply put, a pattern contains many
frames inside. The motion pattern can be reused and in the form
of T-curve, S-curve, combined T-curve and S-curve, or arbitrary
velocity profile. Consequently, you can plan it at your will.

Next, you have to consider the synchronism. In fact, some con-
trolled axes may have the synchronous relation with each other. In
a word, they are time-dependent. Consequently, you can group
them as one sequence. DSP will execute the sequence based on
the time relation to realize the synchronous motion. The sequence
may conatins the pattern information of multi axes.

In other case, certain axis may refer to the other axis’ condition
and start to move. For example, axis 0 is planed to move while the
maximum velocity of axis 1 is achieved. At this moment, you can
use API to completely describe the motion patterns and achieve
the time-dependent motion. The sequence contains the pattern
information of one axis.

Sequence is the container of patterns. Pattern is the container of
frames. Sequence also has the time-dependent description to
complete the motion behavior that users want to realize.

Finally, every sequence designs triple pattern buffers to meet the
motion continuity. While the patterns are executed continuously,
the first pattern buffer will be passed down to DSP and the remain-
ing two buffers would wait to be executed as the concept of queue.
This design can make sure the continuity of motion. Users also
can judge the motion status. If certain status comes into existence,
you can replace the patterns in the sequence at your will.

4.14.1 Conceptual Flow Chart
1. Create Frames

The trapezoidal velocity profile has three frames and S-curve has
seven frames. If you are not familiar with it, please refer to 4.2.

First of all, users have to prepare the timing chart (velocity profile)
of all controlled axes. The following is the demonstrated timing
chart for handler control:

116 Operation Theory

Figure 4-44: Conceptual Flow Chart - Timing A

As the diagram, you can see the timing chart of the 4 axes. In this
case, we only control 4 axes –axis 0, 1, 2 and 11. As soon as hav-
ing the complete timing chart, you can segment the velocity profile
and obtain the frames that are based on the rule introduced ear-
lier. The spot in the figure is the starting condition. Some axes will
start to move based on the other axes’ condition.

Here, we have to be aware of one thing. The synchronous relation
should be noted. In this example, we have three dependent axes,
which are axis 0, 1, 2. Axis 11 is independent of these three axes.
In a word, those three axes have the synchronous relation.

Right now, we have to label the frame index. The following dia-
gram shows that:

Operation Theory 117

Figure 4-45: Conceptual Flow Chart - Timing B

There are totally 40 frames in this example.

2. Create Pattern

In this step, we can group several frames into one pattern. For
example, we can have the patterns as follows:

Figure 4-46: Conceptual Flow Chart - Pattern

The dash block represents the pattern. We mainly divide the tim-
ing chart of axis 0 into 4 patterns. Pattern 4 to 6 will activate

118 Operation Theory

depending on the axis 0. Pattern 7 will activate depending on axis
1. Here, users can have three selections to meet the requirement:

Position compare: While the axis moves through certain
position, it can let the other axis start to move. Like pattern
5, it will start to move while the axis 0 passes through point
B.
Velocity transition: The pattern can activate while the veloc-
ity of the other axis is at the end of the acceleration or the
beginning of the deceleration. Like pattern 4, it will start to
move while the velocity of axis 0 passes through point A.
External I/O signal: You can also use the I/O signal as trig-
ger to let the pattern start to move.

Then, Pattern 8 is an independent one. The following table is the
summary:

3. Sequence with Three Pattern Buffers

The sequence conatins three pattern buffers and realizes the
desired motion. Every sequence has three pattern buffers in order
to execute the pattern smoothly. Users have to input the patterns
into the command buffers. The concept can be shown as the fol-
lowing diagram:

Pattern Index Content

Pattern 0 F0 to F2
Pattern 1 F3 to F7
Pattern 2 F8 to F13
Pattern 3 F14 to F17
Pattern 4 F18, F19
Pattern 5 F20, F21, F22
Pattern 6 F23, F24, F25
Pattern 7 F26, F27, F28
Pattern 8 F29 to F39

Table 4-18: Pattern Index

Operation Theory 119

Figure 4-47: Conceptual Flow Chart - Buffers A

The sequence is an abstract object. It collects several patterns as
a group. The pattern is a substantial object. It contains the infor-
mation of frames.

Inside the board, the first three patterns can be stored in those
three pattern buffers in advance. While the pattern Pn is executed
by DSP, the remaining two patterns, Pn+1 and Pn+2, will be
pushed forward and wait to be executed. If you have more than
three patterns, you can use API function to check that the buffer
status is full or not. It not, the next pattern can be put into the
buffer. It is shown as follows:

Figure 4-48: Conceptual Flow Chart - Buffers B

In some cases, users may have multiple selectable patterns based
on specific situation. For example, they are Pm and Pk. Currently,
you can depend on your condition to put Pm or Pk into the empty
buffer. As for simple case, you can just throw the next pattern into
the empty buffer if no any other specific condition should be con-
sidered and no selectable patterns are in hand.

120 Operation Theory

In this case, we let every axis to be as a sequence. Group the pat-
terns and we can have the sequence as follows:

Then, you can use the API to link the synchronous relation.

P4 will start to move referring to point A of axis 0.
P5 will start to move referring to point B of axis 0.

The same rule is for pattern 6 and 7.

4.14.2 Coding Example 1: Using C Language

Figure 4-49: Coding Example 1

1. Variables Setting
I16 FirstFrame,LastFrame;
I16 AxisNo;
I16 SynAxes;
I16 PatternNo;
I16 WaitAxis,WaitCondition;

2. Create Patterns for Sequence 1

Sequence Contains

Sequence 0 P0 to P3
Sequence 1 P4 to P6
Sequence 2 P7
Sequence 3 P8

Table 4-19: Sequences

Operation Theory 121

AxisNo=1;
SynAxes=0x02;
PatternNo=0;

// Pattern 0
FirstFrame=0;
LastFrame=add_frame_ta_move(AxisNo, FirstFrame,

0, 5, 0, 10, 0, 0.1, 0.1);
LastFrame=add_frame_ta_move(AxisNo, LastFrame, 5,

10, 0, 10, 0, 0.1, 0.1);
set_pattern(0, PatternNo, FirstFrame, LastFrame -

FirstFrame, SynAxes);
PatternNo++;

// Pattern 1
FirstFrame=LastFrame;
LastFrame=add_frame_ta_move(AxisNo, FirstFrame,

10, 15, 0, 10, 0, 0.1, 0.1);
LastFrame=add_frame_ta_move(AxisNo, LastFrame,

15, 0, 0, 10, 0, 0.1, 0.1);
set_pattern(0, PatternNo, FirstFrame, LastFrame -

FirstFrame, SynAxes);
PatternNo++;

// Pattern 2
FirstFrame=LastFrame;
LastFrame=add_frame_ta_move(AxisNo, FirstFrame,

0, 5, 0, 10, 0, 0.1, 0.1);
LastFrame=add_frame_ta_move(AxisNo, LastFrame, 5,

0, 0, 10, 0, 0.1, 0.1);
set_pattern(0, PatternNo, FirstFrame, LastFrame-

FirstFrame,SynAxes);
PatternNo++;

3. Create Patterns for Sequence 0
AxisNo=0;
SynAxes=0x01;

// Pattern 3
FirstFrame= LastFrame;
LastFrame=add_frame_ta_move(AxisNo, FirstFrame,

0, 5, 0, 10, 0, 0.1, 0.1);

122 Operation Theory

LastFrame=add_frame_ta_move(AxisNo, LastFrame, 5,
10, 0, 10, 0, 0.1, 0.1);

set_pattern(0, PatternNo, FirstFrame, LastFrame-
FirstFrame, SynAxes);

PatternNo++;

// Pattern 4
FirstFrame=LastFrame;
LastFrame=add_frame_ta_move(AxisNo, FirstFrame,

10, 15, 0, 10, 0, 0.1, 0.1);
LastFrame=add_frame_ta_move(AxisNo, LastFrame,

15, 0, 0, 10, 0, 0.1, 0.1);
set_pattern(0, PatternNo, FirstFrame, LastFrame-

FirstFrame, SynAxes);
PatternNo++;

// Pattern 5
FirstFrame=LastFrame;
LastFrame=add_frame_ta_move(AxisNo, FirstFrame,

0, 5, 0, 10, 0, 0.1, 0.1);
LastFrame=add_frame_ta_move(AxisNo, LastFrame, 5,

0, 0, 10, 0, 0.1, 0.1);
set_pattern(0, PatternNo, FirstFrame, LastFrame-

FirstFrame,SynAxes);
PatternNo++;

4. Start Sequence 0 & 1 at the same time
reset_seq_buffer(0,1);
// First pattern of this sequence will wait

pattern3’s frame 2 of axis0 to start
WaitAxis=0;
WaitCondition=3 // Pattern 3 (P3)
 SynAxes=0x02
insert_pattern_to_seq_buffer(0, 1, 0,

SyncAxes,1,WaitAxis, WaitCondition,2);
insert_pattern_to_seq_buffer(0, 1, 1,
SynAxes,0,0,0,0);

insert_pattern_to_seq_buffer(0, 1, 2,
SynAxes,0,0,0,0);

reset_seq_buffer(0, 0);
 SynAxes=0x01;

Operation Theory 123

insert_pattern_to_seq_buffer(0, 0, 3,
SynAxes,0,0,0,0);

insert_pattern_to_seq_buffer(0, 0, 4,
SynAxes,0,0,0,0);

insert_pattern_to_seq_buffer(0, 0, 5,
SynAxes,0,0,0,0);

start_seq_move(0, 0x3);
Working with more than 3 patterns in one sequence

If the patterns are morer than three, users must know how to use
the sequecen command buffers. There are three command buffers
in each sequence. Users can use the command buffer to fulfill the
continuous sequence motion.

Before inserting a new pattern into sequence command buffer,
users must use the following function to check if the buffer is full.

I16 check_seq_buffer(I16 CardID, I16 SeqNo);

If the function returns 1, it means the sequence buffer is ready for
next command. If the function returns 0. It means all sequence
command buffers are full.

while (check_seq_buffer(CardID, SeqNo) == 0);
// wait buffer empty

Pause and resume a sequence
Sometimes, users need to pause sequences and resume them.
They will affect all the axes in the sequence and if the SeqNoBit
value contents more than one sequence. All the sequences will
have the same results after the command is issued.

I16 pause_seq_move(I16 CardID, I16 SeqNoBit, F64
Dec_Time);

I16 resume_seq_move(I16 CardID, I16 SeqNoBit, F64
Acc_Time);

124 Operation Theory

4.14.3 Coding Example 2: Compare Start Condition

Figure 4-50: Coding Example 2

1. Variables Setting
I16 FirstFrame, LastFrame;
I16 AxisNo;
I16 SynAxes;
I16 PatternNo;
I16 WaitAxis, StartCondition;

2. Create Patterns for Sequence 0
AxisNo = 0;
SynAxes = 0x1;
PatternNo = 0;

// Pattern 0
FirstFrame = 0;
LastFrame =

add_frame_ta_move(AxisNo,FirstFrame,0,-
45,0,30,0,2,1);

set_pattern(0,PatternNo,FirstFrame, LastFrame-
FirstFrame, SynAxes);

PatternNo++;

// Pattern 1
FirstFrame = LastFrame;

Operation Theory 125

LastFrame = add_frame_dwell(AxisNo,FirstFrame,-
45,1);

LastFrame = add_frame_ta_move(AxisNo,LastFrame,-
45,-44.8,0,1,0,0.1,0.1);

set_pattern(0,PatternNo,FirstFrame, LastFrame-
FirstFrame, SynAxes);

PatternNo++;

// Pattern 2
FirstFrame = LastFrame;
LastFrame = add_frame_ta_move(AxisNo,FirstFrame,-

44.8,45,0,20,0,1,1);
LastFrame =

add_frame_ta_move(AxisNo,LastFrame,45,41.5,
0,2,0,2,2);

LastFrame =
add_frame_ta_move(AxisNo,LastFrame,41.5,41.
4,0,0.1,0,0.01,0.01);

set_pattern(0,PatternNo,FirstFrame, LastFrame-
FirstFrame, SynAxes);

PatternNo++;

// Pattern 3
FirstFrame = LastFrame;
LastFrame =

add_frame_dwell(AxisNo,FirstFrame,41.4,2);
LastFrame =

add_frame_ta_move(AxisNo,LastFrame,41.4,45,
0,5,0,1,1);

LastFrame =
add_frame_ta_move(AxisNo,LastFrame,45,-
45,0,10,0,2,2);

set_pattern(0,PatternNo,FirstFrame, LastFrame-
FirstFrame, SynAxes);

PatternNo++;

3. Create Patterns for Sequence 1
AxisNo = 1;
SynAxes = 0x2;

// Pattern 4
FirstFrame = LastFrame;

126 Operation Theory

LastFrame =
add_frame_ta_move(AxisNo,FirstFrame,0,-
15,0,15,0,1,1);

set_pattern(0,PatternNo,FirstFrame, LastFrame-
FirstFrame, SynAxes);

PatternNo++;

// Pattern 5
FirstFrame = LastFrame;
LastFrame = add_frame_ta_move(AxisNo,FirstFrame,-

15,45,0,30,0,1,1);
set_pattern(0,PatternNo,FirstFrame, LastFrame-

FirstFrame, SynAxes);
PatternNo++;

// Pattern 6
FirstFrame = LastFrame;
LastFrame =

add_frame_dwell(AxisNo,FirstFrame,45,1);
LastFrame =

add_frame_ta_move(AxisNo,LastFrame,45,0,0,1
0,0,1,1);

set_pattern(0,PatternNo,FirstFrame, LastFrame-
FirstFrame, SynAxes);

PatternNo++;

4. Create Patterns for Sequence 2
AxisNo = 2;
SynAxes = 0x4;

// Pattern 7
FirstFrame = LastFrame;
LastFrame =

add_frame_ta_move(AxisNo,LastFrame,0,0.05,0
,0.1,0,0.01,0.01);

set_pattern(0,PatternNo,FirstFrame, LastFrame-
FirstFrame, SynAxes);

PatternNo++;

// Pattern 8
FirstFrame = LastFrame;

Operation Theory 127

LastFrame =
add_frame_dwell(AxisNo,FirstFrame,0.05,1);

LastFrame =
add_frame_ta_move(AxisNo,LastFrame,0.05,0.2
3,0,1,0,0.1,0.1);

set_pattern(0,PatternNo,FirstFrame, LastFrame-
FirstFrame, SynAxes);

PatternNo++;

// Pattern 9
FirstFrame = LastFrame;
LastFrame =

add_frame_ta_move(AxisNo,LastFrame,0.23,0,0
,1,0,0.1,0.1);

set_pattern(0,PatternNo,FirstFrame, LastFrame-
FirstFrame, SynAxes);

PatternNo++;

// Pattern 10
FirstFrame = LastFrame;
LastFrame =

add_frame_ta_move(AxisNo,LastFrame,0,0.05,0
,1,0,0.01,0.01);

set_pattern(0,PatternNo,FirstFrame, LastFrame-
FirstFrame, SynAxes);

PatternNo++;

5. Insert pattern in sequences
// sequence 0
SynAxes = 0x1;
reset_seq_buffer(0,0);
WaitAxis = 0;
StartCondition = 0;
insert_pattern_to_seq_buffer(0,0,0,SynAxes,0,Wai

tAxis,StartCondition,0);
insert_pattern_to_seq_buffer(0,0,1,SynAxes,0,Wai

tAxis,StartCondition,0);
insert_pattern_to_seq_buffer(0,0,2,SynAxes,0,Wai

tAxis,StartCondition,0);

// sequence 1
SynAxes = 0x2;
reset_seq_buffer(0,1);

128 Operation Theory

WaitAxis = 0;
StartCondition = 0; // pattern no
insert_pattern_to_seq_buffer(0,1,4,SynAxes,0,Wai

tAxis,StartCondition,0);
WaitAxis = 0;
StartCondition = 2;
insert_pattern_to_seq_buffer(0,1,5,SynAxes,1,Wai

tAxis,StartCondition,1);
WaitAxis = 0;
StartCondition = 0;
insert_pattern_to_seq_buffer(0,1,6,SynAxes,0,Wai

tAxis,StartCondition,0);

// sequence 2
SynAxes = 0x4;
reset_seq_buffer(0,2);
WaitAxis = 0;
StartCondition = 200;
insert_pattern_to_seq_buffer(0,2,7,SynAxes,1,Wai

tAxis,StartCondition,-40);
WaitAxis = 0;
StartCondition = 0;
insert_pattern_to_seq_buffer(0,2,8,SynAxes,0,Wai

tAxis,StartCondition,0);
WaitAxis = 0;
StartCondition = 102;
insert_pattern_to_seq_buffer(0,2,9,SynAxes,1,Wai

tAxis,StartCondition,0);

6. Start sequence move and wait for buffer being empty
start_seq_move(0,7);

while(check_seq_buffer(0,0) == 0) ;
SynAxes = 0x1;
WaitAxis = 0;
StartCondition = 0;
insert_pattern_to_seq_buffer(0,0,3,SynAxes,0,Wai

tAxis,StartCondition,0);

while(check_seq_buffer(0,2) == 0) ;
SynAxes = 0x4;
WaitAxis = 0;
StartCondition = 203;

Operation Theory 129

insert_pattern_to_seq_buffer(0,2,10,SynAxes,1,Wa
itAxis,StartCondition,-40);

7. Test Results

Figure 4-51: Test Results

130 Operation Theory

Motion Creator 131

5 Motion Creator
After installing all the hardware according to Chapters 2 and 3, it is
necessary to correctly configure all cards and double check before
running. This chapter gives guidelines for establishing a control
system and manually testing the SSCNET board cards to verify
correct operation. Motion Creator provides a simple yet powerful
means to setup, configure, test and debugging a motion control
system with the SSCNET board cards installed.

Note: Motion Creator is only available for Windows NT/2000/XP
with a screen resolution higher than 800x600 and does not
run under a DOS environment.

5.1 Overview
Motion Creator offers the following features and functionality:

Language support for English, Chinese Traditional and Jap-
anese
32-bit operation under Windows95/98/2000 and Windows
NT
Access and configuration of Multi-Axes control system
Ability to access all of the servo driver parameter.
Direct access to the general purpose I/O
Full tuning capability for all servo driver and motion parame-
ter
XY-Interpolation
Support for absolute and relative, trapezoidal and S-Curve,
home return, and Continuous motion

Note: Motion Creator is available for Windows 2000 or Windows
NT with the screen resolution higher than 800x600 environ-
ment and cannot run under a DOS environment.

5.2 Main Window
The diagram below is the Main window of Motion Creator when
the program is executed. From the main window all SSCNET
board cards inserted in the system and all axes connect are listed.

132 Motion Creator

Figure 5-1: Motion Creator Main Window

5.2.1 Component description
Toolbar

Use Motion Creator’s toolbar, to access the following functions

Figure 5-2: Load Servo Parameter From File

Load the servo parameter file from saved file. This file records the
servo parameters of all axes in all cards.

Motion Creator 133

Figure 5-3: Save Servo Parameter to File

Save the servo parameters to file with a file extension “par”.

Language Support
Click the “Language” item in the menu bar, and select the lan-
guage you want to display. (The language you select must be
available in your operation system, for example: only Chinese-Tra-
ditional and English are available in Windows NT Chinese-Tradi-
tional Version.

Card list table
This table lists all SSCNET board cards plugged in the PCI-Bus.
The "Card No" column displays the card index, the "Type" column
display the card type, the "IRQ" column displays the IRQ number
of the card, and the "Address" column displays the PCI-Bus base
address of the card. The “ID” number column displays the card ID
of the card. If the “ID” is a minus value. It means card initial fail. If
you double click the card in the card list, it will displays the on
board DSP firmware version as bellow:

Figure 5-4: Card List Table

134 Motion Creator

Axis list table
If you click one of the cards in the card list table, the axis list table
lists all the axes connected to this card. The "Station No" column
display the ID of each axis, the "Axis No" column display the index
of the axis, the "Motor Type" display the motor type of the axis, the
“Pulse/Rev” indicate the pulse per revolution of the axis. The
default value is 131072.

Axis information
If you double click the axis in the axis list table, the axis informa-
tion window will appear, and display the information of the axis.

Figure 5-5: Axis Information

Software version Information
Check the software version from the help menu bar. It looks like
below:

Motion Creator 135

Figure 5-6: Software Version Information

136 Motion Creator

Command buttons
The functionality of command buttons are described following

I/O Configure
General purpose digital input and output
General purpose Analog output
External Encoder setting

Tuning
Trigger setting
Basic servo driver parameter setting
Multiple channel display and adjustment

XY-Interpolation
Circular interpolation
Linear interpolation
2-D graph of command and feedback trajectory

2-Axes Operate
Two-axes motion
Driver status display
Relative, absolute and repeat motion mode
Velocity profile display

1-Axes Operate
Driver status display
Support Trapezoidal, S-Curve, Home return, Continuous
motion
Relative, absolute and repeat motion mode
Velocity profile display
On the fly change of Velocity and position

Servo Parameter
Servo driver parameter configuration
Default setting
Parameter description
Servo Parameter

Motion Creator 137

5.2.2 Operation Steps
1. Check if all the SSCNET cards, which are plugged into

the PCI-Bus show on the “Card List” table, then click
each card in the card list table and check if all the axes
are displayed. If not all of the axes listed in the table,
please quit MotionCreator and restart again.

2. Select the axis in the “Axis List” table

3. Clicks the command button to operate.

5.3 General Purpose IO Operation Window (PCI-
8372+/8366+)
General Purpose IO Operation Window appears when clicking “I/
O Configure” button in the Main window. Figure “I/O Configure”
shows the General Purpose IO Operation Window.

Figure 5-7: General Purpose IO Operation Window

138 Motion Creator

5.3.1 Component description
The General Purpose IO Operation Window is divided into several
frames. Each frame is described as follows:

General Purpose DI/O
There are two digital input and 2 digital output channels in SSC-
NET board

1. The circular buttons show the status of two digital input
channels.

2. Click the rectangle button to write the digital output value
for each digital output channel.

General Purpose DA
There are two analog output channels in SSCNET board.

The current value textboxes read back the current value of two
analog output channels.

Enter the analog output value in the textbox then click the “Set
Value” button to write the analog output value.

External Encoder Setting
SSCNET board includes three external encoder channels.

Value

If the external encoder channels are used, and the signals
are connected, you can read the encoder value for each
channel.
Enter the new value of encoder in the textbox then click the
“Set” button to write the value.

Apply To
Specify the axis that uses the external encoder signal

Mode
Select the attribute of each external encoder signal, if the
external encoder signals are connected.

Control Loop
The attribute of the control loop for the external encoder

Motion Creator 139

Parameter
The corresponding parameter for the external encoder

5.3.2 Operation Steps
The General Purpose IO Operation Window accesses the digital
input, output and analog output value of the SSCNET board. The
operation steps are described as follows:

General Purpose DI/O
Digital input: the circular buttons display and update the cur-
rent status of two digital input channels in the scan rate of
100 ms.
Digital output: click the rectangle button to write the digital
output value for each digital output channel.

General Purpose DA
Analog output: enter the analog output value in the textbox
then click the “Set Value” button to write the analog output
value.
The current value textboxes read back the current value of
two analog output channels automatically.

External Encoder Setting
Mode: Select the attribute of each external encoder signal, if
the external encoder signals are connected.
Apply To: select the axis that uses the external encoder
Control Loop: select open or close loop control.
Parameter: enter the corresponding parameter for control
loop

Read and write encoder value
If the external encoder channels are used, and the signals
are connected, you can read the encoder value for each
channel.
Enter the new value of encoder in the textbox then click the
“Set” button to write the value.

140 Motion Creator

5.4 General Purpose IO Operation Window (cPCI-
8312H)
General Purpose IO Operation Window appears when clicking “I/
O Configure” button in the Main window. Figure “I/O Configure”
shows the General Purpose IO Operation Window.

Figure 5-8: General Purpose IO Operation Window

Component description
The General Purpose IO Operation Window is divided into several
frames. Each frame is described as follows:

General Purpose DO
There are two digital output channels in SSCNET board

Click the rectangle button to write the digital output value for each
digital output channel.

Motion Creator 141

 General Purpose DA/AD
There are two analog output and input channels in SSCNET
board.

The current value textboxes read back the current value of two
analog output channels.

Enter the analog output value in the textbox then click the “Set
Value” button to write the analog output value.

The AD0/AD1 will read back the current analog input value of two
channels.

External Encoder Setting
SSCNET board includes three external encoder channels.

Value
If the external encoder channels are used, and the signals
are connected, you can read the encoder value for each
channel.
Enter the new value of encoder in the textbox then click the
“Set” button to write the value.

Apply To
Specify the axis that uses the external encoder signal

Mode
Select the attribute of each external encoder signal, if the
external encoder signals are connected.

Control Loop
The attribute of the control loop for the external encoder

Parameter
The corresponding parameter for the external encoder

5.4.1 Operation Steps
The General Purpose IO Operation Window accesses the digital
input, output and analog output value of the SSCNET board. The
operation steps are described as follows:

142 Motion Creator

General Purpose DI/O
Digital output: click the rectangle button to write the digital
output value for each digital output channel.

General Purpose AD/DA
Analog output: enter the analog output value in the textbox
then click the “Set Value” button to write the analog output
value.
The current value textboxes read back the current value of
two analog output channels automatically.
The AD0/AD1 will read back the current analog input value
of two channels.

External Encoder Setting
Mode: Select the attribute of each external encoder signal, if
the external encoder signals are connected.
Apply To: select the axis that uses the external encoder
Control Loop: select open or close loop control.
Parameter: enter the corresponding parameter for control
loop

Read and write encoder value
If the external encoder channels are used, and the signals
are connected, you can read the encoder value for each
channel.
Enter the new value of encoder in the textbox then click the
“Set” button to write the value.

5.4.2 Pulse Output Page
This SSCNET board provide two channels of pulse output func-
tion. Users can use these two channel to control stepper or any
other pulse input command motor.

Motion Creator 143

Figure 5-9: Pulse Output

5.4.3 Component description
Apply To

Specify the axis that uses pulse output function. Notice that
the axis number can’t be overlapped by SSCNET axis.

Mode
Select the attribute of pulse output signal.

5.5 Tuning Window
Tuning Window appears when clicking “Tuning” button in the Main
window. The following figure shows the Tuning Window. This win-
dow displays the response diagrams of selected channels by set-
ting the motion parameter in “Single-Axis Operation Window” and
trigger setting in this window.

144 Motion Creator

Figure 5-10: Tuning Window

5.5.1 Component Description

Figure 5-11: Trigger Setting Frame

Motion Creator 145

This frame provides a flexible choice to configure the trigger. Once
the signal is triggered, the data from the four channels will be plot-
ted on the response diagram.

Source: select one of the channel signal to be the trigger
source
Value: trigger value
Slope: specify the rising edge or falling edge trigger
Sample Number: total amount of the gathering data
Pretrigger sample No.: amount of the pretrigger data

Figure 5-12: Parameter Tuning Frame

This frame affords an easy way to access a set of fundamental
servo parameter.

Read All: read the current servo parameter

Channel Selection Frame
This frame is used to set the signal of each channel.

Sample interval: the sample interval between signals. The units of
the X-Axis is sample interval.

146 Motion Creator

Figure 5-13: Channel Selection Frame

Figure 5-14: Motion Frame

Motion Creator 147

This frame is used to construct a motion.

Velocity profile: Select the Trapezoidal or S-Curve velocity
profile.
Start Velocity Set the start velocity of motion in unit of PRM.
Maximum Velocity: Set the maximum velocity of motion in
unit of PRM.
Final Velocity: Set the finvel velocity of motion in unit of
PRM.
Tacc: Set the total acceleration time in unit of second.
Tdec: Set the total deceleration time in unit of second.
Tlacc: Set the linear acceleration time in unit of second.
Tldec: Set the linear deceleration time in unit of second.
Ratio: Set the move ratio between pulse and displacement

Figure 5-15: Display Frame

Vertical:
Channel: Select the channel you want to adjust.
Scale: Adjust he current scale of selected channel.
Position: Shift the data of selected channel.

Horizontal:
Zoom in
Zoom out
Position

148 Motion Creator

Figure 5-16: Response Diagram

This diagram displays the waveform from four channels in different
colors.

Timing Line
There are two timing lines in the response diagram, and the time
difference between two lines will shows in the left corner of
response diagram.

Play Keys

Figure 5-17: Play Button

Click this button will cause SSCNET board start to move.

Figure 5-18: Stop Button

Motion Creator 149

Click “Stop” button will cause SSCNET board to decelerate to
stop.

5.5.2 Operation Steps
The operation steps are description as follows:

Click “Channel” tab to specify the signal data, and sample
interval
Click “Trigger” tab to set trigger source, trigger value, slope,
Sample Number, and pretrigger sample No.
Click “Motion” tab to set the motion parameter.
Click “Play button” to cause SSCNET board start to move.
If the signal is triggered, and the data is shown on the
response diagram, then click the “Display” tab to adjust the
data.
If you want to change the response of servomotor, click
“Tuning” tab to modify the servo parameter to change the
response

5.5.3 Example
Click “Channel” tab, select “F/B present value” for channel
1, “INP(In Position)” for channel 2, “Speed Command” for
channel 3, “Speed Feedback” for channel 4, and set “Sam-
ple Interval” = 1x0.88 ms.
Click “Trigger” tab, select “Ch 2” to be the trigger source,
trigger value = 1, down slope, 1 x0.88 ms sample interval.
Click “Motion” tab, select “relative ” motion mode, “Distance”
= 20000, "Trapezoidal" velocity profile, "Start Velocity" =
1000, "Maximum Velocity" = 3000, "Final Velocity" = 1000,
"Tacc" = 0.1, "Tdec" = 0.1.
Click the "Play" button to start motion.
When the “INP signal” is changing from 1 to 0, the signal is
triggered and system starts to record the data for four chan-
nels by the 0.88ms time interval, and the data is adjusted
and shown in the response diagram.
If the data is shown on the response diagram correctly, you
can click “Display” tab to scale or shift the data.

150 Motion Creator

Timing
Move the cursor to the “timing line”.
Drag the “timing line to” any position.
The textbox in left corner in “Response Diagram” will indi-
cate the time difference between two lines.

Note: The range of Y-Axis in the response diagram is –1000 to
1000, if the scaled data exceeds this range, it will not display
on the diagram.

5.6 XY-Interpolation Window
XY-Interpolation Window appears when clicking “XY-Interpolation”
button in the Main window. The following figure shows the XY-
Interpolation Window.

Figure 5-19: XY-Interpolation Window

Motion Creator 151

5.6.1 Component description
Position Graph

This graph shows the feedback and command position of the
interpolation dynamically.

Parameter Page
The parameter page affords a friendly and intelligent interface to
configure the interpolation motion.

Control Panel
The control panel starts or stops the interpolation motion, set the
horizontal, vertical axis for the interpolation, and scale or shift the
data.

Position Display
The position display shows the current position of the horizontal
and vertical axis in the unit of pulse.

Velocity Display
The Velocity display shows the current speed ratio (current speed/
motor maximum speed) of the horizontal and vertical axis.

5.6.2 Operation steps
The operation steps of XY-Interpolation Window are described as
following:

Click “Tab 0” to select the circular or liner mode of Interpola-
tion
Select the relative or absolute interpolation mode
Input the require parameters, the require parameters are in
the green background color
Select the axes for horizontal and vertical direction
Press the “Go button” to start motion
Click “Display” tab to scale or shift the data.

Note: 1. The XY-Interpolation is available when more than two
axes exist in your system.
2. If alarm happens (for example: accelerate too fast), the
motion will be interrupted, you must click the “alarm reset”
button to reset the alarm status.

152 Motion Creator

5.7 Two-Axes Operation Window
Two-Axes Operation Window appears when clicking “2-Axis Oper-
ate” button in the Main window. The following figure shows the
Two-Axes Operation Window. This window affords the simple con-
trol of motion (relative or absolute trapezoidal mode), and displays
the velocity profile, driver status for the users.

Figure 5-20: Two-Axes Operation Window

5.7.1 Component description
Axis 0, Axis 1 frame

These frames display the required parameters for motion; the
parameters are described below:

Start Velocity: Set the start velocity of motion in unit of PRM.
In “Absolute Mode” or “Relative Mode”, only the value is
effective. ie, -100.0 is the same as 100.0. In “Cont. Move”,

Motion Creator 153

both the value and sing is effective. –100.0 means 100.0 in
minus direction.
Maximum Velocity: Set the maximum velocity of motion in
unit of PRM. In “Absolute Mode” or “Relative Mode”, only
the value is effective. ie, -5000.0 is the same as 5000.0. In
“Cont. Move”, both the value and sing is effective. –5000.0
means 5000.0 in minus direction.
Final Velocity: Set the final velocity of motion in unit of PRM.
In “Absolute Mode” or “Relative Mode”, only the value is
effective. ie, -5000.0 is the same as 5000.0. In “Cont.
Move”, both the value and sing is effective. –5000.0 means
5000.0 in minus direction.
Tacc: Set the total acceleration time in unit of seconds.
Tdec: Set the total deceleration time in unit of seconds.
Ratio (Pulse/mm): set the move ratio between pulse and
displacement
Relative or absolute mode for each axis:
Absolute Mode: “Position” will be used as absolution target
position for motion
Relative Mode: “Distance will” be used as relative displace-
ment for motion.
Repeat mode: When “On” is selected, the motion will go in
repeat mode (Positive distance <--> Negative distance or
Positive position <--> Negative position).

Driver Status frame
This frame monitors the driver status in the update rate of 50ms.

Velocity Chart
This chart displays the velocity profile of each axis

154 Motion Creator

Play keys
Right play button: Click this button will cause SSCNET
board start to outlet pulses according to previous setting.
In “Relative Mode”, it cause axis move Positive Distance.
In “Absolute Mode”, it cause axis move to Positive Position.
Left play button: Click this button will cause SSCNET board
start to outlet pulses according to previous setting.
In “Relative Mode”, it cause axis move Negative Distance.
In “Absolute Mode”, it cause axis move to Negative Posi-
tion.
Stop button: Click “Stop” button will cause SSCNET board
to decelerate to stop. The deceleration time is defined in
parameter “Tdec”.

5.7.2 Operation Steps
Select the motion mode, and input the require parameters
for each axis, the require parameters are in the green back-
ground color.
Click the “Servo” button to keep the “Servo-On” state
Click right play, and left play button to start the motion.
Click “Stop” to stop the motion.

When the motion starts, the feedback velocity profile will display in
the velocity chart, and the driver status is also display in this win-
dow.

Note: If alarm happens, the motion will be interrupted, you must
click the “alarm reset” button to reset the alarm status.

Motion Creator 155

5.8 Single Axis Operation Window
Single Axis Window appears when clicking “1-Axis Operate” but-
ton in the Main window. The following figure shows the Single Axis
Window. This window supports the full control of a single axis
motion, and displays the velocity profile and driver status.

Figure 5-21: Single Axis Operation Window

5.8.1 Component description
Motion Mode Frame

This frame provides selection of all modes for single axis motion;
each mode is described below.

Motion Parameters Frame
This frame displays the require parameters for motion, the param-
eters are described below:

Start Velocity: Set the start velocity of motion in unit of PRM.
In “Absolute Mode” or “Relative Mode”, only the value is
effective. ie, -100.0 is the same as 100.0. In “Cont. Move”,

156 Motion Creator

both the value and sing is effective. –100.0 means 100.0 in
minus direction.
Maximum Velocity: Set the maximum velocity of motion in
unit of PRM. In “Absolute Mode” or “Relative Mode”, only
the value is effective. ie, -5000.0 is the same as 5000.0. In
“Cont. Move”, both the value and sing is effective. –5000.0
means 5000.0 in minus direction.
Final Velocity: Set the final velocity of motion in unit of PRM.
In “Absolute Mode” or “Relative Mode”, only the value is
effective. ie, -5000.0 is the same as 5000.0. In “Cont.
Move”, both the value and sing is effective. –5000.0 means
5000.0 in minus direction.
Ratio (Pulse/mm): set the move ratio between pulse and
displacement
Tacc: Set the total acceleration time in unit of seconds.
Tdec: Set the total deceleration time in unit of seconds.
Tlacc: Set the linear acceleration time in unit of seconds.
Tldec: Set the linear deceleration time in unit of seconds.

Driver Status frame
This frame monitors the driver status in the update rate of 50ms.

Motion Status frame
Left part is the motion done status and the right part is the motion
status in heximal.

Velocity Chart
This chart displays the velocity profile of each axis

Play keys
Right play button: Clicking this button will cause the SSCNET
board to start outputting pulses according to a previous setting.

In “Relative Mode”, it cause axis move Positive Distance
In “Absolute Mode”, it cause axis move to Positive Position
In “Continuous Mode”, it cause axis start to move according
to the velocity setting

Motion Creator 157

Left play button: Clicking this button will cause the SSCNET board
to start outputting pulses according to a previous setting.

In “Relative Mode”, it cause axis move Negative Distance
In “Absolute Mode”, it cause axis move to Negative Position
In “Continuous Mode”, it cause axis start to move according
to the velocity setting

Stop button: Clicking the “Stop” button will cause the SSCNET
board to decelerate to stop. The deceleration time for a "Trapezoi-
dal Velocity Profile" is defined in parameter “Tdec”, and for "S-
Curve Velocity Profile" is defined in parameter “Tdec”, "Tldec".

Change Velocity On The Fly Button: click this button to change the
velocity of current motion. The new velocity must be defined in
“Maximum Velocity”

5.8.2 Motion I/O Configration Window
If you press the “Motion I/O” button, you will see a window below:

It is for users to set their dedicated I/O of the axis. The setting will
be automatically saved by MotionCreator.

Figure 5-22: Motion I/O Configration Window

158 Motion Creator

5.8.3 Interrupt Configration Window
If you press the “Interrupt” button, you will see a window below:

It is for users to set interrupt factor the axis. The setting will be
automatically saved by MotionCreator. It is userful to users to test
the interrupt functions.

Figure 5-23: Interrupt Configration Window

Motion Creator 159

5.8.4 Operation Steps
Selecting a motion mode:

Absolute Mode: “Position1” and “position2” will be used
as absolute target position for motion
Relative Mode: “Distance will” be used as relative dis-
placement for motion.
Home Mode: The Motion keeps going until the ORG sig-
nal is active.
Continuous Mode: The Motion keeps going until the
“stop” button is clicked.
Repeat Mode: When “On” is selected, the motion will go
in repeat mode (forward?? backward or position1 ??
position2). It is only effective when “Relative Mode” or
“Absolute Mode” is selected.
Velocity Profile: Select the velocity profile. Both Trape-
zoidal and S-Curve are available for “Absolute Mode”,
“Relative Mode” and “Continuous Mode”.

Input the require parameters, the require parameters are in
the green background color.
Click the “Servo” button to keep the “Servo-On” state
Click right play, and left play button to start the motion.
Change Position On The Fly Button: When this button is
enabled, users can change the target position of current
motion. The new position must be defined in “Position2”.
Change Velocity On The Fly Button: When this button is
enabled, users can change the velocity of current motion.
The new velocity must be defined in “Maximum Velocity”
Stop Motion: Click “Stop” will cause SSCNET board to
decelerate to stop.

When the motion starts, the command and feedback velocity pro-
file will display in the velocity chart, and the driver status is also
displayed in this window.

Note: If alarm happens, the motion will be interrupted, you must
click the “alarm reset” button to reset the alarm status.

160 Motion Creator

5.9 Driver Parameter Configuration Window
Driver Parameter Configuration Window appears when clicking
“Servo Parameter” button from the Main window. The following fig-
ure shows the Driver Parameter Configuration Window. This win-
dow supports full access to all servo driver parameters.

Figure 5-24: Driver Parameter Configuration Window

5.9.1 Component description
Servo Driver Parameter Table

This table lists all the accessible servo driver parameters, and the
attribute of the parameter. Each column in this table is described
as following

Name: the short name of the parameter. For any parameter
whose symbol is preceded by *, set the parameter value

Motion Creator 161

and switch power off once, then switch it on again to make
that parameter setting valid.
Description: explains the meaning of the parameter briefly
Default Value: the default setting of the parameter
Current Value: the current value of the parameter
Unit: the unit of the parameter
Setting Range: the range of the parameter.

Parameter Description Frame
This frame explains the parameter more completely, and illustrates
the meaning of each setting value of the parameter.

Operate Frame
This frame includes several command buttons, and are described
as following

Read All: reads all of the servo driver parameter from servo
driver, and displays the value in the "Current Value" column
of Servo Driver Parameter Table
Default: modify the setting value of all servo driver parame-
ters to default value
Save to File: save the current setting of all servo driver
parameters into a file
Load from File: modify the setting value of all servo driver
parameters from a existing file
Apply Next: apply the current parameter setting to next axis
Apply All: apply the current parameter setting to all axes in
your system

Value Frame
This frame shows the current setting of the parameter in decimal
or hexadecimal format

"Modify" button: modify the current setting of the parameter

162 Motion Creator

5.9.2 Operation Steps
Click “Read Parameter” button to read current value of all
parameters from servo driver.
Click the parameter you want to adjust in the parameter list
table.
Input the value, and click the “modify” button to modify the
setting value of the parameter.
Click “Write Parameter” button to adjust the parameters that
you have modified.
You can also click the “default” button to modify all the
parameters to default setting, then click “Write Parameter”
button to adjust all the parameters to default value.

Note: For any parameter whose symbol is preceded by *, set the
parameter value and switch power off once, then switch it on
again to make that parameters setting valid.

Appendix 163

6 Appendix
6.1 MR-J2S-B Alarm List
When any alarm has occurred, eliminate its cause, ensure safety,
then deactivate the alarm, and restart operation. Not doing so can
cause injury.

AL.10 Undervoltage
Power supply voltage dropped.

MR-J2S-B: 160V or lessMR-J2S-
oB1: 83V or less

AL.12 Memory alarm 1 RAM memory fault
AL.13 Clock alarm Printed board fault
AL.15 Memory alarm 2 EEPROM fault

AL.16 Encoder alarm 1
Communication error occurred

between encoder and servo ampli-
fier.

AL.17 Board alarm CPU/parts fault
AL.19 Memory alarm 3 ROM memory fault

AL.1A Motor combination
alarm

Combination of servo amplifier and
servo motor is wrong.

AL.20 Encoder alarm 2
Communication error occurred

between encoder and servo ampli-
fier.

AL.24 Main circuit error
Ground fault occurred at the servo
motor outputs (U, V, W phases) of

the servo amplifier.

AL.25 Absolute position erase

Absolute position data in error-
Power was switched on for the first
time in the absolute position detec-

tion system.

AL.30 Regenerative alarm

The permissible regenerative
power of the built-in regenerative

brake resistor or regenerative
brake option is exceeded.Regener-

ative transistor fault

AL.31 Overspeed Speed has exceeded the instanta-
neous permissible speed.

Table 6-1: MR-J2S-B Alarm List

164 Appendix

AL.32 Overcurrent
Current that flew is higher than the

permissible current of the servo
amplifier.

AL.33 Overvoltage Converter bus voltage input value-
exceeded 400V.

AL.34 CRC error Bus cable is faulty.

AL.35 Command pulse fre-
quency alarm

The pulse frequency of the input
command pulses is too high.

AL.36 Transfer error Bus cable or printed board is faulty.
AL.37 Parameter alarm Parameter setting is wrong.

AL.45 Main circuit device
overheat Main circuit overheated abnormally.

AL.46 Motor overheat Servo motor temperature rise actu-
ated the thermal protector.

AL.50 Overload 1

Load exceeded overload protection
characteristic of servo ampli-

fier.Load ratio 300%: 2.5s or more-
Load ratio 200%: 100s or more

AL.51 Overload 2

Machine collision etc. caused max.
output current to flow successively
for several seconds.Servo motor

locked: 1s or more

AL.52 Error excessive
Droop pulse value of the deviation
counter exceeded the parameter

No.31 setting value .

AL.8E Serial communication
alarm

Serial communication fault
occurred between servo amplifier
and communication device (e.g.

personal computer).
88 Watchdog CPU, parts faulty

Table 6-1: MR-J2S-B Alarm List

Appendix 165

6.2 MR-J2S-B Warning List
If E6, E7, E9 or EE occurs, the servo off status is established. If
any other warning occurs, operation can be continued but an
alarm may take place or proper operation may not be performed.
Eliminate the cause of the warning according to this section. Use
the optional servo configuration software to refer to the cause or
warning.

AL.92 Open battery cable
warning

Absolute position detection system bat-
tery voltage is low.

AL.96 Home position setting
warning

Home position return could not be
made in the precise position.

AL.9F Battery warning Voltage of battery for absolute position
detection system reduced.

AL.E0 Excessive regenera-
tive load warning

There is a possibility that regenerative
power may exceed permissible regen-
erative power of built-in regenerative
brake resistor or regenerative brake

option.

AL.E1 Overload warning There is a possibility that overload
alarm 1 or 2 may occur.

AL.E3 Absolute position
counter warning Absolute position encoder pulses faulty.

AL.E4 Parameter warning Parameter outside setting rang.
AL.E6 Servo emergency stop EM1-SG are open.

AL.E7 Controller emergency
stop warning.

AL.E9 Main circuit off warning Servo was switched on with main circuit
power off.

AL.EE SCCNET error warning The servo system controller connected
is not SSCNET-compatible..

Table 6-2: MR-J2S-B Warning List

166 Appendix

6.3 Driver Parameter List

Symbol Name

MR-J2SB
Instruction

Manual
parameter

Unit Setting range

*AMS Amp setting Pr.01 0000H~0001H
*REG Regenerative resistor Pr.02 0000H~0011H
*MTY For manufacturer’s settings Pr.03 0080H
*MCA For manufacturer’s settings Pr.04 0000H
*MTR For manufacturer’s settings Pr.05 1
*FBP Feedback pulse number Pr.06 0,1,6,7,225
*POL Direction of motor rotation Pr.07 0,1
ATU Auto-tuning Pr.08 0000H~0004H
RSP Servo response setting Pr.09 0001H~000FH
TLP Forward rotation torque limits Pr.10 % 0~Maximum torque
TLN Reverse rotation torque limits Pr.11 % 0~Maximum torque
DG2 Moment of inertia ratio of load Pr.12 0.1 0~3000
PG1 Position control gain 1 Pr.13 rad/sec 4~2000
VG1 Speed control gain 1 Pr.14 rad/sec 20~8000
PG2 Position control gain 2 Pr.15 rad/sec 1~1000
VG2 Speed control gain 2 Pr.16 rad/sec 20~20000
VIC Speed integration compensation Pr.17 msec 1~1000
NCH Mechanical resonance control filter Pr.18 0~031FH
FFC Feed forward gain Pr.19 % 0~100
INP In position range Pr.20 pulse 0~50000

MBR Electromagnetic brake sequence
output Pr.21 msec 0~1000

MOD Monitor output mode Pr.22 0000H~0B0BH
OP1 Optional function 1 Pr.23 0000H~0001H
OP2 Optional function 2 Pr.24 0000H~0110H
LPF Low pass filter Pr.25 0000H~1210H
OP4 For manufacturer’s settings Pr.26 0000H
MO1 Monitor output 1 offset Pr.27 mv -999~999

Table 6-3: Driver Parameter List

Appendix 167

MO2 Monitor output 2 offset Pr.28 Mv -999~999
MOA For manufacturer’s settings Pr.29 0001H
ZSP Zero speed Pr.30 rpm 0~10000
ERZ Error excess alarm level Pr.31 kpulse 1~1000
OP5 Option function 5 Pr.32 0000H~0002H
OP6 For manufacturer’s settings Pr.33 0000H~0113H
VPI PI-PID change position droop Pr.34 0~50000
TTT For manufacturer’s settings Pr.35 0000H
VDC Speed integration compensation Pr.36 0~1000
OP7 For manufacturer’s settings Pr.37 0010H
ENR Encoder output pulse Pr.38 0~32768

For manufacturer’s settings Pr.39 0000H
*BLK Parameter block Pr.40 0000H~000EH

Symbol Name

MR-J2SB
Instruction

Manual
parameter

Unit Setting range

Table 6-3: Driver Parameter List

168 Appendix

6.4 Handshake Procedure
SSCNET board is composed of a DSP and other control units on
it. The DSP is a microprocessor for managing all devices on the
board. Once the CPU on host PC needs to communicate with
DSP, it must use dual port RAM on SSCNET board to do it. On the
same way, the DSP must communicate host CPU via dual port
RAM. The commander must check if he can send the command
and the responser must give him some ready signal for this proce-
dure. This is so called handshake. It takes time in handshake. The
handshake latency is 0.888ms because of the SSCNET protocol.
Some procedure needs a series of handshaking and they will be
introduced in the following sections.

6.4.1 Card Initial Procedure
The initial procedure is very complicated in SSCNET board. Once
the function “MDSP_initial()” is lauched, the following flow char will
be taken:

Step Action OK Reponse Error Response Error Reason

1
Power ON

LED Flash one by one and off No LED Flashing or
LED always ON

ROM data corrupt. Please
download ROM data again.

Use Kernelupdate.exe to do it.

2 Initial Board

3 “DSP_OK”=1 LED turns off

Table 6-4: Card Initial Procedure

Appendix 169

6.4.2 Card Close Procedure
Every time the program ends, MDSP_inital() must be lauched to
make sure that the PC resources will be released. It is good for
next program starts.

4

MDSP_initial()

No Error Card_ID_Out_Of_Ran
ge

The CardNo parameter of this
function invalid

5 No Error Card_Reinitialized
In the same program, card
dosen’t close normally then

want to initial again

6 Check “DSP_OK”=1 Card_Not_Ready Tim-
eOut=200ms

Use KernelUpdate.exe to
reset DSP and try again

7 Check DSP Initial Status Card_ReClose_Fail
TimeOut=10000ms

Use KernelUpdate.exe to
reset DSP and try again

8 Tell DSP start searching axes.
The LED will flash

DSP_Initial_Time_Out
TimeOut=10000ms

Use KernelUpdate.exe to
reset DSP and try again

9 The servo drivers will display
“b#”

Maximun_Number_Of_
Card_Exceed

Close program and open
again

10 Check DSP ready for FPGA
download

FPGA_Handshake_Ti
me_Out Time-

Out=100ms

Use KernelUpdate.exe to
reset DSP and try again

11 Load daughter board’s FPGA
code

FPGA_Download_Tim
e_Out Time-
Out=5000ms

Use KernelUpdate.exe to
reset DSP and try again

12
If everything is okay, it will return

CardID in lowbyte and total-
axes-found in highbyte

Step Action OK Reponse Error Response Error Reason

1 MDSP_close() LED will turn
off

LED is still flash-
ing or LED is

always ON or OFF
DSP_Close_Time_

Out Time-
Out=5000ms

Restart User’s pro-
gram or use Kerne-
lUpdate.exe to reset
DSP and try again

2
The servo
drivers will

display “AA”

Table 6-5: Card Close Procedure

Step Action OK Reponse Error Response Error Reason

Table 6-4: Card Initial Procedure

170 Appendix

6.4.3 Card Soft Reset Procedure
We strongly recommend you using kernelupdate.exe utility to
reset board. The following table describe the procedure of
MDSP_reset().

6.4.4 Motion Command Procedure
After the motion command is issued by uses with parameters, the
DLL will calcaulte the frames and transfer them to DSP. When all
the frames are transferred, the DLL will set a “motion go” com-
mand and the motor will be started frame by frame. It takes some
handshake time during this procedure. The following table shows
the running steps of a motion command: start_ta_move()

Step Command OK Reponse Error Response Error Reason

1

MDSP_reset()

LED Flash one
by one and off

No LED Flashing or
LED always ON

ROM data corrupt.
Please download ROM
data again. Use Kerne-

lupdate.exe to do it.

2 Initial Board

3 “DSP_OK”=1
LED turns off

DSP_Reset_Time_O
ut

4 No Error Card_ID_Out_Of_Ra
nge

The CardNo parameter
of this function invalid

5 No Error Card_Reinitialized

In the same program,
card dosen’t close nor-
mally then want to initial

again

6 Check
“DSP_OK”=1

Card_Not_Ready
TimeOut=200ms

Use KernelUpdate.exe to
reset DSP and try again

7 Check DSP Initial
Status

Card_ReClose_Fail
TimeOut=10000ms

Use KernelUpdate.exe to
reset DSP and try again

8
Tell DSP start

searching axes.
The LED will

flash

DSP_Initial_Time_Ou
t TimeOut=10000ms

Use KernelUpdate.exe to
reset DSP and try again

9 The servo drivers
will display “b#”

Maximun_Number_O
f_Card_Exceed

Close program and open
again

Table 6-6: Card Soft Reset Procedure

Appendix 171

Step Action Item Error Response Error Reason

1
Check Card

Card_Not_Ready “DSP_OK” is 0, please reset the
card.

2 Card_Not_Initial MDSP_Initial() failed, please
restart program

3 Check DSP DSP_Not_Ready “Initial_Status” is not at finished
state. Please restart program.

4

Check Axis

Axis_Not_In_Control Axis is out of control. Check con-
nection and restart program

5 Axis_Servo_Alarm Axis is in servo alarm. Use alarm
reset to remove this status

6 Axis_Is_Not_Ready_ON Axis is not ready, use servo_on()
command or check connection

7 Axis_Is_Not_Servo_ON
Axis is not servo on, use

servo_on() command or check
connection

8 Check Motion Status Axis_Prepare_For_Motion

Axis is prepare frames for motion,
if you are very sure the motion is

ended, use stop command to can-
cel it.

9 Axis_Busy_For_Motion
Axis is busy for motion, if you are

very sure the motion is ended, use
stop command to cancel it.

10 Axis_In_EMG_ON The EMG signal is ON. Check
EMG logic and switch.

11 Axis_In_PEL_ON
The axis is going to a direction

which PEL ON. Check PEL logic
and switch

12 Axis_In_MEL_ON
The axis is going to a direction

which MEL ON. Check MEL logic
and switch

13 Frame download
command Axis_Hand_Shake_Failed

Frame download failed. Please
use stop command to cancel this

motion

15 Motion Go command Axis_Not_Response

“Motion Command Go” is set to
DSP but can’t see “In Motion” sta-
tus ON. Please use stop command

to cancel this motion

16 Finish No Error
The function will response a posi-

tive value represents the total
frames need to be run

Table 6-7: Motion Command Procedure

172 Appendix

6.4.5 Motion Command Timing

Figure 6-1: PCI-8372+ Single Motion Command Timing Chart

Signal Channel:
[1] DSP processing time synchronized with SSCNET cycle
(low voltage level duration)
DSP codes has two process: Synchronized and Non-Syn-
chronized process, this channel displays the processing
time of synchronized process.
[2] start_tr_move command processing time at host side
(low voltage level duration)
[3] DSP response time for Host motion command (high volt-
age level duration)

Appendix 173

Label number:
(1)start_tr_move() command starts
(1~2) Trajectory calculation time on host
(2)Send motion-download command to DSP. DSP will take
some time (the Peak) to transfer the trajectory data and set
a “transferring done flag” for host.
*(2~3) Host waits the “transferring done flag” and get a
mutex from system for continue
(3)Send motion-go command to DSP and DSP will take
some time(the Peak) to set a “motion go” flag for DSP syn-
chronized process
(3~4) DSP enter the synchronized process
(4)DSP starts calculating first position for servo driver and
put it on SSCNET data stream
(4~5) The position data is sent to servo driver through cable
(5)Servo motor runs according to the position data
** (5~6) Host start_ta_move() object is in ending process
(6)start_ta_move function leaves

Note: * Waiting mutex time is uncertain. It takes 2~10ms in aver-
age.
** C++ object dis-constructing time.

Conclusion: From Command Launched to Motor started takes
about 3.5 SSCNET cycle

174 Appendix

6.5 cPCI-8312H High Speed Link Initial Guide
cPCI-8312H has two master chips of High Speed Link on the
board. So it has all the features of HSL just like PCI-7852. In this
chapter, we will introduce how to to initial the HSL functions on this
board.

1. MDSP_Initial()

This function is not only for SSCNET but also initializing the board
on Windows system. It will register the board’s resources on sys-
tem. The HSL functions are executable from this information only
after the MDSP_Initial() is successfully issued.

2. HSL_Start() or HSL_Auto_Start()

This function will start to search all the modules on HSL network.

3. HSL_Slave_Live()

Use this function to check the status of searched HSL module

After these procedures, you can use all the functions of HSL.
Please refer to HSL user’s manual or module user guide for
details.

Warranty Policy 175

Warranty Policy
Thank you for choosing ADLINK. To understand your rights and
enjoy all the after-sales services we offer, please read the follow-
ing carefully.

1. Before using ADLINK’s products please read the user man-
ual and follow the instructions exactly. When sending in
damaged products for repair, please attach an RMA appli-
cation form which can be downloaded from: http://
rma.adlinktech.com/policy/.

2. All ADLINK products come with a limited two-year war-
ranty, one year for products bought in China:

The warranty period starts on the day the product is
shipped from ADLINK’s factory.
Peripherals and third-party products not manufactured
by ADLINK will be covered by the original manufactur-
ers' warranty.
For products containing storage devices (hard drives,
flash cards, etc.), please back up your data before send-
ing them for repair. ADLINK is not responsible for any
loss of data.
Please ensure the use of properly licensed software with
our systems. ADLINK does not condone the use of
pirated software and will not service systems using such
software. ADLINK will not be held legally responsible for
products shipped with unlicensed software installed by
the user.
For general repairs, please do not include peripheral
accessories. If peripherals need to be included, be cer-
tain to specify which items you sent on the RMA Request
& Confirmation Form. ADLINK is not responsible for
items not listed on the RMA Request & Confirmation
Form.

176 Warranty Policy

3. Our repair service is not covered by ADLINK's guarantee
in the following situations:

Damage caused by not following instructions in the
User's Manual.
Damage caused by carelessness on the user's part dur-
ing product transportation.
Damage caused by fire, earthquakes, floods, lightening,
pollution, other acts of God, and/or incorrect usage of
voltage transformers.
Damage caused by unsuitable storage environments
(i.e. high temperatures, high humidity, or volatile chemi-
cals).
Damage caused by leakage of battery fluid during or
after change of batteries by customer/user.
Damage from improper repair by unauthorized ADLINK
technicians.
Products with altered and/or damaged serial numbers
are not entitled to our service.
This warranty is not transferable or extendible.
Other categories not protected under our warranty.

4. Customers are responsible for shipping costs to transport
damaged products to our company or sales office.

5. To ensure the speed and quality of product repair, please
download an RMA application form from our company web-
site: http://rma.adlinktech.com/policy. Damaged products
with attached RMA forms receive priority.

If you have any further questions, please email our FAE staff:
service@adlinktech.com.

mailto:service@adlinktech.com

	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Specifications
	1.2 Environmental Conditions
	1.3 Software Support
	1.3.1 Programming Library
	1.3.2 Motion Creator

	2 Installation
	2.1 What You Have
	2.2 PCI-8372+/8366+ Outline Drawing
	2.3 cPCI-8312(H) Outline Drawing
	2.4 Hardware Installation
	2.4.1 Installation Procedures
	2.4.2 LED Status
	2.4.3 KernelUpdate Utility of SSCNET card
	2.4.4 SSCNET Communication Test Utility

	2.5 Software Driver Installation
	2.6 CN1 Pin Assignment: SSCNet Connector on PCB
	2.7 CN5 Pin Assignment: PCI-8372+/8366+ I/O Connector
	2.8 SP1 Pin Assignment: cPCI-8312(H) I/O Connector
	2.9 CN3 Pin Assignment: TTL output Connector on bracket
	2.10 HS1A - HS2B Pin Assignments: HSL Communication Signal (RJ-45)

	3 Signal Connections
	3.1 SSCNet Servo Driver Connection
	3.2 Encoder Feedback Signals: EA, EB and EZ
	3.3 PEL, MEL, ORG, EMG and General Purpose DI
	3.4 General Purpose DO
	3.5 TTL Output
	3.6 Analog Output
	3.7 Analog Input (cPCI-8312(H) Only)
	3.8 Pulse Output (cPCI-8312(H) Only)

	4 Operation Theory
	4.1 Architecture
	4.1.1 HOST PC and SSCNET Board
	4.1.2 SSCNet Communication

	4.2 Frame Architecture
	4.2.1 Frame Introduction

	4.3 Single Motion
	4.3.1 Single axis velocity motion
	4.3.2 Single axis P to P motion
	4.3.3 Multi axes velocity motion
	4.3.4 Multi axes P to P motion
	4.3.5 Linear Interpolation
	4.3.6 Circular Interpolation
	4.3.7 Change Velocity on the Fly
	4.3.8 Position Compensation on the Fly

	4.4 Home move
	4.4.1 Declaration for Beginning of Motion List
	4.4.2 Add Trajectory pieces
	4.4.3 Declaration for End of Motion List
	4.4.4 Start/Stop command

	4.5 Motion Related IO
	4.5.1 Position control and feedback
	4.5.2 Velocity Feedback
	4.5.3 Motion DIO status
	4.5.4 Software limit
	4.5.5 Motion Status
	4.5.6 Motion Input as General Input

	4.6 General Purpose IO
	4.6.1 Encoder Counter
	4.6.2 DIO
	4.6.3 DA
	4.6.4 AD
	4.6.5 Analog channel auto calibration

	4.7 Driver Management
	4.7.1 Driver parameter
	4.7.2 Data monitoring
	4.7.3 Servo Information
	4.7.4 Servo On
	4.7.5 Driver information
	4.7.6 Servo Alarm

	4.8 Control Gain Tuning
	4.8.1 Control Gains
	4.8.2 Mechanical resonance suppression filter
	4.8.3 Low pass filter

	4.9 Interrupt control
	4.10 Position Compare Function
	4.11 Interlock Function
	4.12 Absolute Position System
	4.13 Compared Trigger Output
	4.14 Sequence Motion Control
	4.14.1 Conceptual Flow Chart
	4.14.2 Coding Example 1: Using C Language
	4.14.3 Coding Example 2: Compare Start Condition

	5 Motion Creator
	5.1 Overview
	5.2 Main Window
	5.2.1 Component description
	5.2.2 Operation Steps

	5.3 General Purpose IO Operation Window (PCI- 8372+/8366+)
	5.3.1 Component description
	5.3.2 Operation Steps

	5.4 General Purpose IO Operation Window (cPCI- 8312H)
	5.4.1 Operation Steps
	5.4.2 Pulse Output Page
	5.4.3 Component description

	5.5 Tuning Window
	5.5.1 Component Description
	5.5.2 Operation Steps
	5.5.3 Example

	5.6 XY-Interpolation Window
	5.6.1 Component description
	5.6.2 Operation steps

	5.7 Two-Axes Operation Window
	5.7.1 Component description
	5.7.2 Operation Steps

	5.8 Single Axis Operation Window
	5.8.1 Component description
	5.8.2 Motion I/O Configration Window
	5.8.3 Interrupt Configration Window
	5.8.4 Operation Steps

	5.9 Driver Parameter Configuration Window
	5.9.1 Component description
	5.9.2 Operation Steps

	6 Appendix
	6.1 MR-J2S-B Alarm List
	6.2 MR-J2S-B Warning List
	6.3 Driver Parameter List
	6.4 Handshake Procedure
	6.4.1 Card Initial Procedure
	6.4.2 Card Close Procedure
	6.4.3 Card Soft Reset Procedure
	6.4.4 Motion Command Procedure
	6.4.5 Motion Command Timing

	6.5 cPCI-8312H High Speed Link Initial Guide

	Warranty Policy

