

IGS-9822DGP+ Industrial Managed Ethernet Switch

User Manual

Version 1.0 Mar, 2018

Table of Content

Getting	Started	.5
1.1	About the IGS-9822DGP+	5
1.2	Software Features	5
1.3	Hardware Specifications	6
Hardwa	are Overview	.7
2.1	Installing Switch on DIN-Rail	7
2.1.	1 Mount IGS-9822DGP+ on DIN-Rail	7
Hardwa	are Overview	.9
3.1	Front Panel	9
3.2	Front Panel LEDs	10
3.3	Top view Panel	11
Hardwa	are Installation	12
4.1	Wiring	12
4.1.1	Fault Relay	12
4.1.2	Redundant Power Inputs	12
4.2	Connection	13
4.2.1	Cables	13
1000	0/100BASE-TX/10BASE-T Pin Assignments	13
RS-	232 console port wiring	14
4.2.2	SFP	15
4.2.3	O-Ring	16
O-R	ing	16
Redund	dancy	18
5.1	O-Ring	18
5.1.1	Introduction	18
5.1.2	Configurations	18
5.2	MSTP	19
5.2.1	STP Configurations	19
5.2.2	MSTI Mapping	21
Priority	/	22
5.2.3	CIST	23
Port S	ettings	23

5.2.	4 MST	T Ports	24
5.2.	5 Brid	ge Status	25
5.2.	6 Port	Status	28
5.2.	7 Port	Statistics	29
Mana	igemer	ıt	30
6.1	Basi	c Settings	32
6.1.	1 Syst	em Information	32
	6.1.2	Auth Method	33
	6.1.3	Users	34
	6.1.4	IP Settings	37
	6.1.5	IP Status	39
	6.1.6	Daylight Saving Time	40
	6.1.7	HTTPS	42
	6.1.8	SSH	43
	6.1.9	DBU01 Option Config	43
	6.1.10	LLDP	44
	6.1.11	NTP	48
	6.1.12	Upnp	49
	6.1.13	ModbusTCP	50
	6.1.14	Ethernet/IP	50
	6.1.15	Backup/Restore Configurations	51
	6.1.16	Firmware Update	51
6	5.2 D	HCP	52
	6.2.1	DHCP Server	52
	6.2.2	DHCP Relay	56
	6.2.3	DHCP Snooping	58
6	i.3 P	ort Setting	61
	6.3.1	Port Control	61
	6.3.2	Port Trunk	64
	6.3.3	Loop Protection	69
6.4	VLA	N	71
	6.4.1	VLAN Membership	71
	6.4.2	Membership Status	76
	6.4.3	Port Status	77
	6.4.4	Private VLAN	78
	6.4.5	GVRP	80
6.5	SNN	1P	82

	6.5.1	SNMP System Configurations	82
	6.5.2	Trap	83
	6.5.3	SNMP Community Configurations	85
	6.5.4	SNMP User Configurations	86
	6.5.5	SNMP Group Configurations	87
	6.5.6	SNMP View Configurations	88
	6.5.7	SNMP Access Configurations	89
	6.5.8	RMON	90
6.6	Traff	ic Prioritization	96
	6.6.1	Storm Control	96
	6.6.2	Port Classification	97
	6.6.3	Port Tag Remaking	99
	6.6.4	Port DSCP	100
	6.6.5	Port Policing.	101
	6.6.6	Queue Policing	102
	5.6.7	QoS Egress Port Scheduler and Shapers	102
	5.6.8	Port Scheduler	105
	5.6.9	Port Shaping	105
	5.6.10	DSCP-Based QoS	106
	5.6.11	DSCP Translation	107
	5.6.12	DSCP Classification	108
	5.6.13	QoS Control List	108
	5.6.14	QoS Counters	110
	5.6.15	QCL Status	111
	5.6.16	WRED	112
6.7	Multi	icast	115
	5.7.1	IGMP Snooping	115
6.8	Secu	urity	120
	6.8.1	Device Binding	120
	6.8.2	Access Management	125
	6.8.3	IP Source Guard	126
	6.8.4	ACL	128
	6.8.5	AAA	140
	6.8.6	TACACS+	141
	6.8.8	NAS (802.1x)	144
	6.8.9	ARP Inspecition	155
	6.8.10	Port Security	157

6.9	Warı	ning161
	6.9.1	Fault Alarm
	6.9.2	System Warning
6.10	Mon	itor and Diag163
	6.10.1	MAC Table
	6.10.2	Port Statistics
	6.10.3	Port Monitoring
	6.10.4	System Log Information
	6.10.5	Cable Diagnostics
	6.10.6	SFP Monitor
	6.10.7	SFP Type173
	6.10.8	Ping
	IPv6 Pi	ng 174
6.11	Conf	figuration
	6.11.1	Activate175
	6.11.2	Delete
6.12	Save	e 175
6.13	Trou	bleshooting
	6.13.1	Factory Defaults
	6.13.2	System Reboot

Getting Started

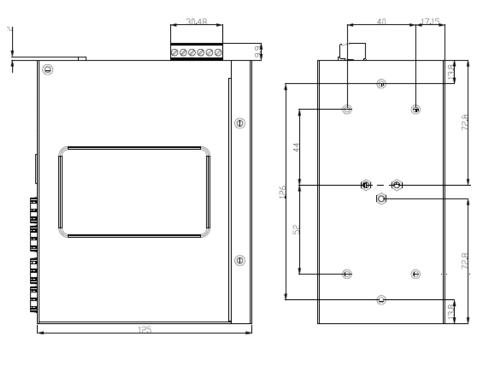
1.1 About the IGS-9822DGP+

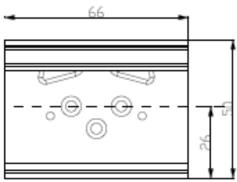
IGS-9822DGP+ is managed redundant ring Gigabit Ethernet switch with 8x10/100/1000Base-T(X) ports and 2x 100/1G/2.5GBase-X + 2x 1G/10GBase-X SFP ports. The switch support Ethernet Redundancy protocol, Redundant-Ring (recovery time < 30ms), and MSTP (RSTP/STP compatible) can protect your mission-critical applications from network interruptions or temporary malfunctions with its fast recovery technology. And support wide operating temperature from -40 oC to 75 oC. IGS-9822DGP+ can also be managed centralized and convenient by Open-Vision, Except the Web-based interface, Telnet and console (CLI) configuration. Therefore, the switch is one of the most reliable choice for highly-managed and Fiber Ethernet application.

1.2 Software Features

- Supports Redundant-Ring (recovery time < 30ms), and MSTP(RSTP/STP compatible) for Ethernet Redundancy
- Supports IEEE 802.3az Energy-Efficient Ethernet technology
- Supports IPV6 new Internet protocol version
- Supports HTTPS/SSH protocols for high network security
- Supports IP-based bandwidth management
- Supports application-based QoS management
- IGMP v2/v3 (IGMP snooping) support for filtering multicast traffic
- Supports SNMP v1/v2c/v3 & RMON & 802.1Q VLAN network management
- Supports ACL and 802.1x user authentication
- Supports 9.6K bytes Jumbo frame
- Multiple notifications during unexpected events
- Configuration via Web-based ,Telnet, Console (CLI), and Windows utility (Open-Vision)
- Supports LLDP Protocol
- Support DBU-01 backup unit device to quickly backup/restore configuration

1.3 Hardware Specifications

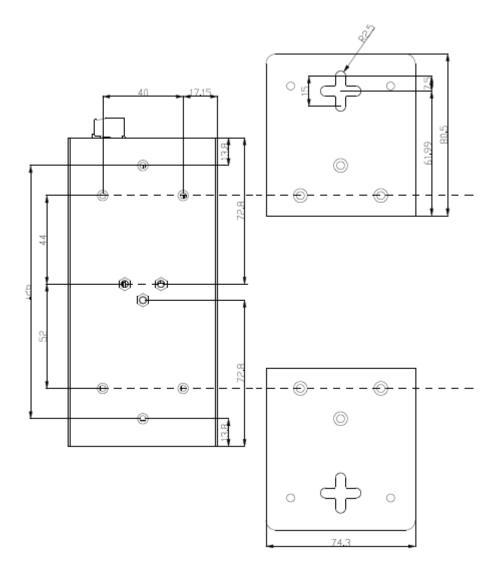

- Redundant 12~48VDC power inputs
- 8 x 10/100/1000Base-T(X) ports
- 2x 1G/10GBase-X SFP+ sockets
- 2x 100/1G/2.5GBase-X SFP+ sockets
- 1 x console port
- Operating temperature: -20 to 60 °C at 10G, -40 to 75 °C at Full Gigabit
- Storage temperature: -40 to 85°C
- Operating humidity: 5% to 95%, non-condensing
- Casing: IP-30
- DIN-Rail and wall mounting enabled
- Dimensions: 74.3 (W) x 125 (D) x 153.6 (H)mm


Hardware Overview

2.1 Installing Switch on DIN-Rail

Each switch has a DIN-Rail kit on rear panel. The DIN-Rail kit helps switch to fix on the DIN-Rail. It is easy to install the switch on the DIN-Rail:

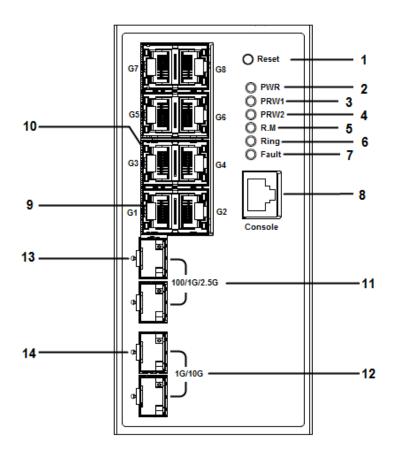
2.1.1 Mount IGS-9822DGP+ on DIN-Rail



DIN-Rail Size

Wall Mounting Installation

Each switch has another installation method for users to fix the switch. A wall mount panel can be found in the package. The following steps show how to mount the switch on the wall:


Wall-Mounting size

Hardware Overview

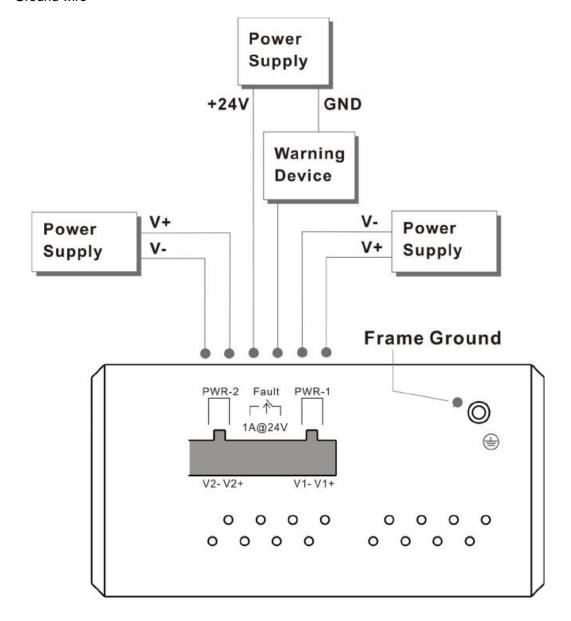
3.1 Front Panel

The following table describes the labels that stick on the IGS-9822DGP+.

Port	Description
SFP Port	2 x 100 / 1G / 2.5G
SFP+ Port	2.x 1G / 10G
Copper Port	8 x 10/100/1000Base-T(X)
Console	Use RS-232 with RJ-45 connecter to manage switch.

- 1. Reset button. Push the button 3 seconds for reset; 5 seconds for factory default.
- 2. LED for PWR. When the PWR UP, the green led will be light on
- 3. LED for PWR1
- 4. LED for PWR2
- 5. LED for R.M (Ring master). When the LED light on, it means that the switch is the ring master of Ring. , LED for Ring. When the led light on, it means the Ring is activated.

- 6. LED for Ring. When the led light on, it means the Redundant-Ring is activated.
- 7. LED for Fault. When the light on, it means Power failure or Port down/fail.
- 8. Console port (RJ-45)
- 9. 10/100/1000Base-T(X) ports
- 10. LED for Ethernet ports link/act/speed status (right port indicator)
- 11. SFP Port support 100 / 1G / 2.5G
- 12. SFP+ Port support 1G / 10G
- 13. 10/100/1000Base-T(X) ports
- 14. LED for SFP Ports
- 15. LED for SFP+ Ports


3.2 Front Panel LEDs

LED	Color	Status	Description	
PWR	Green	On	DC power module up	
PW1	Green	On	DC power module 1activated.	
PW2	Green	On	DC Power module 2activated.	
R.M	Green	On	Ring Master.	
		On	Ring enabled.	
			Ring has only One link.	
Ring	Green	Slowly blinking	(lack of one link to build the	
			ring.)	
		Fast blinking	Ring work normally.	
Fault	Amber	On	Fault relay. Power failure	
Tault	Ambei	Oll	or Port down/fail.	
Gigabit Ethernet po	orts			
ACT/LNK	Green	On	Port link up	
ACI/LNK	Green	Blinking	Data transmitted	
		Green	Port link up on 1000Mbps	
SPEED	Green/Amber	Amber	Port link up on 100Mbps	
		OFF	Port link up on 10Mbps	
SFP ports				
	Croon	On	Port link up.	
LNK/LNK	Green	Blinking	Data transmitted.	

3.3 Top view Panel

The bottom panel components of IGS-9822DGP+ are showed as below:

- 1. Terminal block includes: PWR1, PWR2 (12-48V DC)
- 2. Ground wire

11

Hardware Installation

4.1 Wiring

ATTENTION

- Be sure to disconnect the power cord before installing and/or wiring your switches.
- 2. Calculate the maximum possible current in each power wire and common
 - wire. Observe all electrical codes dictating the maximum current allowable for each wire size.
- 3. If the current goes above the maximum ratings, the wiring could overheat, causing serious damage to your equipment.
- 4. Use separate paths to route wiring for power and devices. If power wiring and device wiring paths must cross, make sure the wires are perpendicular at the intersection point.
- 5. Do not run signal or communications wiring and power wiring through the same wire conduit. To avoid interference, wires with different signal characteristics should be routed separately.
- 6. You can use the type of signal transmitted through a wire to determine which wires should be kept separate. The rule of thumb is that wiring sharing similar electrical characteristics can be bundled together
- 7. You should separate input wiring from output wiring
- 8. It is advised to label the wiring to all devices in the system

4.1.1 Fault Relay

The three-pin fault relay terminal on the front panel is used to detect user-configured events. The two wires attached to the fault contacts form an open circuit when a user-configured when an event is triggered. If a user-configured event does not occur, the fault circuit remains closed.

4.1.2 Redundant Power Inputs

The switch has two sets of power inputs, power input 1 and power input 2. Follow the steps below to wire redundant power inputs.

Step 1: insert the negative/positive wires into the V-/V+ terminals, respectively.

Step 2: to keep the DC wires from pulling loose, use a small flat-blade screwdriver to tighten the wire-clamp screws on the front of the terminal block connector.

4.2 Connection

4.2.1 Cables

1000/100BASE-TX/10BASE-T Pin Assignments

The device has standard Ethernet ports. According to the link type, the switch uses CAT 3, 4, 5,5e UTP cables to connect to any other network devices (PCs, servers, switches, routers, or hubs). Please refer to the following table for cable specifications.

Cable Types and Specifications:

Cable	Туре	Max. Length	Connector
10BASE-T	Cat. 3, 4, 5 100-ohm	UTP 100 m (328 ft)	RJ-45
100BASE-TX	Cat. 5 100-ohm UTP	UTP 100 m (328 ft)	RJ-45
1000BASE-T	Cat. 5/Cat. 5e 100-ohm UTP	UTP 100 m (328ft)	RJ-45

With 10/100/1000Base-T(X) cables, pins 1 and 2 are used for transmitting data, and pins 3 and 6 are used for receiving data.

10/100Base-T(X) RJ-45 Port Pin Assignments:

Pin Number	Assignment
1	TD+
2	TD-
3	RD+
6	RD-

1000Base-T RJ-45 Port Pin Assignments:

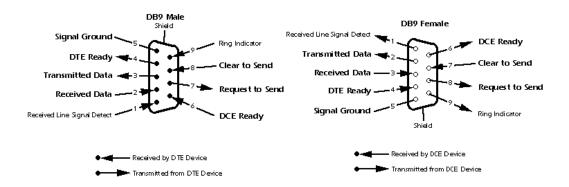
Pin Number	Assignment
1	BI_DA+
2	BI_DA-
3	BI_DB+
4	BI_DC+
5	BI_DC-
6	BI_DB-
7	BI_DD+
8	BI_DD-

The device supports auto MDI/MDI-X operation. You can use a cable to connect the switch to a PC. The table below shows the 10/100Base-T(X) MDI and MDI-X port pin outs.

10/100Base-T(X) MDI/MDI-X Pin Assignments:

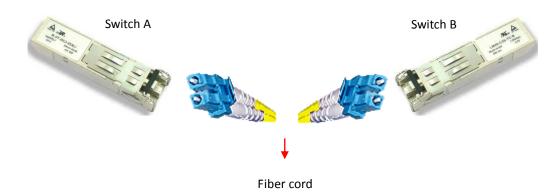
Pin Number	MDI port	MDI-X port
1	TD+(transmit)	RD+(receive)
2	TD-(transmit)	RD-(receive)
3	RD+(receive)	TD+(transmit)
4	Not used	Not used
5	Not used	Not used
6	RD-(receive)	TD-(transmit)
7	Not used	Not used
8	Not used	Not used

1000Base-T MDI/MDI-X Pin Assignments:


Pin Number	MDI port	MDI-X port
1	BI_DA+	BI_DB+
2	BI_DA-	BI_DB-
3	BI_DB+	BI_DA+
4	BI_DC+	BI_DD+
5	BI_DC-	BI_DD-
6	BI_DB-	BI_DA-
7	BI_DD+	BI_DC+
8	BI_DD-	BI_DC-

Note: "+" and "-" signs represent the polarity of the wires that make up each wire pair.

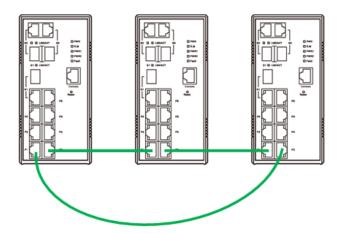
RS-232 console port wiring


The device can be managed via console ports using a RS-232 cable which can be found in the package. You can connect the port to a PC via the RS-232 cable with a DB-9 female connector. The DB-9 female connector of the RS-232 cable should be connected the PC while the other end of the cable (RJ-45 connector) should be connected to the console port of the switch.

PC pin out (male) assignment	RS-232 with DB9 female connector	DB9 to RJ 45
Pin #2 RD	Pin #2 TD	Pin #2
Pin #3 TD	Pin #3 RD	Pin #3

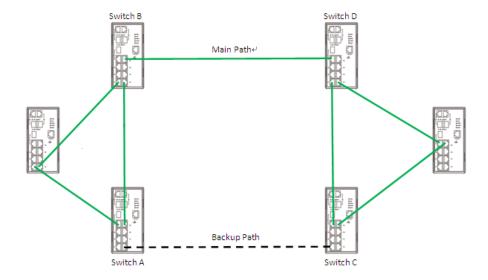
4.2.2 SFP

The switch comes with fiber optical ports that can connect to other devices using SFP modules. The fiber optical ports are in multi-mode and single-mode with LC connectors. Please remember that the TX port of Switch A should be connected to the RX port of Switch B.

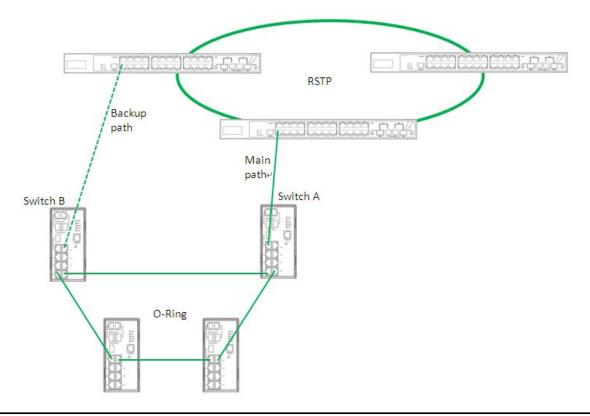


4.2.3 O-Ring

O-Ring


You can connect three or more switches to form a ring topology to gain network redundancy capabilities through the following steps.

- 1. Connect each switch to form a daisy chain using an Ethernet cable.
- 2. Set one of the connected switches to be the master and make sure the port setting of each connected switch on the management page corresponds to the physical ports connected. For information about the port setting, please refer to 5.1.2 Configurations.
- 3. Connect the last switch to the first switch to form a ring topology.


Coupling Ring

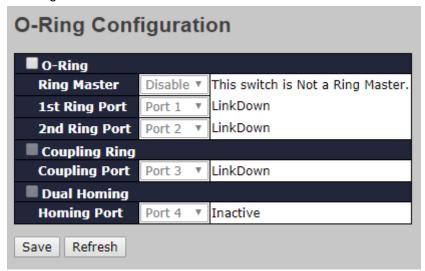
If you already have two Redundant-Ring topologies and would like to connect the rings, you can form them into a coupling ring. All you need to do is select two switches from each ring to be connected, for example, switch A and B from Ring 1 and switch C and D from ring 2. Decide which port on each switch to be used as the coupling port and then link them together, for example, port 1 of switch A to port 2 of switch C and port 1 of switch B to port 2 of switch D. Then, enable Coupling Ring option by checking the checkbox on the management page and select the coupling ring in correspondence to the connected port. For more information on port setting, please refer to <u>5.1.2 Configurations</u>. Once the setting is completed, one of the connections will act as the main path while the other will act as the backup path.

Dual Homing

If you want to connect your ring topology to a RSTP network environment, you can use dual homing. Choose two switches (Switch A & B) from the ring for connecting to the switches in the RSTP network (core switches). The connection of one of the switches (Switch A or B) will act as the primary path, while the other will act as the backup path that is activated when the primary path connection fails.

Redundancy

Redundancy for minimized system downtime is one of the most important concerns for industrial networking devices. Hence, we has developed proprietary redundancy technologies including Redundant-Ring, featuring faster recovery time than existing redundancy technologies widely used in commercial applications, such as STP, RSTP, and MSTP. we proprietary redundancy technologies not only support different networking topologies, but also assure the reliability of the network.

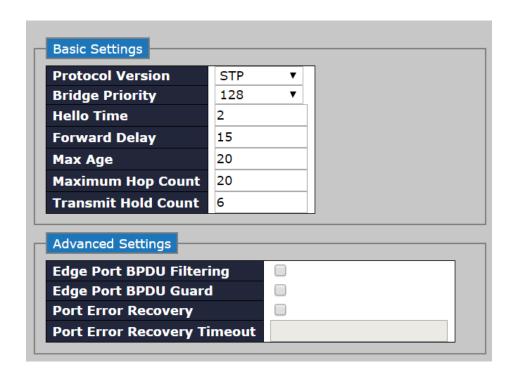

5.1 O-Ring

5.1.1 Introduction

O-Ring recovery time of less than 10 milliseconds and up to 250 nodes. The ring protocols identify one switch as the master of the network, and then automatically block packets from traveling through any of the network's redundant loops. In the event that one branch of the ring gets disconnected from the rest of the network, the protocol automatically readjusts the ring so that the part of the network that was disconnected can reestablish contact with the rest of the network. The redundant ring technology can protect mission-critical applications from network interruptions or temporary malfunction with its fast recover technology.

5.1.2 Configurations

Redundant-Ring supports two ring topologies: **Coupling Ring**, and **Dual Homing**. You can configure the settings in the interface below.


Label	Description
O-Ring	Check to enable O-Ring topology.
	Only one ring master is allowed in a ring. However, if more
	than one switch are set to enable Ring Master , the switch with
Ring Master	the lowest MAC address will be the active ring master and the
	others will be backup masters.
1 st Ring Port	The primary port when the switch is ring master
2 nd Ring Port	The backup port when the switch is ring master
Coupling Ring	Check to enable Coupling Ring. Coupling Ring can divide a
	big ring into two smaller rings to avoid network topology
	changes affecting all switches. It is a good method for
	connecting two rings.
	Ports for connecting multiple rings. A coupling ring needs four
	switches to build an active and a backup link.
Coupling Port	Links formed by the coupling ports will run in active/backup
	mode.
Dual Homing	Check to enable Dual Homing . When Dual Homing is
_	enabled, the ring will be connected to normal switches through
	two RSTP links (ex: backbone Switch). The two links work in
	active/backup mode, and connect each ring to the normal
	switches in RSTP mode.
Apply	Click to apply the configurations.

Note: due to heavy loading, setting one switch as ring master and coupling ring at the same time is not recommended.

5.2 MSTP

5.2.1 STP Configurations

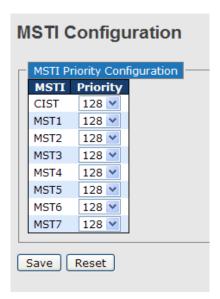
STP (Spanning Tree Protocol), and its advanced versions RSTP (Rapid Spanning Tree Protocol) and MSTP (Multiple Spanning Tree Protocol), are designed to prevent network loops and provide network redundancy. Network loops occur frequently in large networks as when two or more paths run to the same destination, broadcast packets may get in to an infinite loop and hence causing congestion in the network. STP can identify the best path to the destination, and block all other paths. The blocked links will stay connected but inactive. When the best path fails, the blocked links will be activated. Compared to STP which recovers a link in 30 to 50 seconds, RSTP can shorten the time to 5 to 6 seconds.

Label	Description
Protocol Version	The version of the STP protocol. Valid values include STP, RSTP
	and MSTP.
	The delay used by STP bridges to transit root and designated
Forward Delay	ports to forwarding (used in STP compatible mode). The range of
	valid values is 4 to 30 seconds.
	The maximum time the information transmitted by the root bridge
Max Age	is considered valid. The range of valid values is 6 to 40 seconds,
	and Max Age must be <= (FwdDelay-1)*2.
	This defines the initial value of remaining Hops for MSTI
Maximum Hop Count	information generated at the boundary of an MSTI region. It
Maximum Hop Count	defines how many bridges a root bridge can distribute its BPDU
	information to. Valid values are in the range 6 to 40 hops.
	The number of BPDUs a bridge port can send per second. When
Transmit Hold Count	exceeded, transmission of the next BPDU will be delayed. The
	range of valid values is 1 to 10 BPDUs per second.
Edge Port BPDU	Control whether a port explicitly configured as Edge will transmit
Filtering	and receive BPDUs.
Edge Port BPDU	Control whether a port explicitly configured as Edge will disable
Guard	itself upon reception of a BPDU. The port will enter the
	error-disabled state, and will be removed from the active topology.

Port Error Recovery	Control whether a port in the error-disabled state automatically
	will be enabled after a certain time. If recovery is not enabled,
	ports have to be disabled and re-enabled for normal STP
	operation. The condition is also cleared by a system reboot.
Port Error Recovery	The time to pass before a port in the error-disabled state can be
Timeout	enabled. Valid values are between 30 and 86400 seconds (24
	hours).

5.2.2 MSTI Mapping

Since the recovery time of STP and RSTP takes seconds, which are unacceptable in some industrial applications, MSTP was developed. The technology supports multiple spanning trees within a network by grouping and mapping multiple VLANs into different spanning-tree instances, known as MSTIs, to form individual MST regions. Each switch is assigned to an MST region. Hence, each MST region consists of one or more MSTP switches with the same VLANs, at least one MST instance, and the same MST region name. Therefore, switches can use different paths in the network to effectively balance loads.

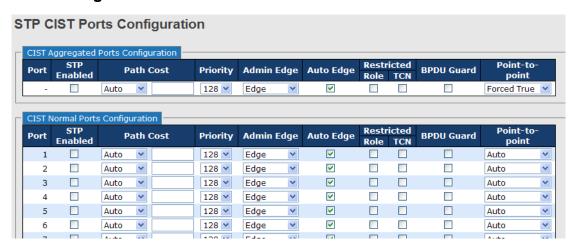

This page allows you to examine and change the configurations of current MSTI ports. A MSTI port is a virtual port, which is instantiated separately for each active CIST (physical) port for each MSTI instance configured and applicable for the port. The MSTI instance must be selected before MSTI port configuration options are displayed.

MSTI Configuration		
Add VLANs separated by spaces or comma.		
Unmapped VLANs are mapped to the CIST. (The default bridge instance).		
Configuration Identification		
Configuration Name Configuration Revision 00-1e-94-12-23-34 0		
MSTI Mapping		
MSTI VLANs Mapped		
MSTI1		
MSTI2		
MSTI3		
MSTI4		
MSTI5		
MSTI6		
MSTI7		

Label	Description
	The name which identifies the VLAN to MSTI mapping. Bridges
	must share the name and revision (see below), as well as the
Configuration Name	VLAN-to-MSTI mapping configurations in order to share spanning
	trees for MSTIs (intra-region). The name should not exceed 32
	characters.
Configuration	Revision of the MSTI configuration named above. This must be
Revision	an integer between 0 and 65535.
MSTI	The bridge instance. The CIST is not available for explicit
INISTI	mapping, as it will receive the VLANs not explicitly mapped.
	The list of VLANs mapped to the MSTI. The VLANs must be
VI ANS Manned	separated with commas and/or space. A VLAN can only be
VLANS Mapped	mapped to one MSTI. An unused MSTI will be left empty (ex.
	without any mapped VLANs).

Priority

This page allows you to examine and change the configurations of current STP MSTI bridge instance priority.

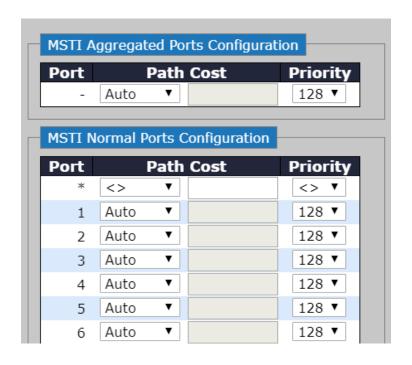

Label	Description	
MSTI	The bridge instance. CIST is the default instance, which is always active.	
	Indicates bridge priority. The lower the value, the higher the priority. The bridge	
Priority	priority, MSTI instance number, and the 6-byte MAC address of the switch	
	forms a bridge identifier.	

Save	Click to save changes
Reset	Click to undo any changes made locally and revert to previously saved values

5.2.3 CIST

With the ability to cross regional boundaries, CIST is used by MSTP to communicate with other MSTP regions and with any RSTP and STP single-instance spanning trees in the network. Any boundary port, that is, if it is connected to another region, will automatically belongs solely to CIST, even if it is assigned to an MSTI. All VLANs that are not members of particular MSTIs are members of the CIST.

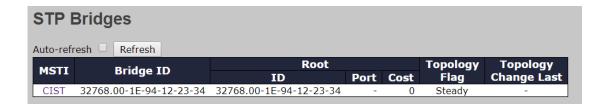
Port Settings



Label	Description	
Port	The switch port number to which the following settings will be applied.	
STP Enabled	Check to enable STP for the port	
	Configures the path cost incurred by the port. Auto will set the path cost	
	according to the physical link speed by using the 802.1D-recommended	
Path Cost	values. Specific allows you to enter a user-defined value. The path cost	
Patii Cost	is used when establishing an active topology for the network. Lower path	
	cost ports are chosen as forwarding ports in favor of higher path cost	
	ports. The range of valid values is 1 to 200000000.	
Priority	Configures the priority for ports having identical port costs. (See above).	
OnonEdge	A flag indicating whether the port is connected directly to edge devices	
OpenEdge (setate flag)	or not (no bridges attached). Transiting to the forwarding state is faster	
	for edge ports (operEdge set to true) than other ports.	
AdminEdge	Configures the operEdge flag to start as set or cleared.(the initial	
	operEdge state when a port is initialized).	

	Check to enable the bridge to detect edges at the bridge port
AutoEdge	automatically. This allows operEdge to be derived from whether BPDUs
	are received on the port or not.
	When enabled, the port will not be selected as root port for CIST or any
	MSTI, even if it has the best spanning tree priority vector. Such a port
	will be selected as an alternate port after the root port has been
Restricted Role	selected. If set, spanning trees will lose connectivity. It can be set by a
Restricted Role	network administrator to prevent bridges outside a core region of the
	network from influencing the active spanning tree topology because
	those bridges are not under the full control of the administrator. This
	feature is also known as Root Guard.
	When enabled, the port will not propagate received topology change
	notifications and topology changes to other ports. If set, it will cause
	temporary disconnection after changes in an active spanning trees
	topology as a result of persistent incorrectly learned station location
Restricted TCN	information. It is set by a network administrator to prevent bridges
	outside a core region of the network from causing address flushing in
	that region because those bridges are not under the full control of the
	administrator or is the physical link state for the attached LANs
	transitions frequently.
	Configures whether the port connects to a point-to-point LAN rather than
Point2Point	a shared medium. This can be configured automatically or set to true or
	false manually. Transiting to forwarding state is faster for point-to-point
	LANs than for shared media.
Save	Click to save changes.
Reset	Click to undo any changes made locally and revert to previously saved
I/G2G!	values.

5.2.4 MSTI Ports


This page allows you to configure STA attributes for interfaces in a specific MSTI, including path cost, and port priority. You may use a different priority or path cost for ports of the same media type to indicate the preferred path.

Label	Description
Port	The port identifier.
Path Cost	As this parameter is used by the STA to determine the best
	path between devices, lower values are suggested for ports
	attached to faster media, and higher values for ports with
	slower media. (Path cost takes precedence over port priority.)
	The value will control the path cost incurred by the port. Auto
	will set the path cost as appropriate by the physical link
	speed, using the 802.1D recommended values. Specific will
	allow you to enter a user-defined value.
Priority	Specify the priority for a port in the Spanning Tree Algorithm. If
	the path cost for all ports on a switch are the same, the port
	with the highest priority (usually with the lowest value) will be
	used as an active link in the Spanning Tree. In this way, a port
	with higher priority is less likely to be blocked if the Spanning
	Tree Algorithm discovers network loops. Where more than
	one port is assigned the highest priority, the port with lowest
	numeric identifier will be enabled.

5.2.5 Bridge Status

This page will show STA information on the global bridge such as the switch and individual ports.

Label	Description
MSTI	Indicates the bridge instance.
Bridge ID	A unique identifier for this bridge, consisting of the bridge
	priority, and MAC address (where the address is taken from
	the switch system).
Root	Root ID: A unique identifier of the device in the Spanning Tree
	that this switch has been accepted as the root device,
	consisting of the priority and MAC address.
	Root Port: the number of the port on this switch that is closest
	to the root. This switch communicates with the root device
	through this port. If no root port is designated, it means this
	switch has been accepted as the root device of the Spanning
	Tree network.
	Root Cost: the path cost from the root port on this switch to
	the root device. The cost for the root bridge zero. For all other
	bridges, it is the sum of the port path costs on the least cost
	path to the root bridge.
Technology Flag	The current state of the Topology Change Notification flag
	(TCN) for this bridge instance.
Technology Change Last	Time since the Spanning Tree was last reconfigured.

Click on CIST will bring out the following information window. Regional Root is the bridge ID of the designated regional root bridge, inside the MSTP region of this bridge. Internal Root Path is the path cost regional root path cost. The cost for the Regional Root Bridge is zero, and for all other CIST instances in the same MSTP region, it is the sum of the Internal Port Path Costs on the least cost path to the Internal Root Bridge. Note that these parameters only apply to the CIST instance.

STP Detailed Bridge Status				
Auto-refresh Refresh				
STP Brid	ge Status			
Bridge Instance	CIST			
Bridge ID	32768.00-1E-94-12-23-34			
Root ID	32768.00-1E-94-12-23-34			
Root Cost	0			
Root Port	-			
Regional Root	32768.00-1E-94-12-23-34			
Internal Root Cost	0			
Topology Flag	Steady			
Topology Change Count	0			
Topology Change Last	-			
CIST Ports & Aggrega	ations State	-		
Port Port ID Role No ports or aggregations ac	State Path Cost Edg tive	e Point-to-Point	Uptime	

Label	Description
Port	The port identifier.
Port ID	The port identifier used by the RSTP protocol, consisting of
	the priority and the logical port index of the bridge port.
Role	The role of a port is assigned based on whether it is part of
	the active topology connecting the bridge to the root bridge
	(i.e., root port), connecting a LAN through the bridge to the
	root bridge (i.e., designated port); or is an alternate or backup
	port that may provide connectivity if other bridges, bridge
	ports, or LANs fail or are removed.
State	Displays the current state of this port in the Spanning Tree.
Path Cost	The path cost of the port contributed to the paths towards the
	spanning tree root which include this port. It can be a value
	assigned by the Auto setting or any explicitly configured
	value.
Edge	The current RSTP port (operational) Edge Flag. An Edge Port
	is a switch port to which no bridges are attached. The flag
	may be automatically computed or explicitly configured. Each
	Edge Port transitions directly to the Forwarding Port State,
	since there is no possibility of it participating in a loop.
Point-to-Point	Indicates a connection to exactly one other bridge. The flag
	may be automatically computed or explicitly configured. The
	point-to-point properties of a port affect how fast it can

	transition RSTP states.
Uptime	The time since the bridge port was last initialized.

5.2.6 Port Status

This page shows the STA functional status of participating ports.

STP	Port S	Status		
Auto-re	fresh 🔲	Refresh		
Port	CIST R	ole CIS	ST State	Uptime
1	Non-STP	Forv	varding	-
2	Non-STP	Forv	varding	-
3	Non-STP	Forv	varding	-
4	Non-STP	Forv	varding	-
5	Non-STP	Forv	varding	-
6	Non-STP	Forv	varding	-
7	Non-STP		varding	-
8	Non-STP		varding	-
9	Non-STP		varding	-
10	Non-STP		varding	-
11			varding	-
12			varding	-
13	Non-STP		varding	-
14	Non-STP		varding	-
15	Non-STP		varding	-
16			varding	-
17	Non-STP		varding	-
18	Non-STP		varding	-
19	Non-STP		varding	-
20	Non-STP	Forv	varding	-

Label	Description
Port	The port identifier.
CIST Role	The role of a port is assigned based on whether it is part of the
	active topology connecting the bridge to the root bridge (i.e., root
	port), connecting a LAN through the bridge to the root bridge (i.e.,
	designated port); or is an alternate or backup port that may provide
	connectivity if other bridges, bridge ports, or LANs fail or are
	removed.
CIST State	Displays the current state of this port in the Spanning Tree. There
	are three states.
	Blocking: the port will receive STA configuration messages, but
	will not forward packets.
	Learning: The port transmits configuration messages for an

	interval set by the Forward Delay parameter without receiving
	contradictory information. The port address table will be cleared,
	and the port will learn addresses.
	Forwarding: The port will forward packets while learning
	addresses.
Uptime	The time since the bridge port was last initialized.

5.2.7 Port Statistics

Label	Description
Port	The port identifier.
Transmitted/Received	MSTP: the number of MSTP Configuration BPDUs received/
	transmitted on a port.
	RSTP: the number of RSTP Configuration BPDUs received/
	transmitted on a port.
	RTP: the number of legacy STP Configuration BPDU's received/
	transmitted on a port.
	TCN: the number of (legacy) Topology Change Notification
	BPDUs received/transmitted on a port.
Discarded	Unknown: the number of unknown Spanning Tree BPDUs
	received (and discarded) on a port.
	Illegal: the number of illegal Spanning Tree BPDUs received (and
	discarded) on a port.

Management

The switch can be controlled via a built-in web server which supports Internet Explorer (Internet Explorer 5.0 or above versions) and other Web browsers such as Chrome. Therefore, you can manage and configure the switch easily and remotely. You can also upgrade firmware via a web browser. The Web management function not only reduces network bandwidth consumption, but also enhances access speed and provides a user-friendly viewing screen.

By default, IE5.0 or later version do not allow Java applets to open sockets. You need to modify the browser setting separately in order to enable Java applets for network ports.

Preparing for Web Management

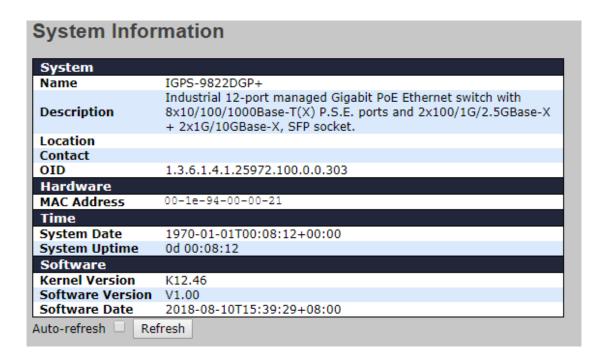
You can access the management page of the switch via the following default values:

IP Address: **192.168.10.1** Subnet Mask: **255.255.255.0**

Default Gateway: 192.168.10.254

User Name: admin
Password: admin

System Login


- 1. Launch the Internet Explorer.
- 2. Type http:// and the IP address of the switch. Press **Enter**.

- 3. A login screen appears.
- 4. Type in the username and password. The default username and password is admin.
- 5. Click **Enter** or **OK** button, the management Web page appears.

After logging in, you can see the information of the switch as below.

On the left hand side of the management interface shows links to various settings. You can click on the links to access the configuration pages of different functions.

6.1 Basic Settings

Basic Settings allow you to configure the basic functions of the switch.

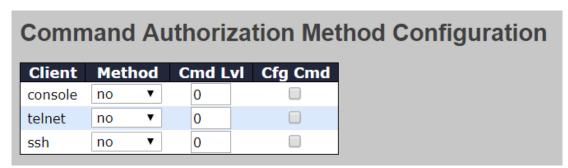
6.1.1 System Information

This page shows the general information of the switch.

Label Description An administratively assigned name for the managed node. By convention, this is the node's fully-qualified domain name. A domain name is a text string consisting of alphabets (A-Z, a-z), **System Name** digits (0-9), and minus sign (-). Space is not allowed to be part of the name. The first character must be an alpha character. And the first or last character must not be a minus sign. The allowed string length is 0 to 255. **System Description** Description of the device The physical location of the node (e.g., telephone closet, 3rd **System Location** floor). The allowed string length is 0 to 255, and only ASCII characters from 32 to 126 are allowed. The textual identification of the contact person for this managed node, together with information on how to contact this person. **System Contact** The allowed string length is 0 to 255, and only ASCII characters from 32 to 126 are allowed. Save Click to save changes. Click to undo any changes made locally and revert to previously Reset saved values.

6.1.2 Auth Method

Authentication Method Configuration

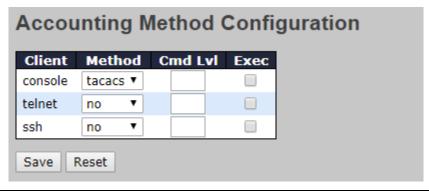

The authentication section allows you to configure how a user is authenticated when he logs into the switch via one of the management client interfaces.

Authe	nticat	io	n M	etho	od C	onf	iguratior
Client			Meth	ods			
console	local	▼	no	₩	no	₩	
telnet	local	▼	no	₩	no	₩	
ssh	local	▼	no	₩	no	₩	
http	local	▼	no	▼	no	▼	

Label	Description
Client	The management client for which the configuration below applies.
Methods	Method can be set to one of the following values:
	· no : Authentication is disabled and login is not possible.
	· local: Use the local user database on the switch for
	authentication.
	· radius: Use remote RADIUS server(s) for authentication.
	· tacacs: Use remote TACACS+ server(s) for authentication.

Command Authorization Method Configuration

The command authorization section allows you to limit the CLI commands available to a user.

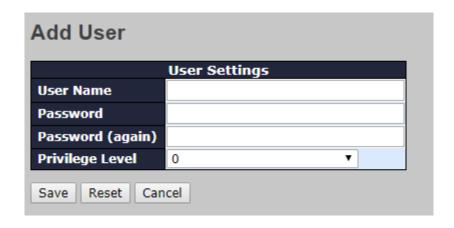


Label	Description	
Client	The management client for which the configuration below applies.	
Methods	Method can be set to one of the following values:	
	· no: Command authorization is disabled. User is granted access	

to CLI commands according to his privilege level.
· tacacs: Use remote TACACS+ server(s) for command
authorization. If all remote servers are offline, the user is
granted access to CLI commands according to his privilege
level.

Accounting Method Configuration

The accounting section allows you to configure command and exec (login) accounting.



Label	Description
Client	The management client for which the configuration below applies.
Methods	Method can be set to one of the following values:
	· no : Accounting is disabled.
	· tacacs: Use remote TACACS+ server(s) for accounting.
Cmd LvI	Enable accounting of all commands with a privilege level higher
	than or equal to this level. Valid values are in the range of 0 to 15.
	Leave the field empty to disable command accounting.
Exec	Enable exec (login) accounting.

6.1.3 Users

Configuration

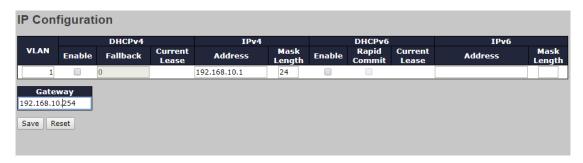
This page provides an overview of the current users. Currently the only way to login as another user on the web server is to close and reopen the browser.

Label	Description
User Name	A string identifying the user name that this entry should belong to.
	The allowed string length is 1 to 31. The valid user name can be
	letters, numbers and underscores.
Password	The password of the user. The allowed string length is 0 to 31.
	Any printable characters including space are accepted.
Privilege Level	The privilege level of the user. The allowed range is 0 to 15. If the
	privilege level value is 15, it can access all groups, i.e. that is
	granted the fully control of the device. But other values need to
	refer to each group privilege level. User's privilege should be the
	same or greater than the group privilege level to have the access
	of that group. By default, the group privilege level of 5 has the
	read-only access and the privilege level of 10 has the read-write
	access. System maintenance (software upload, factory defaults
	and etc.) requires the user privilege level of 15. Generally, the
	privilege level of 15 can be used for an administrator account,
	privilege level 10 for a standard user account and privilege level 5
	for a guest account.

Privilege Levels

This page provides an overview of the privilege levels.

Privilege Level Configuration				
Croup Name	Privilege Levels			
Group Name	Configuration Read-only	Configuration/Execute Read/write	Read-only	Status/Statistics Read/write
Aggregation	5 ▼	10 ▼	5 ▼	10 ▼
Debug	15 ▼	15 ▼	15 ▼	15 ▼
DEVICEBINDING	5 ▼	10 ▼	5 ▼	10 ▼
DHCP	5 ▼	10 ▼	5 ▼	10 ▼
DHCPv6_Client	5 ▼	10 ▼	5 ▼	10 ▼
Diagnostics	5 ▼	10 ▼	5 ▼	10 ▼
FastRecovery	5 ▼	10 ▼	5 ▼	10 ▼
INTP	5 ▼	10 ▼	5 ▼	10 ▼
IP	5 ▼	10 ▼	5 ▼	10 ▼


Label	Description		
Group Name	The name identifying the privilege group. In most cases, a		
·	privilege level group consists of a single module (e.g. LACP,		
	RSTP or QoS), but a few of them contains more than one. The		
	following description defines these privilege level groups in		
	details:		
	System: Contact, Name, Location, Timezone, Daylight Saving		
	Time, Log.		
	Security: Authentication, System Access Management, Port		
	(contains Dot1x port, MAC based and the MAC Address Limit),		
	ACL, HTTPS, SSH, IP source guard.		
	IP: Everything except 'ping'.		
	Port: Everything except 'VeriPHY'.		
	Diagnostics: 'ping' and 'VeriPHY'.		
	Maintenance: CLI- System Reboot, System Restore Default,		
	System Password, Configuration Save, Configuration Load and		
	Firmware Load. Web- Users, Privilege Levels and everything in		
	Maintenance.		
	Debug: Only present in CLI.		
Privilege Levels	Every group has an authorization Privilege level for the following		
	sub groups: configuration read-only, configuration/execute		
	read-write, status/statistics read-only, status/statistics read-write		
	(e.g. for clearing of statistics). User Privilege should be same or		
	greater than the authorization Privilege level to have the access to		
	that group.		

6.1.4 IP Settings

This page allows you to configure IP information for the switch. You can configure the settings of the device operating in host or router mode.

IP Configuration

This page provides an overview of the privilege levels.

Label	Description		
	The VLAN associated with the IP interface. Only ports in this		
VLAN	VLAN will be able to access the IP interface. This field is only		
	available for input when creating a new interface.		
	Enable the DHCPv4 client by checking this box. If this option is		
	enabled, the system will configure the IPv4 address and mask of		
IPv4 DHCP Enabled	the interface using the DHCPv4 protocol. The DHCPv4 client will		
	announce the configured System Name as hostname to provide		
	DNS lookup.		
	The number of seconds for trying to obtain a DHCP lease. After		
IPv4 DHCP Fallback	this period expires, a configured IPv4 address will be used as		
Timeout	IPv4 interface address. A value of zero disables the fallback		
Timeout	mechanism, such that DHCP will keep retrying until a valid lease		
	is obtained. Legal values are 0 to 4294967295 seconds.		
IPv4 DHCP Current	For DHCP interfaces with an active lease, this column show the		
Lease	current interface address, as provided by the DHCP server.		
	The IPv4 address of the interface in dotted decimal notation.		
IPv4 Address	If DHCP is enabled, this field configures the fallback address. The		
IPV4 Address	field may be left blank if IPv4 operation on the interface is not		
	desired - or no DHCP fallback address is desired.		
	The IPv4 network mask, in number of bits (prefix length). Valid		
IPv4 Mask	values are between 0 and 30 bits for an IPv4 address.		
	If DHCP is enabled, this field configures the fallback address		

	network mask. The field may be left blank if IPv4 operation on the		
	interface is not desired - or no DHCP fallback address is desired.		
	Enable the DHCPv6 client by checking this box. If this option is		
DUOD: 0 Frankli	, ,		
DHCPv6 Enable	enabled, the system will configure the IPv6 address of the		
	interface using the DHCPv6 protocol.		
	Enable the DHCPv6 Rapid-Commit option by checking this box. If		
DHCPv6 Rapid	this option is enabled, the DHCPv6 client terminates the waiting		
Commit	process as soon as a Reply message with a Rapid Commit option		
Commit	is received.		
	This option is only manageable when DHCPv6 client is enabled.		
DHCPv6 Current	For DHCPv6 interface with an active lease, this column shows the		
Lease	interface address provided by the DHCPv6 server.		
IPv6 Address	The IPv6 address of the interface. An IPv6 address is in 128-bit		
	records represented as eight fields of up to four hexadecimal		
	digits with a colon separating each field (:). For		
	example, fe80::215:c5ff:fe03:4dc7. The symbol::is a special		
	syntax that can be used as a shorthand way of representing		
	multiple 16-bit groups of contiguous zeros; but it can appear only		
	once.		
	System accepts the valid IPv6 unicast address only, except		
	IPv4-Compatible address and IPv4-Mapped address.		
	This field may be left blank if IPv6 operation on the interface is not		
	desired.		
IPv6 Mask	The IPv6 network mask, in number of bits (prefix length). Valid		
	values are between 1 and 128 bits for an IPv6 address.		
	This field may be left blank if IPv6 operation on the interface is not		
	desired.		
Resolving IPv6 DAD	The link-local address is formed from an interface identifier based		
	on the hardware address which is supposed to be uniquely		
	assigned. Once the DAD (Duplicate Address Detection) detects		
	the address duplication, the operation on the interface SHOULD		
	be disabled.		
	At this moment, manual intervention is required to resolve the		
	address duplication. For example, check whether the loop occurs		
	in the VLAN or there is indeed other device occupying the same		
	hardware address as the device in the VLAN.		
	After making sure the specific link-local address is unique on the		
	0 1		

	IPv6 link in use, delete and then add the specific IPv6 interface to
	restart the IPv6 operations on this interface.
Gateway	Input gateway address .

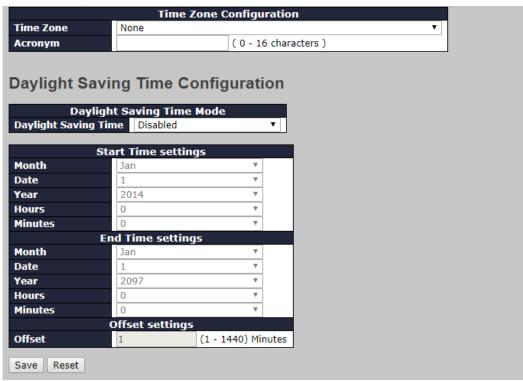
6.1.5 IP Status

This page displays the status of the IP protocol layer. The status is defined by the IP interfaces, the IP routes and the neighbor cache (ARP cache) status.

IP Interfaces

Interface	Type	Address	Status
OS:lo	LINK	00-00-00-00-00	<up><up loopback="" multicast="" running=""></up></up>
OS:lo	IPv4	127.0.0.1/8	
OS:lo	IPv6	fe80::1/64	
OS:lo	IPv6	::1/128	
VLAN1	LINK	00-1e-94-12-23-34	<up><up broadcast="" multicast="" running=""></up></up>
VLAN1	IPv4	192.168.10.1/24	
VLAN1	IPv6	fe80::21e:94ff:fe12:2334/64	

IP Routes


Network	Gateway	Status
127.0.0.1/32	127.0.0.1	<up host=""></up>
224.0.0.0/4	127.0.0.1	<up></up>
::1/128	::1	<up host=""></up>

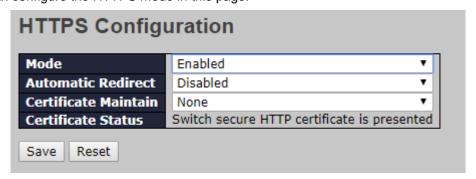
Neighbour cache

IP Address	Link Address	
192.168.10.66	VLAN1:18-66-da-40-88-11	
fe80::21e:94ff:fe12:2334	VLAN1:00-1e-94-12-23-34	

Label	Description		
IP Interface	IP Interface		
Interface	The name of the interface.		
Туре	The address type of the entry. This may be LINK or IPv4.		
Address	The current address of the interface (of the given type).		
Status	The status flags of the interface (and/or address).		
IP Routes			
Network	The destination IP network or host address of this route.		
Gateway	The gateway address of this route.		
Status	The status flags of the route.		
Neighbor Cache			
IP Address	The IP address of the entry.		
Link Address	The Link (MAC) address for which a binding to the IP address given		
LIIIK AUUI 655	exist.		

6.1.6 Daylight Saving Time

Label	Description	
	Time Zone: Set the switch location time zone. The following	
	table lists the different location time zone for your reference.	
Time Zone Configuration	Acronym: User can set the acronym of the time zone. This is	
Time Zone Configuration	a User configurable acronym to identify the time zone.	
	(Range: Up to 16 alpha-numeric characters and can contain	
	'-', '_' or '.').	
	Daylight Saving Time Mode: Enable or disable daylight	
	saving time function. This is used to set the clock forward or	
	backward according to the configurations set below for a	
	defined daylight saving time duration. Select 'Disable' to	
Daylight Saving Time	disable the daylight saving time configuration. Select	
Configuration	'Recurring' and configure the Daylight Saving Time duration	
Comiguration	to repeat the configuration every year. Select	
	'Non-Recurring' and configure the daylight saving time	
	duration for single time configuration. (Default : Disabled).	
	Start Time Settings: Set up the start time of the daylight	
	saving time period.	


End Time Settings: Set up the ending time of the daylight
saving time period.
Offset Settings: Set up the offset time.

Local Time Zone	Conversion from UTC	Time at 12:00 UTC
November Time Zone	- 1 hour	11 am
Oscar Time Zone	-2 hours	10 am
ADT - Atlantic Daylight	-3 hours	9 am
AST - Atlantic Standard EDT - Eastern Daylight	-4 hours	8 am
EST - Eastern Standard CDT - Central Daylight	-5 hours	7 am
CST - Central Standard MDT - Mountain Daylight	-6 hours	6 am
MST - Mountain Standard PDT - Pacific Daylight	-7 hours	5 am
PST - Pacific Standard ADT - Alaskan Daylight	-8 hours	4 am
ALA - Alaskan Standard	-9 hours	3 am
HAW - Hawaiian Standard	-10 hours	2 am
Nome, Alaska	-11 hours	1 am
CET - Central European FWT - French Winter MET - Middle European MEWT - Middle European Winter SWT - Swedish Winter	+1 hour	1 pm
EET - Eastern European, USSR Zone 1	+2 hours	2 pm
BT - Baghdad, USSR Zone 2	+3 hours	3 pm

ZP4 - USSR Zone 3	+4 hours	4 pm
ZP5 - USSR Zone 4	+5 hours	5 pm
ZP6 - USSR Zone 5	+6 hours	6 pm
WAST - West Australian Standard	+7 hours	7 pm
CCT - China Coast, USSR Zone 7	+8 hours	8 pm
JST - Japan Standard, USSR	+9 hours	0 nm
Zone 8	+9 Hours	9 pm
EAST - East Australian Standard		
GST	+10 hours	10 pm
Guam Standard, USSR Zone 9		
IDLE - International Date Line		
NZST - New Zealand Standard	+12 hours	Midnight
NZT - New Zealand		

6.1.7 HTTPS

You can configure the HTTPS mode in this page.

Label	Description
Mode	Enables or disables HTTPS mode.
	Enables or disables automatic redirect function. It is only
	significant when HTTPS mode is enabled. When the redirect
	mode is enabled, the HTTP connection will be redirected to
Automatic Redirect	HTTPS connection automatically. Notice that the browser may not
	allow redirection due to security considerations unless the switch
	certificate is trusted to the browser. You need to initialize the
	HTTPS connection manually for this case.
Certificate Maintain	The operation of certificate maintenance including:

	None: No operation.	
	Delete: Delete the current certificate.	
	Upload: Upload a certificate PEM file through a Web	
	browser or URL.	
	Generate: Generate a new self-signed RSA certificate.	
	Display the current status of certificate on the switch.	
	Possible statuses are:	
Certificate Status	Switch secure HTTP certificate is presented.	
	Switch secure HTTP certificate is not presented.	
	Switch secure HTTP certificate is generating.	

6.1.8 SSH

You can configure the SSH mode in this page.

Label	Description
Mode	Enable or disable SSH.
Save	Click to save changes
Reset	Click to undo any changes made locally and revert to previously saved values.

6.1.9 DBU01 Option Config

DBU01 is ORing Design ,backup/ restore unit . user can use DBU-01 Quickly restore/ backup switch configure , don't need use PC., In this page , user can enable or disable ,

6.1.10 LLDP

LLDP Configurations

This page allows you to examine and configure current LLDP port settings.

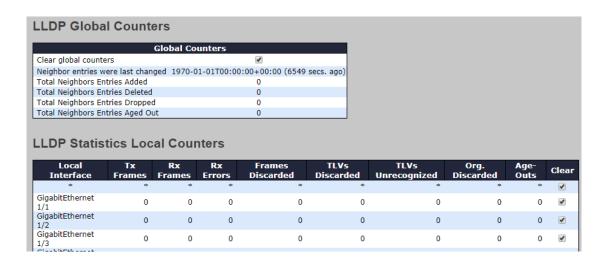
Label	Description
Tx Interval	The switch periodically transmits LLDP frames to its neighbors to
	update the network discovery information. The interval between
i x interval	each LLDP frame is determined by the Tx Interval value which
	must be between 5 - 32768 seconds.
	Each LLDP frame contains information about how long time the
	information in the LLDP frame shall be considered valid.
Tx Hold	The LLDP information valid period is set to Tx Hold multiplied
	by Tx Interval seconds. Valid values must be between 2 - 10
	times.
	When a setting is changed (e.g. the IP address), a new LLDP
	frame is transmitted, but the time between the LLDP frames will
Tx Delay	always be at least the value of Tx Delay seconds. Tx
	Delay cannot be larger than 1/4 of the Tx Interval value. Valid
	values must be between 1 - 8192 seconds.
	When an interface is disabled, LLDP is disabled or the switch is
	rebooted, a LLDP shutdown frame is transmitted to the
Tx Reinit	neighboring units, signaling that the LLDP information isn't valid
	anymore. Tx Reinit controls the amount of seconds between the
	shutdown frame and a new LLDP initialization. Valid values must
	be between 1 - 10 seconds.

LLDP Interface Configuration						
			C	ptional TLV	s	
Interface	Mode	Port Descr	Sys Name	Sys Descr	Sys Capa	Mgmt Addr
*	<> ▼	•	✓	•	✓	•
GigabitEthernet 1/1	Enabled ▼	•	•	•	✓	•
GigabitEthernet 1/2	Enabled ▼	•	✓	✓	✓	•
GigabitEthernet 1/3	Enabled ▼	•	•	•	✓	•
GigabitEthernet 1/4	Enabled ▼	•	•	✓	✓	•
GigabitEthernet 1/5	Enabled ▼	•	•	✓	•	•
GigabitEthernet 1/6	Enabled ▼	•	✓	•	✓	✓

Label	Description		
Interface	The switch interface name of the logical LLDP interface.		
	Select a LLDP mode from the drop down list.		
	Rx only: The switch will not send out LLDP information, but LLDP		
	information from neighbor units is analyzed.		
	Tx only: The switch will drop LLDP information received from		
Mode	neighbors, but will send out LLDP information.		
	Disabled: The switch will not send out LLDP information, and will		
	drop LLDP information received from neighbors.		
	Enabled: The switch will send out LLDP information, and will		
	analyze LLDP information received from neighbors.		
Port Descr	Optional TLV: When checked, the "port description" is included		
Port Descr	in LLDP information transmitted.		
Sys Name	Optional TLV: When checked, the "system name" is included		
	in LLDP information transmitted.		
One Desert	Optional TLV: When checked, the "system description" is included		
Sys Descr	in LLDP information transmitted.		
0	Optional TLV: When checked, the "system capability" is included		
Sys Capa	in LLDP information transmitted.		
Mamt Addr	Optional TLV: When checked, the "management address" is		
Mgmt Addr	included in LLDP information transmitted.		

LLDP Neighbor Information

This page provides a status overview for all LLDP neighbors. The following table contains information for each port on which an LLDP neighbor is detected.



Label	Description
-------	-------------

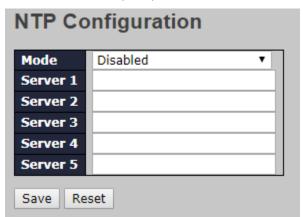
Local Port	The port that you use to transmits and receives LLDP frames.		
Chassis ID	The identification number of the neighbor sending out the LLDP		
Clidssis ID	frames.		
Remote Port ID	The identification of the neighbor port		
System Name	The name advertised by the neighbor.		
Port Description	The description of the port advertised by the neighbor.		
	Description of the neighbor's capabilities. The capabilities include:		
	1. Other		
	2. Repeater		
	3. Bridge		
	4. WLAN Access Point		
System Capabilities	5. Router		
System Capabilities	6. Telephone		
	7. DOCSIS Cable Device		
	8. Station Only		
	9. Reserved		
	When a capability is enabled, a (+) will be displayed. If the		
	capability is disabled, a (-) will be displayed.		
Management	The neighbor's address which can be used to help network		
Address	management. This may contain the neighbor's IP address.		
Refresh	Click to refresh the page immediately.		
Auto-refresh	Check to enable an automatic refresh of the page at regular		
Auto-retresn	intervals.		

Port Statistics

This page provides an overview of all LLDP traffic. Two types of counters are shown. Global counters will apply settings to the whole switch stack, while local counters will apply settings to specified switches.

Global Counters

Label	Description	
Clear Global Counters	If checked the global counters are cleared when Clear is pressed.	
Neighbor entries	Shows the time when the last entry was last deleted or added. It	
were last changed	also shows the time elapsed since the last change was detected.	
Total Neighbors	Shows the number of new entries added since switch reboot	
Entries Added	Shows the number of new entries added since switch repoot	
Total Neighbors	Shows the number of new entries deleted since switch reboot	
Entries Deleted	Shows the number of new entires deleted since switch repoor	
Total Neighbors	Shows the number of LLDP frames dropped due to full entry table	
Entries Dropped	Tames dropped due to full entry tal	
Total Neighbors	Shows the number of entries deleted due to expired time-to-live	
Entries Aged Out	Shows the number of entries deleted due to expired time-to-live	

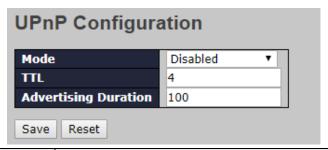

Local Counters

Label	Description
Local Port	The port that receives or transmits LLDP frames
Tx Frames	The number of LLDP frames transmitted on the port
Rx Frames	The number of LLDP frames received on the port
Rx Errors	The number of received LLDP frames containing errors
	If a port receives an LLDP frame, and the switch's internal table is
	full, the LLDP frame will be counted and discarded. This situation
Frames Discarded	is known as "too many neighbors" in the LLDP standard. LLDP
	frames require a new entry in the table if Chassis ID or Remote
	Port ID is not included in the table. Entries are removed from the

	table when a given port links down, an LLDP shutdown frame is		
	received, or when the entry ages out.		
	Each LLDP frame can contain multiple pieces of information,		
TLVs Discarded	known as TLVs (Type Length Value). If a TLV is malformed, it will		
	be counted and discarded.		
TLVs Unrecognized	The number of well-formed TLVs, but with an unknown type value		
Org. Discarded	The number of organizationally TLVs received		
	Each LLDP frame contains information about how long the LLDP		
	information is valid (age-out time). If no new LLDP frame is		
Age-Outs	received during the age-out time, the LLDP information will be		
	removed, and the value of the age-out counter will be		
	incremented.		
Clear	If checked the counters for the specific interface are cleared		
	when Clear is pressed.		

6.1.11 NTP

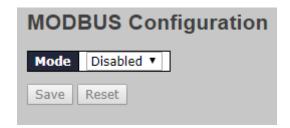
The function allows you to specify the Network Time Protocol (NTP) servers to query for the current time to maintain an accurate time on the switch, ensuring the system log record meaningful dates and times for event entries. With NTP, the switch can set its internal clock periodically according to an NTP time server. Otherwise, the switch will only record the time from the factory default set at the last bootup. When the NTP client is enabled, the switch regularly sends a request for a time update to a configured time server. A maximum of five time servers are supported. The switch will attempt to poll each server in the configured sequence.



Label	Description
Mode	Select a NTP mode from the drop down list.
Server	Sets the IP address for up to five time servers. The switch will
	update the time from the servers, starting from the first to the

fifth in sequence if any of them fails. The polling interval is fixed at 15 minutes.

6.1.12 Upnp


UPnP is an acronym for Universal Plug and Play. The goals of UPnP are to allow devices to connect seamlessly and to simplify the implementation of networks in the home (data sharing, communications, and entertainment) and in corporate environments for simplified installation of computer components

Label	Description
Mode	Indicates the UPnP operation mode. Possible modes are:
	Enabled: Enable UPnP mode operation.
	Disabled: Disable UPnP mode operation.
	When the mode is enabled, two ACEs are added automatically
	to trap UPNP related packets to CPU. The ACEs are
	automatically removed when the mode is disabled.
TTL	The TTL value is used by UPnP to send SSDP advertisement
	messages. Valid values are in the range 1 to 255.
Advertising Duration	The duration, carried in SSDP packets, is used to inform a
	control point or control points how often it or they should
	receive an SSDP advertisement message from this switch. If a
	control point does not receive any message within the
	duration, it will think that the switch no longer exists. Due to the
	unreliable nature of UDP, in the standard it is recommended
	that such refreshing of advertisements to be done at less than
	one-half of the advertising duration. In the implementation, the
	switch sends SSDP messages periodically at the interval
	one-half of the advertising duration minus 30 seconds. Valid
	values are in the range 100 to 86400.

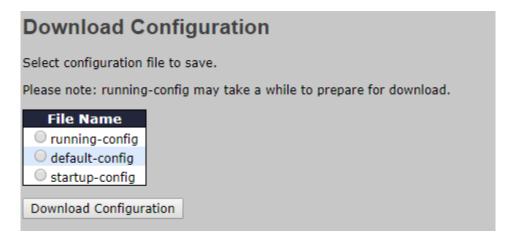
6.1.13 ModbusTCP

Support Modbus TCP. (About Modbus please reference http://www.modbus.org/)

The following table describes the labels in this screen.

Label	Description
Mode	Enable or Disalble Modbus TCP function

6.1.14 Ethernet/IP


EtherNet/IP is an industrial network protocol that adapts the Common Industrial Protocol to standard Ethernet.[1] EtherNet/IP is one of the leading industrial protocols in the United States and is widely used in a range of industries including factory, hybrid and process.

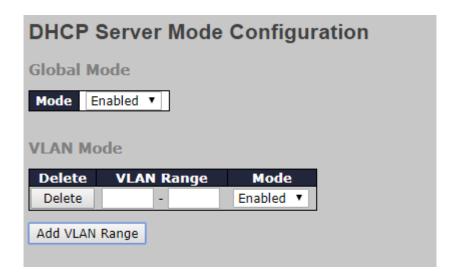
Label	Description
Mode	Indicates the EtherNet/IP mode operation. Possible modes
	are:
	Enabled: Enable EtherNet/IP mode operation.
	Disabled: Disable EtherNet/IP mode operation.
Download EDS File	Download to EDS File .

6.1.15 Backup/Restore Configurations

You can save/view or load switch configurations.

6.1.16 Firmware Update

This page allows you to update the firmware of the switch.

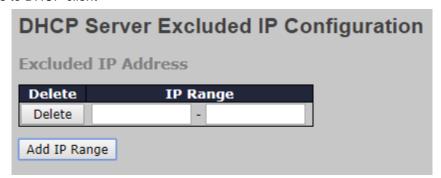


6.2 DHCP

6.2.1 DHCP Server

This page configures global mode and VLAN mode to enable/disable DHCP server per system and per VLAN.and per VLAN.

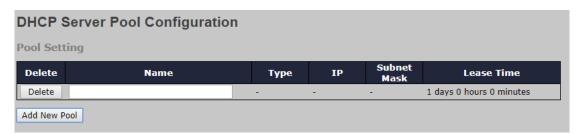
Mode



Label	Description
Global Mode	2000,1100
Mode	Configure the operation mode per system. Possible modes
	are:
	Enabled: Enable DHCP server per system.
	Disabled : Disable DHCP server pre system.
VLAN Mode	
VLAN Range	Indicate the VLAN range in which DHCP server is enabled or
	disabled. The first VLAN ID must be smaller than or equal to
	the second VLAN ID. BUT, if the VLAN range contains only 1
	VLAN ID, then you can just input it into either one of the first
	and second VLAN ID or both.
	On the other hand, if you want to disable existed VLAN range,
	then you can follow the steps.
	1. Press Add VLAN Range to add a new VLAN range.
	2. input the VLAN range that you want to disable.
	3. choose Mode to be Disabled .
	4. press Save to apply the change.

	Then, you will see the disabled VLAN range is removed from
	the DHCP Server mode configuration page.
Mode	Indicate the operation mode per VLAN. Possible modes are:
	Enabled: Enable DHCP server per VLAN.
	Disabled: Disable DHCP server pre VLAN.

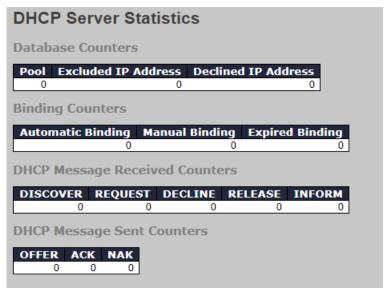
Excluded IP


This page configures excluded IP addresses. DHCP server will not allocate these excluded IP addresses to DHCP client

Label	Description
IP Range	Define the IP range to be excluded IP addresses. The first excluded
	IP must be smaller than or equal to the second excluded IP. BUT, if
	the IP range contains only 1 excluded IP, then you can just input it to
	either one of the first and second excluded IP or both.

Pool

This page manages DHCP pools. According to the DHCP pool, DHCP server will allocate IP address and deliver configuration parameters to DHCP client.



Label	Description
Name	Configure the pool name that accepts all printable characters, except
	white space. If you want to configure the detail settings, you can click
	the pool name to go into the configuration page.
Туре	Display which type of the pool is.

	Network: the pool defines a pool of IP addresses to service more
	than one DHCP client.
	Host: the pool services for a specific DHCP client identified by client
	identifier or hardware address. If "-" is displayed, it means not
	defined.
IP	Display network number of the DHCP address pool.
	If "-" is displayed, it means not defined.
Subnet Mask	Display subnet mask of the DHCP address pool.
	If "-" is displayed, it means not defined.
Lease Time	Display lease time of the pool.

Statistics

This page displays the database counters and the number of DHCP messages sent and received by DHCP server.

Label	Description	
Database Counter	rs	
Pool	Number of pools.	
Excluded IP	Number of evaluded ID address ranges	
Address	Number of excluded IP address ranges.	
Declined IP	Number of declined IP addresses.	
Address		
Binding Counters		
Automatic	Number of bindings with network-type pools.	
Binding		
Manual Binding	Number of bindings that administrator assigns an IP address to a	

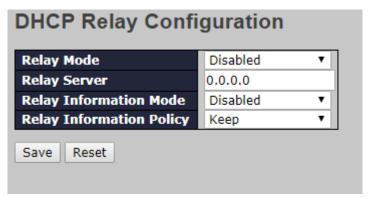
	client. That is, the pool is of host type.
Expired Binding	Number of bindings that their lease time expired or they are cleared
	from Automatic/Manual type bindings.
DHCP Message R	eceived Counters
DISCOVER	Number of DHCP DISCOVER messages received.
REQUEST	Number of DHCP REQUEST messages received.
DECLINE	Number of DHCP DECLINE messages received.
RELEASE	Number of DHCP RELEASE messages received.
INFORM	Number of DHCP INFORM messages received.
DHCP Message Sent Counters	
OFFER	Number of DHCP OFFER messages sent.
ACK	Number of DHCP ACK messages sent.
NAK	Number of DHCP NAK messages sent.

Binding

This page displays bindings generated for DHCP clients.

Label	Description
IP	IP address allocated to DHCP client.
Туре	Type of binding. Possible types are Automatic, Manual, Expired.
State	State of binding. Possible states are Committed, Allocated, Expired.
Pool Name	The pool that generates the binding.
Server ID	Server IP address to service the binding.

Declined IP


Display IP addresses declined by DHCP clients.

Label	Description
Declined IP List of IP addresses declined.	

6.2.2 DHCP Relay

DHCP relay is used to forward and transfer DHCP messages between the clients and the server when they are not in the same subnet domain. You can configure the function in this page.

Label	Description	
Relay Mode	Indicates the existing DHCP relay mode. The modes include:	
	Enabled: activate DHCP relay. When DHCP relay is enabled, the	
	agent forwards and transfers DHCP messages between the clients	
	and the server when they are not in the same subnet domain to	
	prevent the DHCP broadcast message from flooding for security	
	considerations.	
	Disabled: disable DHCP relay	
Relay Server	Indicates the DHCP relay server IP address. A DHCP relay agent is	
	used to forward and transfer DHCP messages between the clients	
	and the server when they are not in the same subnet domain.	
Relay Information	Indicates the existing DHCP relay information mode. The format of	
Mode	DHCP option 82 circuit ID format is "[vlan_id][module_id][port_no]".	
	The first four characters represent the VLAN ID, and the fifth and	

sixth characters are the module ID. In stand-alone devices, the module ID always equals to 0; in stacked devices, it means switch ID. The last two characters are the port number. For example, "00030108" means the DHCP message received form VLAN ID 3, switch ID 1, and port No. 8. The option 82 remote ID value equals to the switch MAC address.

The modes include:

Enabled: activate DHCP relay information. When DHCP relay information is enabled, the agent inserts specific information (option 82) into a DHCP message when forwarding to a DHCP server and removes it from a DHCP message when transferring to a DHCP client. It only works when DHCP relay mode is enabled.

Disabled: disable DHCP relay information

Relay Information Policy

Indicates the policies to be enforced when receiving DHCP relay information. When DHCP relay information mode is enabled, if the agent receives a DHCP message that already contains relay agent information, it will enforce the policy. The Replace option is invalid when relay information mode is disabled. The policies includes:

Replace: replace the original relay information when a DHCP message containing the information is received.

Keep: keep the original relay information when a DHCP message containing the information is received.

Drop: drop the package when a DHCP message containing the information is received.

The relay statistics shows the information of relayed packets of the switch.

Label	Description
Transmit to Sever	The number of packets relayed from the client to the server
Transmit Error	The number of packets with errors when being sent to clients

on
option
ch the
ch the
ent
ervers
agent
sages
ssages
ssages

6.2.3 DHCP Snooping

Snooping


Configure DHCP Snooping on this page.

Label	Description
Snooping Mode	Indicates the DHCP snooping mode operation. Possible modes
	are:
	Enabled: Enable DHCP snooping mode operation. When DHCP
	snooping mode operation is enabled, the DHCP request
	messages will be forwarded to trusted ports and only allow reply
	packets from trusted ports.
	Disabled: Disable DHCP snooping mode operation.
Port Mode	Indicates the DHCP snooping port mode. Possible port modes
Configuration	are:
	Trusted: Configures the port as trusted source of the DHCP
	messages.
	Untrusted: Configures the port as untrusted source of the DHCP
	messages.

Snooping Table

This page display the dynamic IP assigned information after DHCP Snooping mode is disabled. All DHCP clients obtained the dynamic IP address from the DHCP server will be listed in this table except for local VLAN interface IP addresses. Entries in the Dynamic DHCP snooping Table are shown on this page.

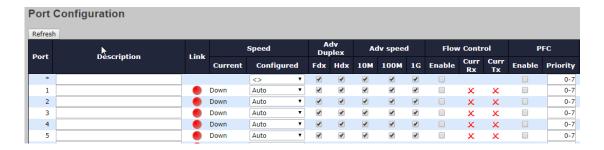
Label	Description	
MAC Address	User MAC address of the entry.	
VLAN ID	VLAN-ID in which the DHCP traffic is permitted.	
Source Port	Switch Port Number for which the entries are displayed.	
IP Address	User IP address of the entry.	
IP Subnet Mask	User IP subnet mask of the entry.	
DHCP Server	DUCD Coming address of the entry	
Address	DHCP Server address of the entry.	

Detailed Statistics

This page provides statistics for <u>DHCP snooping</u>. Notice that the normal forward per-port TX statistics isn't increased if the incoming DHCP packet is done by L3 forwarding mechanism. And clear the statistics on specific port may not take effect on global statistics since it gathers the different layer overview.

DHCP Detailed Stati	stics Port 1	
Combined ▼ Port 1 ▼ A	Auto-refresh Refresh Clear	
Receive Packets	Transmit Packets	
Rx Discover	0 Tx Discover	0
Rx Offer	0 Tx Offer	0
Rx Request	0 Tx Request	0
Rx Decline	0 Tx Decline	0
Rx ACK	0 Tx ACK	0
Rx NAK	0 Tx NAK	0
Rx Release	0 Tx Release	0
Rx Inform	0 Tx Inform	0
Rx Lease Query	0 Tx Leas€ Query	0
Rx Lease Unassigned	0 Tx Lease Unassigned	0
Rx Lease Unknown	0 Tx Lease Unknown	0
Rx Lease Active	0 Tx Lease Active	0
Rx Discarded Checksum Erro	r 0	
Rx Discarded from Untrusted	0	

Label	Description
Rx and Tx Discover	The number of discover (option 53 with value 1) packets received
	and transmitted.
Rx and Tx Offer	The number of offer (option 53 with value 2) packets received and
	transmitted.
Rx and Tx Request	The number of request (option 53 with value 3) packets received
	and transmitted.
Rx and Tx Decline	The number of decline (option 53 with value 4) packets received
	and transmitted.
Rx and Tx ACK	The number of ACK (option 53 with value 5) packets received and
	transmitted.
Rx and Tx NAK	The number of NAK (option 53 with value 6) packets received and
	transmitted.
Rx and Tx Release	The number of release (option 53 with value 7) packets received
	and transmitted.
Rx and Tx Inform	The number of inform (option 53 with value 8) packets received


	and transmitted.	
Rx and Tx Lease	The number of lease query (option 53 with value 10) packets	
Query	received and transmitted.	
Rx and Tx Lease	The number of lease unassigned (option 53 with value 11)	
Unassigned	packets received and transmitted.	
Rx and Tx Lease	The number of lease unknown (option 53 with value 12) packets	
Unknown	received and transmitted.	
Rx and Tx Lease	The number of lease active (option 53 with value 13) packets	
Active	received and transmitted.	
Rx Discarded	The number of discourd population that ID/IIDD absolute is arrow	
checksum error	The number of discard packet that IP/UDP checksum is error.	
Rx Discarded from	The number of discarded packet that are coming from untrusted	
Untrusted	port.	

6.3 Port Setting

Port Setting allows you to manage individual ports of the switch, including traffic, power, and trunks.

6.3.1 Port Control

This page shows current port configurations. Ports can also be configured here.

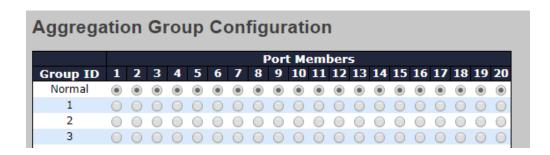
Label	Description
Port	This is the logical port number for this row.
Description	The description of the port. It is an ASCII string no
Description	longer than 256 characters.
Link	The current link state is displayed graphically. Green
Link	indicates the link is up and red that it is down.
Current Link Speed	Provides the current link speed of the port.

Selects any available link speed for the given switch port. Only speeds supported by the specific port are shown. Possible speeds are: **Disabled** - Disables the switch port operation. Auto - Port auto negotiating speed with the link partner and selects the highest speed that is compatible with the link partner. 10Mbps HDX - Forces the cu port in 10Mbps half duplex mode. 10Mbps FDX - Forces the cu port in 10Mbps full duplex mode. **100Mbps HDX** - Forces the cu port in 100Mbps half duplex mode. 100Mbps FDX - Forces the cu port in 100Mbps full duplex mode. 1Gbps FDX - Forces the port in 1Gbps full duplex **Configured Link Speed** 2.5Gbps FDX - Forces the Serdes port in 2.5Gbps full duplex mode. SFP_Auto_AMS - Automatically determines the speed of the SFP. Note: There is no standardized way to do SFP auto detect, so here it is done by reading the SFP rom. Due to the missing standardized way of doing SFP auto detect some SFPs might not be detectable. The port is set in AMS mode. Cu port is set in Auto mode. 100-FX - SFP port in 100-FX speed. Cu port disabled. 1000-X - SFP port in 1000-X speed. Cu port disabled. Ports in AMS mode with 1000-X speed have Cu port preferred. Ports in AMS mode with 1000-X speed have fiber port preferred. Ports in AMS mode with 100-FX speed have fiber port preferred. When duplex is set as auto i.e auto negotiation, the port will only advertise the specified duplex as **Advertise Duplex** either Fdx or Hdxto the link partner. By default port will advertise all the supported duplexes if the Duplex

	is Auto.
	When Speed is set as auto i.e auto negotiation, the
	port will only advertise the specified speeds
Advertise Speed	(10M 100M 1G) to the link partner. By default port will
	advertise all the supported speeds if speed is set as
	Auto.
	When Auto Speed is selected on a port, this section
	indicates the flow control capability that is advertised
	to the link partner.
	When a fixed-speed setting is selected, that is what is
	used. The Current Rx column indicates whether pause
	frames on the port are obeyed, and the Current Tx
	column indicates whether pause frames on the port
Flow Control	are transmitted. The Rx and Tx settings are
	determined by the result of the last Auto Negotiation.
	Check the configured column to use flow control. This
	setting is related to the setting for Configured Link
	Speed.
	NOTICE: The 100FX standard doesn't support Auto
	Negotiation, so when in 100FX mode the flow control
	capabilities will always be shown as "disabled".
	When PFC (802.1Qbb Priority Flow Control) is
	enabled on a port then flow control on a priority level is
	enabled. Through the Priority field, range (one or
PFC	more) of priorities can be configured, e.g. '0-3,7' which
	equals '0,1,2,3,7'. PFC is not supported through auto
	negotiation. PFC and Flow control cannot both be
	enabled on the same port.
Maximum Frame Size	Enter the maximum frame size allowed for the switch
Maximum Frame Size	port, including FCS. The range is 1518-10240 bytes.
	Configure port transmit collision behavior.
Excessive Collision Mode	Discard: Discard frame after 16 collisions (default).
	Restart: Restart backoff algorithm after 16 collisions.
	Configures if frames with incorrect frame length in the
Frame Length Check	EtherType/Length field shall be dropped. An Ethernet
Traine Length Oneok	frame contains a field EtherType which can be used to
	indicate the frame payload size (in bytes) for values of

1535 and below. If the EtherType/Length field is above 1535, it indicates that the field is used as an EtherType (indicating which protocol is encapsulated in the payload of the frame). If "frame length check" is enabled, frames with payload size less than 1536 bytes are dropped, if the EtherType/Length field doesn't match the actually payload length. If "frame length check" is disabled, frames are not dropped due to frame length mismatch. Note: No drop counters count frames dropped due to frame length mismatch

6.3.2 Port Trunk


A port trunk is a group of ports that have been grouped together to function as one logical path. This method provides an economical way for you to increase the bandwidth between the switch and another networking device. In addition, it is useful when a single physical link between the devices is insufficient to handle the traffic load. This page allows you to configure the aggregation hash mode and the aggregation group.

Configurations

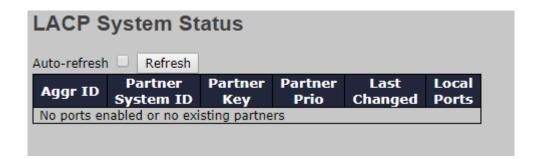
Label	Description
Source MAC Address	Calculates the destination port of the frame. You can check this
	box to enable the source MAC address, or uncheck to disable. By
	default, Source MAC Address is enabled.
Destination MAC	Calculates the destination port of the frame. You can check this
Address	box to enable the destination MAC address, or uncheck to
	disable. By default, Destination MAC Address is disabled.
IP Address	Calculates the destination port of the frame. You can check this
	box to enable the IP address, or uncheck to disable. By default, IP
	Address is enabled.

TCP/UDP	Port	Calculates the destination port of the frame. You can check this
Number		box to enable the TCP/UDP port number, or uncheck to disable.
		By default, TCP/UDP Port Number is enabled.

Label	Description
Group ID	Indicates the ID of each aggregation group. Normal means
	no aggregation. Only one group ID is valid per port.
Port Members	Lists each switch port for each group ID. Select a radio
	button to include a port in an aggregation, or clear the radio
	button to remove the port from the aggregation. By default,
	no ports belong to any aggregation group. Only full duplex
	ports can join an aggregation and the ports must be in the
	same speed in each group.

LACP

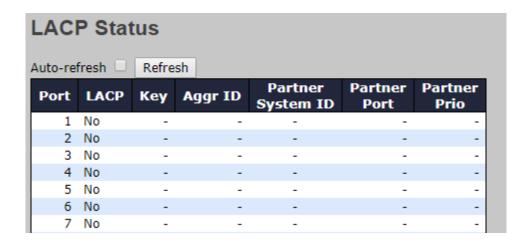
LACP (Link Aggregation Control Protocol) trunks are similar to static port trunks, but they are more flexible because LACP is compliant with the IEEE 802.3ad standard. Hence, it is interoperable with equipment from other vendors that also comply with the standard. This page allows you to enable LACP functions to group ports together to form single virtual links and change associated settings, thereby increasing the bandwidth between the switch and other LACP-compatible devices.


LACP Port Configuration						
Port	LACP Enabled	Key		Role	Timeout	Prio
*		<> T		<> ▼	<> ▼	32768
1		Auto ▼		Active ▼	Fast ▼	32768
2		Auto ▼		Active ▼	Fast ▼	32768
3		Auto ▼		Active ▼	Fast ▼	32768
4		Auto ▼		Active ▼	Fast ▼	32768
5		Auto ▼		Active ▼	Fast ▼	32768
6		Auto ▼		Active ▼	Fast ▼	32768
7		Auto ▼		Active ▼	Fast ▼	32768

Label	Description
Port	Indicates the ID of each aggregation group. Normal indicates
	there is no aggregation. Only one group ID is valid per port.
LACP Enabled	Lists each switch port for each group ID. Check to include a
	port in an aggregation, or clear the box to remove the port from
	the aggregation. By default, no ports belong to any
	aggregation group. Only full duplex ports can join an
	aggregation and the ports must be in the same speed in each
	group.
Key	The Key value varies with the port, ranging from 1 to 65535.
	Auto will set the key according to the physical link speed
	(10Mb = 1, 100Mb = 2, 1Gb = 3). Specific allows you to enter
	a user-defined value. Ports with the same key value can join in
	the same aggregation group, while ports with different keys
	cannot.
Role	Indicates LACP activity status. Active will transmit LACP
	packets every second, while Passive will wait for a LACP
	packet from a partner (speak if spoken to).
Timeout	The Timeout controls the period between BPDU
	transmissions. Fast will transmit LACP packets each second,
	while Slow will wait for 30 seconds before sending a LACP
	packet.
Prio	The Prio controls the priority of the port, range 1-65535. If the
	LACP partner wants to form a larger group than is supported

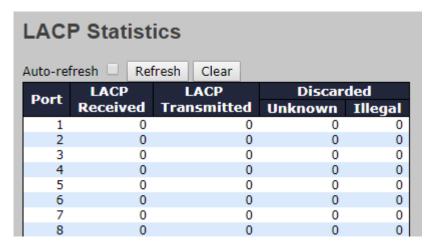
by this device then this parameter will control which ports will
be active and which ports will be in a backup role. Lower
number means greater priority.

LACP System Status


This page provides a status overview for all LACP instances.

Label	Description			
Aggr ID	The aggregation ID is associated with the aggregation			
	instance. For LLAG, the ID is shown as 'isid:aggr-id' and for			
	GLAGs as ' aggr-id '			
Partner System ID	System ID (MAC address) of the aggregation partner			
Partner Key	When connecting the device to other manufactures' devices,			
	you may need to configure LACP partner key. Partner key is			
	the operational key value assigned to the port associated with			
	this link by the Partner.			
Last Changed	The time since this aggregation is changed.			
Local Ports	Indicates which ports belong to the aggregation of the			
	switch/stack. The format is: "Switch ID:Port".			
Refresh	Click to refresh the page immediately			
Auto volvoolo	Check to enable an automatic refresh of the page at regular			
Auto-refresh	intervals			

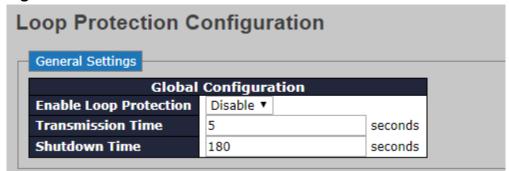
LACP Port Status


This page provides an overview of the LACP status for all ports.

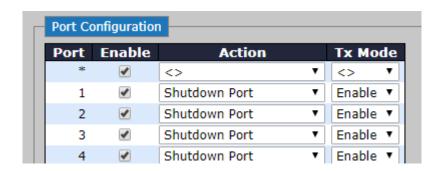
Label	Description
Port	Switch port number
LACP	Yes means LACP is enabled and the port link is up. No means
	LACP is not enabled or the port link is down. Backup means the
	port cannot join in the aggregation group unless other ports are
	removed. The LACP status is disabled.
Key	The key assigned to the port. Only ports with the same key can be
	aggregated
Aggr ID	The aggregation ID assigned to the aggregation group
Partner System ID	The partner's system ID (MAC address)
Partner Port	The partner's port number associated with the port
Partner Prio	The partner's port priority.
Refresh	Click to refresh the page immediately
Auto-refresh	Check to enable an automatic refresh of the page at regular
	intervals

LACP Port Statistics

This page provides an overview of the LACP statistics for all ports.



Label	Description	
Port	Switch port number	
LACP Transmitted	The number of LACP frames sent from each port	
LACP Received	The number of LACP frames received at each port	
Discarded	The number of unknown or illegal LACP frames discarded at each	
	port.	
Refresh	Click to refresh the page immediately	
Auto votvoolo	Check to enable an automatic refresh of the page at regular	
Auto-refresh	intervals	
Clear	Click to clear the counters for all ports	


6.3.3 Loop Protection

This feature prevents loop attack. When receiving loop packets, the port will be disabled automatically, preventing the loop attack from affecting other network devices.

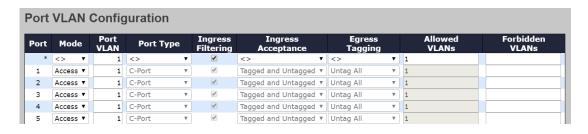
Configuration

Label	Description
Enable Loop Protection	Activate loop protection functions (as a whole)
Transmission Time	The interval between each loop protection PDU sent on
	each port. The valid value is 1 to 10 seconds.
Shutdown Time	The period (in seconds) for which a port will be kept
	disabled when a loop is detected (shutting down the
	port). The valid value is 0 to 604800 seconds (7 days). A
	value of zero will keep a port disabled permanently (until
	the device is restarted).

Label	Description
Port	Switch port number
Enable	Activate loop protection functions (as a whole)
Action	Configures the action to take when a loop is detected. Valid
	values include Shutdown Port, Shutdown Port, and Log or
	Log Only.
Tx Mode	Controls whether the port is actively generating loop protection
	PDUs or only passively look for looped PDUs.

6.4 VLAN

6.4.1 VLAN Membership


A VLAN is a group of end devices with a common set of requirements, independent of physical location. With the same attributes as a physical LAN, VLANs enable you to group end devices even if they are not located physically on the same LAN segment. By splitting up a network into sets of VLANs, assigning ports to individual VLANs, and defining criteria for VLAN membership for workstations connected to those ports, traffic for the same VLAN can be sent between switches.

Global VLAN Configuration

Global VLAN Configuration Allowed Access VLANs Ethertype for Custom S-ports 1 88A8

Label	Description			
	This field shows the allowed Access VLANs, i.e. it only affects			
	ports configured as Access ports. Ports in other modes are			
	members of the VLANs specified in the Allowed VLANs field.			
	By default, only VLAN 1 is enabled. More VLANs may be			
Allowed Access VI ANIs	created by using a list syntax where the individual elements			
Allowed Access VLANs	are separated by commas. Ranges are specified with a dash			
	separating the lower and upper bound.			
	The following example will create VLANs 1, 10, 11, 12, 13,			
	200, and 300: 1,10-13,200,300 . Spaces are allowed in			
	between the delimiters.			
Ethartuna for Cuatam	This field specifies the ethertype/TPID (specified in			
Ethertype for Custom	hexadecimal) used for Custom S-ports. The setting is in force			
S-ports	for all ports whose Port Type is set to S-Custom-Port.			

Port VLAN Configuration

Label	Description		
Port	This is the logical port number of this row.		
	The port mode (default is Access) determines the fundamental		
	behavior of the port in question. A port can be in one of three		
	modes as described below.		
	Whenever a particular mode is selected, the remaining fields		
	in that row will be either grayed out or made changeable		
	depending on the mode in question.		
	Grayed out fields show the value that the port will get when the		
	mode is applied.		
	Access:		
	Access ports are normally used to connect to end stations.		
	Dynamic features like Voice VLAN may add the port to more		
	VLANs behind the scenes. Access ports have the following		
	characteristics:		
Mode	Manch on of averative and MANL the Dest MIANL (also		
	Member of exactly one VLAN, the Port VLAN (a.k.a. Access VLAN), which by default is 1.		
	Access VLAN), which by default is 1		
	Accepts untagged and C-tagged frames Discards all frames not classified to the Access VI AN		
	Discards all frames not classified to the Access VLAN On agrees all frames are transmitted untagged.		
	On egress all frames are transmitted untagged		
	Trunk:		
	Trunk ports can carry traffic on multiple VLANs simultaneously,		
	and are normally used to connect to other switches. Trunk		
	ports have the following characteristics:		
	 By default, a trunk port is member of all VLANs (1-4095) 		
	 The VLANs that a trunk port is member of may be 		
	limited by the use of <u>Allowed VLANs</u>		
	minited by the doc of the wood V L/1140		

Dete are in On ir confi awar tagge On e	ional port configuration features. In addition to the acteristics described for trunk ports, hybrid ports have abilities: Can be configured to be VLAN tag unaware, C-tag aware, S-tag aware, or S-custom-tag aware Ingress filtering can be controlled
Dete are in On ir confi awar tagge On e	Can be configured to be VLAN tag unaware, C-tag aware, S-tag aware, or S-custom-tag aware
Dete are in On in confi awar tagge On e	Can be configured to be VLAN tag unaware, C-tag aware, S-tag aware, or S-custom-tag aware
Dete are in On ir confi awar Port VLAN tagge On e	aware, S-tag aware, or S-custom-tag aware
Dete are in On ir confi awar Port VLAN tagge On e	
Port VLAN tagge	
Port VLAN tagge	Ingress acceptance of frames and configuration of
Port VLAN tagge	egress tagging can be configured independently
Port VLAN On ir confi awar tagge On e	rmines the port's VLAN ID (a.k.a. PVID). Allowed VLANs at the range 1 through 4095, default being 1.
Port VLAN tagge	agress, frames get classified to the Port VLAN if the port is
Port VLAN tagge On e	gured as VLAN unaware, the frame is untagged, or VLAN
On e	eness is enabled on the port, but the frame is priority
	ed (VLAN ID = 0).
	egress, frames classified to the Port VLAN do not get
tagge	ed if Egress Tagging configuration is set to untag Port
VLAI	N.
The	Port VLAN is called an "Access VLAN" for ports in Access
mode	e and Native VLAN for ports in Trunk or Hybrid mode.
	in hybrid mode allow for changing the port type, that is,
	her a frame's VLAN tag is used to classify the frame on
	as to a particular VI AN and if as which TDID it reacts on
	ss to a particular VLAN, and if so, which TPID it reacts on.
tag, i	vise, on egress, the Port Type determines the TPID of the

Unaware:

On ingress, all frames, whether carrying a VLAN tag or not, get classified to the Port VLAN, and possible tags are not removed on egress.

C-Port:

On ingress, frames with a VLAN tag with TPID = 0x8100 get classified to the VLAN ID embedded in the tag.

If a frame is untagged or priority tagged, the frame gets classified to the Port VLAN.

If frames must be tagged on egress, they will be tagged with a C-tag.

S-Port:

On ingress, frames with a VLAN tag with TPID = 0x88A8 get classified to the VLAN ID embedded in the tag.

Priority-tagged frames are classified to the Port VLAN.

If the port is configured to accept Tagged Only frames (see <u>Ingress Acceptance</u> below), frames without this TPID are dropped.

If frames must be tagged on egress, they will be tagged with an S-tag.

S-Custom-Port:

On ingress, frames with a VLAN tag with a TPID equal to the <u>Ethertype configured for Custom-S ports</u> get classified to the VLAN ID embedded in the tag.

Priority-tagged frames are classified to the Port VLAN.

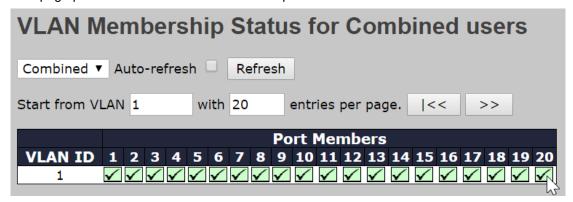
If the port is configured to accept Tagged Only frames (see <u>Ingress Acceptance</u> below), frames without this TPID are dropped.

If frames must be tagged on egress, they will be tagged with the custom S-tag.

Ingress Filtering

Hybrid ports allow for changing ingress filtering. Access and Trunk ports always have ingress filtering enabled.

If ingress filtering is enabled (checkbox is checked), frames classified to a VLAN that the port is not a member of get discarded.


If ingress filtering is disabled, frames classified to a VLAN that the port is not a member of are accepted and forwarded to the

	switch engine. However, the port will never transmit frames		
	classified to VLANs that it is not a member of.		
	Hybrid ports allow for changing the type of frames that are		
	accepted on ingress.		
	Tagged and Untagged		
	Both tagged and untagged frames are accepted. See Port		
	Type for a description of when a frame is considered tagged.		
Ingress Acceptance	Tagged Only		
	Only frames tagged with the corresponding Port Type tag are		
	accepted on ingress.		
	Untagged Only		
	Only untagged frames are accepted on ingress. See Port		
	Typefor a description of when a frame is considered untagged.		
	Ports in Trunk and Hybrid mode may control the tagging of		
	frames on egress.		
	Untag Port VLAN		
	Frames classified to the Port VLAN are transmitted untagged.		
	Other frames are transmitted with the relevant tag.		
	Tag All		
Egress Tagging	All frames, whether classified to the Port VLAN or not, are		
	transmitted with a tag.		
	Untag All		
	All frames, whether classified to the Port VLAN or not, are		
	transmitted without a tag.		
	This option is only available for ports in Hybrid mode.		
	Ports in Trunk and Hybrid mode may control which VLANs		
	they are allowed to become members of. Access ports can		
	only be member of one VLAN, the Access VLAN.		
	The field's syntax is identical to the syntax used in the Enabled		
Allowed VLANs	VLANs field. By default, a Trunk or Hybrid port will become		
	member of all VLANs, and is therefore set to 1-4095 .		
	The field may be left empty, which means that the port will not		
	become member of any VLANs		
	A port may be configured to never become member of one or		
	more VLANs. This is particularly useful when dynamic VLAN		
Forbidden VLANs	protocols like MVRP and GVRP must be prevented from		
	dynamically adding ports to VLANs.		
	Synamically adding porto to VE/1145.		

The trick is to mark such VLANs as forbidden on the port in
question. The syntax is identical to the syntax used in
the Enabled VLANs field.
By default, the field is left blank, which means that the port
may become a member of all possible VLANs.

6.4.2 Membership Status

This page provides an overview of membership status of VLAN users.

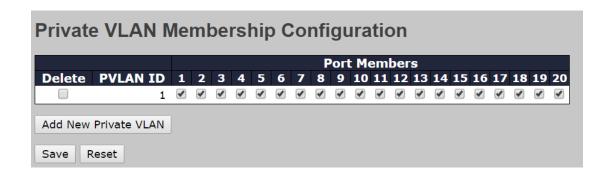
Label	Description		
	Various internal software modules may use VLAN services to		
	configure VLAN memberships on the fly.		
	The drop-down list on the right allows for selecting between showing		
VLAN User	VLAN memberships as configured by an administrator (Admin) or as		
VLAN USEr	configured by one of these internal software modules.		
	The "Combined" entry will show a combination of the administrator		
	and internal software modules configuration, and basically reflects		
	what is actually configured in hardware		
VLAN ID	VLAN ID for which the Port members are displayed.		
	A row of check boxes for each port is displayed for each VLAN ID.		
	If a port is included in a VLAN, the following image will be		
	displayed: ✓.		
Port Members	If a port is in the forbidden port list, the following image will be		
Fort Members	displayed: ⋉.		
	If a port is in the forbidden port list and at the same time attempted		
	included in the VLAN, the following image will be displayed: ✗. The		
	port will not be a member of the VLAN in this case.		

6.4.3 Port Status

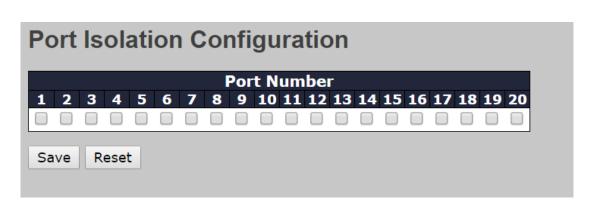
This page provides VLAN Port Status

VLA	VLAN Port Status for Combined users						
Combin	Combined ▼ Auto-refresh □ Refresh						
Port	Port Type	Ingress Filtering	Frame Type	Port VLAN ID	Tx Tag	Untagged VLAN ID	Conflicts
1	C-Port	\checkmark	All	1	Untag All		No
2	C-Port	✓	All	1	Untag All		No
3	C-Port	✓	All	1	Untag All		No
4	C-Port	✓	All	1	Untag All		No
5	C-Port	•	All	1	Untag All		No

Label	Description	
	Various internal software modules may use VLAN services to	
	configure VLAN port configuration on the fly.	
	The drop-down list on the right allows for selecting between	
	showing VLAN memberships as configured by an	
	administrator (Admin) or as configured by one of these internal	
M AND I	software modules.	
VLAN User	The "Combined" entry will show a combination of the	
	administrator and internal software modules configuration, and	
	basically reflects what is actually configured in hardware.	
	If a given software modules hasn't overridden any of the port	
	settings, the text "No data exists for the selected user" is	
	shown in the table.	
Port	The logical port for the settings contained in the same row.	
	Shows the port type (Unaware, C-Port, S-Port,	
Port Type	S-Custom-Port.) that a given user wants to configure on the	
Port Type	port.	
	The field is empty if not overridden by the selected user.	
	Shows whether a given user wants ingress filtering enabled or	
Ingress Filtering	not.	
	The field is empty if not overridden by the selected user.	
	Shows the acceptable frame types (All, Taged, Untagged) that	
Frame Type	a given user wants to configure on the port.	
	The field is empty if not overridden by the selected user.	
Port VLAN ID	Shows the Port VLAN ID (PVID) that a given user wants the	


	port to have.		
	The field is empty if not overridden by the selected user.		
	Shows the Tx Tag requirements (Tag All, Tag PVID, Tag UVID,		
Tv Tan	Untag All, Untag PVID, Untag UVID) that a given user has on a		
Tx Tag	port.		
	The field is empty if not overridden by the selected user.		
	If Tx Tag is overridden by the selected user and is set to Tag or		
Untagged VLAN ID	Untag UVID, then this field will show the VLAN ID the user		
Untagged VLAN ID	wants to tag or untag on egress.		
	The field is empty if not overridden by the selected user.		
	Two users may have conflicting requirements to a port's		
	configuration. For instance, one user may require all frames to		
	be tagged on egress while another requires all frames to be		
	untagged on egress.		
	Since both users cannot win, this gives rise to a conflict, which		
	is solved in a prioritized way. The Administrator has the least		
Conflicts	priority. Other software modules are prioritized according to		
	their position in the drop-down list: The higher in the list, the		
	higher priority.		
	If conflicts exist, it will be displayed as "Yes" for the		
	"Combined" user and the offending software module.		
	The "Combined" user reflects what is actually configured in		
	hardware.		

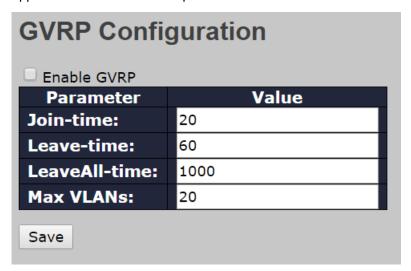
6.4.4 Private VLAN


The private VLAN membership configuration for the switch can be monitored and modified here. Private VLANs can be added or deleted here. Port members of each private VLAN can be added or removed here. Private VLANs are based on the source port mask, and there are no connections to VLANs. This means that VLAN IDs and private VLAN IDs can be identical.

A port must be a member of both a VLAN and a private VLAN to be able to forward packets. By default, all ports are VLAN unaware and members of VLAN 1 and private VLAN 1.

A VLAN-unaware port can only be a member of one VLAN, but it can be a member of multiple private VLANs.

Label	Description		
Delete	Check to delete the entry. It will be deleted during the next		
Delete	save.		
Private VLAN ID	Indicates the ID of this particular private VLAN.		
MAC Address	The MAC address for the entry.		
	A row of check boxes for each port is displayed for each		
	private VLAN ID. You can check the box to include a port in a		
Port Members	private VLAN. To remove or exclude the port from the private		
	VLAN, make sure the box is unchecked. By default, no ports		
	are members, and all boxes are unchecked.		
	Click Add New Private WLAN to add a new private VLAN ID.		
	An empty row is added to the table, and the private VLAN can		
	be configured as needed. The allowed range for a private		
	VLAN ID is the same as the switch port number range. Any		
Adding a New Static	values outside this range are not accepted, and a warning		
Entry	message appears. Click OK to discard the incorrect entry, or		
	click Cancel to return to the editing and make a correction.		
	The private VLAN is enabled when you click Save.		
	The Delete button can be used to undo the addition of new		
	private VLANs.		

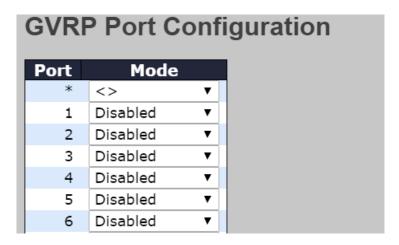

Label	Description	
	A check box is provided for each port of a private VLAN.	
Port Members	When checked, port isolation is enabled for that port.	
Port Members	When unchecked, port isolation is disabled for that port.	
	By default, port isolation is disabled for all ports.	

6.4.5 **GVRP**

<u>GVRP</u> is an acronym for <u>GARP <u>V</u>LAN <u>Registration <u>Protocol</u>. It is a protocol for dynamicaly registering VLANs on ports, and is specified in IEEE 802.1Q-2005, clause 11. GVRP is an example of the use of GARP, hence the G in GVRP.</u></u>

GVRP Config

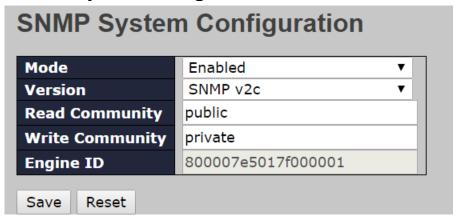
This page allows you to configure the global <u>GVRP</u> configuration settings that are commonly applied to all GVRP enabled ports.



Label	Description	
	The GVRP feature is globally enabled by setting the check	
Enable VRRP Globally	mark in the checkbox named Enable GVRP and pressing the	
	Save button.	
GVRP Protocol Timers	Join-time is a value in the range of 1-20cs, i.e. in units of one	
	hundredth of a second. The default value is 20cs.	
	Leave-time is a value in the range of 60-300cs, i.e. in units of	
	one hundredth of a second. The default is 60cs.	
	LeaveAll-time is a value in the range of 1000-5000cs, i.e. in	

	units of one hundredth of a second. The default is 1000cs.		
Max number of VLANs	When GVRP is enabled, a maximum number of VLANs		
	supported by GVRP is specified. By default this number is		
	20. This number can only be changed when GVRP is turned		
	off.		

Port Config

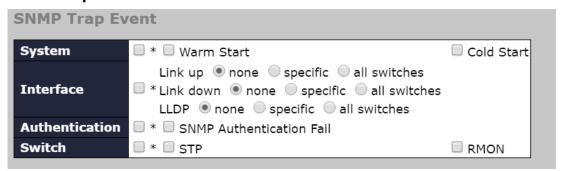

This page allows you to enable or disable a port for GVRP operation. This configuration can be performed either before or after GVRP is configured globally - the protocol operation will be the same.

Label	Description	
Port	The logical port that is to be configured.	
Mode	Mode can be either 'Disabled' or 'GVRP enabled'. These values turn the	
	GVRP feature off or on respectively for the port in question.	

6.5 SNMP

6.5.1 SNMP System Configurations

Label	Description		
	Indicates existing SNMP mode. Possible modes include:		
Mode	Enabled: enable SNMP mode		
	Disabled: disable SNMP mode		
	Indicates the supported SNMP version. Possible versions include:		
Version	SNMP v1: supports SNMP version 1.		
version	SNMP v2c: supports SNMP version 2c.		
	SNMP v3: supports SNMP version 3.		
	Indicates the read community string to permit access to SNMP agent.		
	The allowed string length is 0 to 255, and only ASCII characters from		
Read Community	33 to 126 are allowed.		
Read Community	The field only suits to SNMPv1 and SNMPv2c. SNMPv3 uses USM		
	for authentication and privacy and the community string will be		
	associated with SNMPv3 community table.		
	Indicates the write community string to permit access to SNMP		
	agent. The allowed string length is 0 to 255, and only ASCII		
Write Community	characters from 33 to 126 are allowed.		
Write Community	The field only suits to SNMPv1 and SNMPv2c. SNMPv3 uses USM		
	for authentication and privacy and the community string will be		
	associated with SNMPv3 community table.		
	Indicates the SNMPv3 engine ID. The string must contain an even		
Engine ID	number between 10 and 64 hexadecimal digits, but all-zeros and		
Engine ID	all-'F's are not allowed. Change of the Engine ID will clear all original		
	local users.		


6.5.2 Trap SNMP Trap Detailed Configuration

Trap Config Name	
Trap Mode	Disabled ▼
Trap Version	SNMP v2c ▼
Trap Community	Public
Trap Destination Address	
Trap Destination Port	162
Trap Inform Mode	Disabled ▼
Trap Inform Timeout (seconds)	3
Trap Inform Retry Times	5
Trap Probe Security Engine ID	Enabled ▼
Trap Security Engine ID	
Trap Security Name	None ▼

Label	Description
	Indicates which trap Configuration's name for configuring. The
Trap Config Name	allowed string length is 1 to 32, and the allowed content is ASCII
	characters from 33 to 126.
	Indicates existing SNMP trap mode. Possible modes include:
Trap Mode	Enabled: enable SNMP trap mode
	Disabled: disable SNMP trap mode
	Indicates the supported SNMP trap version. Possible versions
	include:
Trap Version	SNMP v1: supports SNMP trap version 1
	SNMP v2c: supports SNMP trap version 2c
	SNMP v3: supports SNMP trap version 3
	Indicates the community access string when sending SNMP trap
Trap Community	packets. The allowed string length is 0 to 255, and only ASCII
	characters from 33 to 126 are allowed.
	Indicates the SNMP trap destination address. It allow a valid IP
	address in dotted decimal notation ('x.y.z.w').
Trap Destination	And it also allows a valid hostname. A valid hostname is a string
Address	drawn from the alphabet (A-Za-z), digits (0-9), dot (.), dash (-).
	Spaces are not allowed, the first character must be an alpha
	character, and the first and last characters must not be a dot or a

	dash.
	Indicates the SNMP trap destination IPv6 address. IPv6 address is in
	'
	128-bit records represented as eight fields of up to four hexadecimal
	digits with a colon separating each field (:). For example,
	'fe80::215:c5ff:fe03:4dc7'. The symbol '::' is a special syntax that can
	be used as a shorthand way of representing multiple 16-bit groups of
	contiguous zeros; but it can appear only once. It can also represent a
	legally valid IPv4 address. For example, '::192.1.2.34'.
Trap Destination	Indicates the SNMP trap destination port. SNMP Agent will send
Port	SNMP message via this port, the port range is 1~65535.
	Indicates the SNMP trap inform mode. Possible modes include:
Trap Inform Mode	Enabled: enable SNMP trap inform mode
	Disabled: disable SNMP trap inform mode
Trap Inform	Configures the SNMP trap inform timeout. The allowed range is 0 to
Timeout(seconds)	2147.
Trap Inform Retry	Configures the retry times for SNMP trap inform. The allowed range
Times	is 0 to 255.
	Indicates the SNMP trap probe security engine ID mode of operation.
	Possible values are:
Trap Probe	Enabled : Enable SNMP trap probe security engine ID mode of
Secuirty Engine ID	operation.
	Disabled : Disable SNMP trap probe security engine ID mode of
	operation.
	Indicates the SNMP trap security engine ID. SNMPv3 sends traps
	and informs using USM for authentication and privacy. A unique
	engine ID for these traps and informs is needed. When "Trap Probe
Trap Security	Security Engine ID" is enabled, the ID will be probed automatically.
Engine ID	Otherwise, the ID specified in this field is used. The string must
	contain an even number (in hexadecimal format) with number of
	digits between 10 and 64, but all-zeros and all-'F's are not allowed.
	Indicates the SNMP trap security name. SNMPv3 traps and informs
Trap Security	using USM for authentication and privacy. A unique security name is
Name	needed when traps and informs are enabled.
	needed when trape and informe are chabled.

SNMP Trap Event

Label	Description			
	Enable/disable that the Interface group's traps. Possible traps are:			
System	Warm Start: Enable/disable Warm Start trap.			
	Cold Start: Enable/disable Cold Start trap.			
	Indicates that the Interface group's traps. Possible traps are:			
	Indicates that the SNMP entity is permitted to generate			
Interfere	authentication failure traps. Possible modes are:			
Interface	Link Up: Enable/disable Link up trap.			
	Link Down: Enable/disable Link down trap.			
	LLDP: Enable/disable LLDP trap.			
	Indicates that the authentication group's traps. Possible traps are:			
Authentication	SNMP Authentication Fail: Enable/disable SNMP trap			
	authentication failure trap.			
	Indicates the Switch group's traps. Possible traps are:			
Switch	STP: Enable/disable STP trap.			
	RMON: Enable/disable RMON trap.			

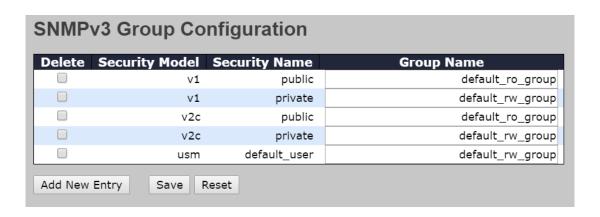
6.5.3 SNMP Community Configurations

This page allows you to configure SNMPv3 community table. The entry index key is **Community**.

Label	Description		
Delete	Check to delete the entry. It will be deleted during the next save.		
	Indicates the community access string to permit access to		
Community	SNMPv3 agent. The allowed string length is 1 to 32, and only		
	ASCII characters from 33 to 126 are allowed.		
Source IP	Indicates the SNMP source address		
Source Mask	Indicates the SNMP source address mask		

6.5.4 SNMP User Configurations

This page allows you to configure SNMPv3 user table. The entry index keys are **Engine ID** and **User Name**.


SNMP	SNMPv3 User Configuration						
Delete	Engine ID	User Name	Security Level	Authentication Protocol	Authentication Password		Privacy Password
	800007e5017f000001	default_user	NoAuth, NoPriv	None	None	None	None
Add New	Add New Entry Save Reset						

Label	Description	
Delete	Check to delete the entry. It will be deleted during the next save.	
	An octet string identifying the engine ID that this entry should	
	belong to. The string must contain an even number between 10	
	and 64 hexadecimal digits, but all-zeros and all-'F's are not	
	allowed. The SNMPv3 architecture uses User-based Security	
	Model (USM) for message security and View-based Access	
	Control Model (VACM) for access control. For the USM entry,	
Engine ID	the usmUserEngineID and usmUserName are the entry keys.	
	In a simple agent, usmUserEngineID is always that agent's own	
	snmpEngineID value. The value can also take the value of the	
	snmpEngineID of a remote SNMP engine with which this user	
	can communicate. In other words, if user engine ID is the same	
	as system engine ID, then it is local user; otherwise it's remote	
	user.	
	A string identifying the user name that this entry should belong	
User Name	to. The allowed string length is 1 to 32, and only ASCII	
	characters from 33 to 126 are allowed.	
Security Level	Indicates the security model that this entry should belong to.	

	T
	Possible security models include:
	NoAuth, NoPriv: no authentication and none privacy
	Auth, NoPriv: Authentication and no privacy
	Auth, Priv: Authentication and privacy
	The value of security level cannot be modified if the entry
	already exists, which means the value must be set correctly at
	the time of entry creation.
	Indicates the authentication protocol that this entry should
	belong to. Possible authentication protocols include:
	None: no authentication protocol
	MD5: an optional flag to indicate that this user is using MD5
Authentication	authentication protocol
Protocol	SHA: an optional flag to indicate that this user is using SHA
	authentication protocol
	The value of security level cannot be modified if the entry
	already exists, which means the value must be set correctly at
	the time of entry creation.
	A string identifying the authentication pass phrase. For MD5
Authentication	authentication protocol, the allowed string length is 8 to 32. For
Password	SHA authentication protocol, the allowed string length is 8 to 40.
	Only ASCII characters from 33 to 126 are allowed.
	Indicates the privacy protocol that this entry should belong to.
	Possible privacy protocols include:
Privacy Protocol	None: no privacy protocol
	DES: an optional flag to indicate that this user is using DES
	authentication protocol
	A string identifying the privacy pass phrase. The allowed string
Privacy Password	length is 8 to 32, and only ASCII characters from 33 to 126 are
	allowed.

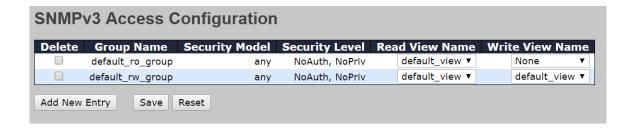
6.5.5 SNMP Group Configurations

This page allows you to configure SNMPv3 group table. The entry index keys are **Security Model** and **Security Name**.

Label	Description	
Delete	Check to delete the entry. It will be deleted during the next save.	
	Indicates the security model that this entry should belong to. Possible	
	security models included:	
Security Model	v1: Reserved for SNMPv1.	
	v2c: Reserved for SNMPv2c.	
	usm: User-based Security Model (USM).	
	A string identifying the security name that this entry should belong to.	
Security Name	The allowed string length is 1 to 32, and only ASCII characters from	
	33 to 126 are allowed.	
	A string identifying the group name that this entry should belong to.	
Group Name	The allowed string length is 1 to 32, and only ASCII characters from	
	33 to 126 are allowed.	

6.5.6 SNMP View Configurations

This page allows you to configure SNMPv3 view table. The entry index keys are **View Name** and **OID Subtree**.



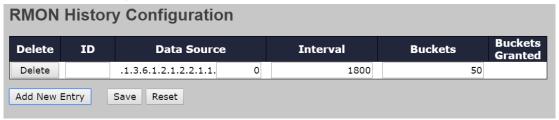
Label	Description
Delete	Check to delete the entry. It will be deleted during the next save.

	A string identifying the view name that this entry should belong to.
View Name	The allowed string length is 1 to 32, and only ASCII characters from
	33 to 126 are allowed.
	Indicates the view type that this entry should belong to. Possible view
	types include:
	Included: an optional flag to indicate that this view subtree should be
	included.
View Type	Excluded: An optional flag to indicate that this view subtree should
	be excluded.
	Generally, if an entry's view type is Excluded , it should exist another
	entry whose view type is Included, and its OID subtree oversteps
	the Excluded entry.
	The OID defining the root of the subtree to add to the named view.
OID Subtree	The allowed OID length is 1 to 128. The allowed string content is
	digital number or asterisk (*).

6.5.7 SNMP Access Configurations

This page allows you to configure SNMPv3 access table. The entry index keys are **Group Name**, **Security Model**, and **Security Level**.

Label	Description	
Delete	Check to delete the entry. It will be deleted during the next save.	
	A string identifying the group name that this entry should belong to.	
Group Name	The allowed string length is 1 to 32, and only ASCII characters from	
	33 to 126 are allowed.	
	Indicates the security model that this entry should belong to. Possible	
	security models include:	
Security Model	any: Accepted any security model (v1 v2c usm).	
	v1: Reserved for SNMPv1.	
	v2c: Reserved for SNMPv2c.	
	usm: User-based Security Model (USM).	


	Indicates the security model that this entry should belong to. Possible
	security models include:
Security Level	NoAuth, NoPriv: no authentication and no privacy
	Auth, NoPriv: Authentication and no privacy
	Auth, Priv: Authentication and privacy
	The name of the MIB view defining the MIB objects for which this
Read View Name	request may request the current values. The allowed string length is
	1 to 32, and only ASCII characters from 33 to 126 are allowed.
	The name of the MIB view defining the MIB objects for which this
Write View Name	request may potentially SET new values. The allowed string length is
	1 to 32, and only ASCII characters from 33 to 126 are allowed.

6.5.8 RMON Statistics Configuration

Label	Description
Delete	Check to delete the entry. It will be deleted during the next save.
ID	Indicates the index of the entry. The range is from 1 to 65535.
	Indicates the port ID which wants to be monitored. If in stacking
Data Source	switch, the value must add 1000000*(switch ID-1), for example, if the
	port is switch 3 port 5, the value is 2000005.

History Configuration

Label	Description	
Delete	Check to delete the entry. It will be deleted during the next save.	
ID	Indicates the index of the entry. The range is from 1 to 65535.	
	Indicates the port ID which wants to be monitored. If in stacking	
Data Source	switch, the value must add 1000000*(switch ID-1), for example, if the	
	port is switch 3 port 5, the value is 2000005.	
la taman	Indicates the interval in seconds for sampling the history statistics	
Interval	data. The range is from 1 to 3600, default value is 1800 seconds.	
	Indicates the maximum data entries associated this History control	
Buckets	entry stored in RMON. The range is from 1 to 3600, default value is	
	50.	
Buckets Granted	The number of data shall be saved in the RMON.	

Alarm Configuration

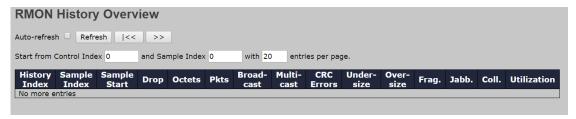
Label	Description			
Delete	Check to delete the entry. It will be deleted during the next save.			
ID	Indicates the index of the entry. The range is from 1 to 65535.			
Interval	Indicates the interval in seconds for sampling and comparing the			
Interval	rising and falling threshold. The range is from 1 to 2^31-1.			
	Indicates the particular variable to be sampled, the possible variables			
	are:			
	InOctets: The total number of octets received on the interface,			
	including framing characters.			
	InUcastPkts: The number of uni-cast packets delivered to a			
	higher-layer protocol.			
Variable	InNUcastPkts: The number of broad-cast and multi-cast packets			
	delivered to a higher-layer protocol.			
	InDiscards: The number of inbound packets that are discarded even			
	the packets are normal.			
	InErrors: The number of inbound packets that contained errors			
	preventing them from being deliverable to a higher-layer protocol.			
	InUnknownProtos: the number of the inbound packets that were			

	discarded because of the unknown or un-support protocol.
	OutOctets: The number of octets transmitted out of the interface ,
	including framing characters.
	OutUcastPkts: The number of uni-cast packets that request to
	transmit.
	OutNUcastPkts: The number of broad-cast and multi-cast packets
	that request to transmit.
	OutDiscards: The number of outbound packets that are discarded
	even the packets are normal.
	OutErrors: The number of outbound packets that could not be
	transmitted because of errors.
	OutQLen: The length of the output packet queue (in packets).
	The method of sampling the selected variable and calculating the
	value to be compared against the thresholds, possible sample types
Sample Type	are:
	Absolute: Get the sample directly.
	Delta: Calculate the difference between samples (default).
Value	The value of the statistic during the last sampling period.
	The method of sampling the selected variable and calculating the
	value to be compared against the thresholds, possible sample types
	are:
	RisingTrigger alarm when the first value is larger than the rising
Startup Alarm	threshold.
	FallingTrigger alarm when the first value is less than the falling
	threshold.
	RisingOrFallingTrigger alarm when the first value is larger than the
	rising threshold or less than the falling threshold (default).
Rising Threshold	Rising threshold value (-2147483648-2147483647).
Rising Index	Rising event index (1-65535).
Falling Threshold	Falling threshold value (-2147483648-2147483647)
Falling Index	Falling event index (1-65535).

Event Configuration

RMON	Alarm	Configuration	n							
Delete	ID	Interval	Variable	Sample Type	Value	Startup Alarm	Rising Threshold	Rising Index	Falling Threshold	Falling Index
Delete		30	.1.3.6.1.2.1.2.2.1.	Delta ▼	0	RisingOrFalling ▼	0	0	0	0
Add New E	ntry	Save Reset								

Label	Description			
Delete	Check to delete the entry. It will be deleted during the next save.			
ID	Indicates the index of the entry. The range is from 1 to 65535.			
Dece	Indicates this event, the string length is from 0 to 127, default is a null			
Desc	string.			
	Indicates the notification of the event, the possible types are:			
	none: No SNMP log is created, no SNMP trap is sent.			
Typo	log: Create SNMP log entry when the event is triggered.			
Туре	snmptrap: Send SNMP trap when the event is triggered.			
	logandtrap: Create SNMP log entry and sent SNMP trap when the			
	event is triggered.			
Community	Specify the community when trap is sent, the string length is from 0 to			
	127, default is "public".			
Event Last Time	Indicates the value of sysUpTime at the time this event entry last			
Event Last Time	generated an event.			


Statistics Stauts

Label	Description			
ID	Indicates the index of Statistics entry.			
Data Source	The port ID which wants to be monitored.			
Octets	The total number of events in which packets were dropped by the			
Octets	probe due to lack of resources.			
Disto	The total number of packets (including bad packets, broadcast			
Pkts	packets, and multicast packets) received.			
Broad-Cast	The total number of good packets received that were directed to the			
	broadcast address.			
Muulti-Cast	The total number of good packets received that were directed to a			
	multicast address.			
CRC Errors	The total number of packets received that had a length (excluding			
	framing bits, but including FCS octets) of between 64 and 1518			

	<u> </u>
	octets, inclusive, but had either a bad Frame Check Sequence (FCS)
	with an integral number of octets (FCS Error) or a bad FCS with a
	non-integral number of octets (Alignment Error).
Under-size	The total number of packets received that were less than 64 octets.
0	The total number of packets received that were longer than 1518
Over-size	octets.
_	The number of frames which size is less than 64 octets received with
Frag	invalid CRC.
	The number of frames which size is larger than 64 octets received
Jabb	with invalid CRC.
	The best estimate of the total number of collisions on this Ethernet
Coll.	segment.
	The total number of packets (including bad packets) received that
64	were 64 octets in length.
	The total number of packets (including bad packets) received that are
65~127	between 65 to 127 octets in length.
	The total number of packets (including bad packets) received that are
128~255	between 128 to 255 octets in length.
050 544	The total number of packets (including bad packets) received that are
256~511	between 256 to 511 octets in length.
	The total number of packets (including bad packets) received that are
512~1023	between 512 to 1023 octets in length.
	The total number of packets (including bad packets) received that
1024~1588	were between 1024 to 1588 octets in length.

History Status

Label	Description
History Index Indicates the index of History control entry.	
Sample Index	Indicates the index of the data entry associated with the control entry.
Sample Start	The value of sysUpTime at the start of the interval over which this
	sample was measured.

Drop	The total number of events in which packets were dropped by the
Біор	probe due to lack of resources.
Octets	The total number of octets of data (including those in bad packets)
Octets	received on the network.
Pkts	The total number of packets (including bad packets, broadcast
PKIS	packets, and multicast packets) received.
Breadeast	The total number of good packets received that were directed to the
Broadcast	broadcast address.
Bald's and	The total number of good packets received that were directed to a
Multicast	multicast address.
	The total number of packets received that had a length (excluding
	framing bits, but including FCS octets) of between 64 and 1518
CRC Error	octets, inclusive, but had either a bad Frame Check Sequence (FCS)
	with an integral number of octets (FCS Error) or a bad FCS with a
	non-integral number of octets (Alignment Error).
Undersize	The total number of packets received that were less than 64 octets.
Oversine	The total number of packets received that were longer than 1518
Oversize	octets.
F	The number of frames which size is less than 64 octets received with
Frag.	invalid CRC.
lakk	The total number of packets received that were longer than 1518
Jabb.	octets.
Call	The best estimate of the total number of collisions on this Ethernet
Coll.	segment.
	The best estimate of the mean physical layer network utilization on
Utilization	this interface during this sampling interval, in hundredths of a
	percent.
· · · · · · · · · · · · · · · · · · ·	

Alarm Status

Label	Description
ID	Indicates the index of Alarm control entry.
Interval	Indicates the interval in seconds for sampling and comparing the
interval	rising and falling threshold.
Variable Indicates the particular variable to be sampled	
Samula Tuna	The method of sampling the selected variable and calculating the
Sample Type	value to be compared against the thresholds.
Value	The value of the statistic during the last sampling period.
Startup Alarm	The alarm that may be sent when this entry is first set to valid.
Rising Threshold	Rising threshold value.
Rising Index	Rising threshold value.
Filing Threshold	Falling threshold value.
Falling Index	Falling event index.

Event Status

Label	Description
Event Index	Indicates the index of the event entry.
Log Index	Indicates the index of the log entry.
Log Time	Indicates Event log time
LogDescripi	Indicates the Event description.

6.6 Traffic Prioritization

6.6.1 Storm Control

There is a unicast storm rate control, multicast storm rate control, and a broadcast storm rate control. These only affect flooded frames, i.e. frames with a (VLAN ID, DMAC) pair not present on the MAC Address table.

The rate is 2ⁿ, where n is equal to or less than 15, or "No Limit". The unit of the rate can be either pps (packets per second) or kpps (kilopackets per second). The configuration indicates the permitted packet rate for unicast, multicast, or broadcast traffic across the switch.

Note: frames sent to the CPU of the switch are always limited to approximately 4 kpps. For example, broadcasts in the management VLAN are limited to this rate. The management VLAN is configured on the IP setup page.

	Storm Control Configuration					
Frame Type	Status	Rate (pps)				
Unicast		1K				
Multicast		1K 💌				
Broadcast		1K 💌				

Label	Description				
Eromo Typo	The settings in a particular row apply to the frame type listed here:				
Frame Type	unicast, multicast, or broadcast.				
Status	Enable or disable the storm control status for the given frame				
Status	type.				
	The rate unit is packet per second (pps), configure the rate as 1K,				
Rate	2K, 4K, 8K, 16K, 32K, 64K, 128K, 256K, 512K, or 1024K.				
	The 1 kpps is actually 1002.1 pps.				

6.6.2 Port Classification

QoS is an acronym for Quality of Service. It is a method to achieve efficient bandwidth utilization between individual applications or protocols.

QoS Ingress Port Classification						
Port	QoS class	DP level	PCP	DEI	Tag Class.	DSCP Based
*	<> Y	<> Y	<> V	<> Y		
1	0 🕶	0 🕶	0 🕶	0 💌	Disabled	
2	0 🕶	0 🕶	0 🕶	0 🕶	Disabled	
3	0 🕶	0 🕶	0 🕶	0 🕶	Disabled	
4	0 🕶	0 🕶	0 🕶	0 🕶	Disabled	
5	0 🕶	0 🕶	0 🕶	0 🕶	Disabled	
6	0 🕶	0 🕶	0 🕶	0 🕶	Disabled	
7	0 🕶	0 🕶	0 🕶	0 🕶	Disabled	

Label	Description			
Port	The port number for which the configuration below applies			
	Controls the default QoS class			
	All frames are classified to a QoS class. There is a one to one			
	mapping between QoS class, queue, and priority. A QoS class			
	of 0 (zero) has the lowest priority.			
QoS Class	If the port is VLAN aware and the frame is tagged, then the			
	frame is classified to a QoS class that is based on the PCP			
	value in the tag as shown below. Otherwise the frame is			
	classified to the default QoS class.			
	PCP value: 0 1 2 3 4 5 6 7			
QUS Class	QoS class: 1 0 2 3 4 5 6 7			
	If the port is VLAN aware, the frame is tagged, and Tag Class is			
	enabled, then the frame is classified to a QoS class that is			
	mapped from the PCP and DEI value in the tag. Otherwise the			
	frame is classified to the default QoS class.			
	The classified QoS class can be overruled by a QCL entry.			
	Note: if the default QoS class has been dynamically changed,			
	then the actual default QoS class is shown in parentheses after			
	the configured default QoS class.			
	Controls the default Drop Precedence Level			
	All frames are classified to a DP level.			
DP lovel	If the port is VLAN aware and the frame is tagged, then the			
DP level	frame is classified to a DP level that is equal to the DEI value in			
	the tag. Otherwise the frame is classified to the default DP level.			
	If the port is VLAN aware, the frame is tagged, and Tag Class is			

	enabled, then the frame is classified to a DP level that is
	mapped from the PCP and DEI value in the tag. Otherwise the
	frame is classified to the default DP level.
	The classified DP level can be overruled by a QCL entry.
	Controls the default PCP value
	All frames are classified to a PCP value.
PCP	If the port is VLAN aware and the frame is tagged, then the
	frame is classified to the PCP value in the tag. Otherwise the
	frame is classified to the default PCP value.
	Controls the default DEI value
	All frames are classified to a DEI value.
DEI	If the port is VLAN aware and the frame is tagged, then the
	frame is classified to the DEI value in the tag. Otherwise the
	frame is classified to the default DEI value.
	Shows the classification mode for tagged frames on this port
	Disabled: Use default QoS class and DP level for tagged
	frames
	Enabled: Use mapped versions of PCP and DEI for tagged
Tag Class	frames
	Click on the mode to configure the mode and/or mapping
	Note: this setting has no effect if the port is VLAN unaware.
	Tagged frames received on VLAN-unaware ports are always
	classified to the default QoS class and DP level.
DSCP Based	Click to enable DSCP Based QoS Ingress Port Classification
	I .

6.6.3 Port Tag Remaking

This page provides an overview of QoS Egress Port Tag Remarking for all switch ports.

QoS	Egress	Port Tag Remarking
Port	Mode	
1	Classified	
2	Classified	
3	Classified	
4	Classified	
5	Classified	
6	Classified	
7	Classified	

Label	Description
Port	The switch port number to which the following settings will be

	applied. Click on the port number to configure tag remarking
	Shows the tag remarking mode for this port
Mada	Classified: use classified PCP/DEI values
Mode	Default: use default PCP/DEI values
	Mapped: use mapped versions of QoS class and DP level

6.6.4 Port DSCP

This page allows you to configure basic QoS Port DSCP settings for all switch ports.

QoS Port DSCP Configuration					
Port	Ingress			Egress	
Port	Translate	Classif	У	Rewrite	
*		\Diamond	~	\Diamond	*
1		Disable	~	Disable	~
2		Disable	~	Disable	~
3		Disable	~	Disable	~
4		Disable	~	Disable	*
5		Disable	~	Disable	~
6		Disable	~	Disable	~

Label	Description				
Port	Shows the list of ports for which you can configure DSCP				
Port	Ingress and Egress settings.				
	In Ingress settings you can change ingress translation and				
	classification settings for individual ports.				
Ingress	There are two configuration parameters available in Ingress:				
	1. Translate				
	2. Classify				
1. Translate	Check to enable ingress translation				
	Classification has 4 different values.				
	Disable: no Ingress DSCP classification				
	DSCP=0: classify if incoming (or translated if enabled) DSCP				
2. Classify	is 0.				
2. Classify	Selected: classify only selected DSCP whose classification is				
	enabled as specified in DSCP Translation window for the				
	specific DSCP.				
	All: classify all DSCP				
Egress	Port egress rewriting can be one of the following options:				

Disable: no Egress rewrite

Enable: rewrite enabled without remapping

Remap DP Unaware: DSCP from the analyzer is remapped and the frame is remarked with a remapped DSCP value.

The remapped DSCP value is always taken from the 'DSCP Translation->Egress Remap DP0' table.

Remap DP Aware: DSCP from the analyzer is remapped and the frame is remarked with a remapped DSCP value.

Depending on the DP level of the frame, the remapped DSCP value is either taken from the 'DSCP Translation->Egress Remap DP0' table or from the 'DSCP Translation->Egress Remap DP1' table.

6.6.5 Port Policing

This page allows you to configure Policer settings for all switch ports.

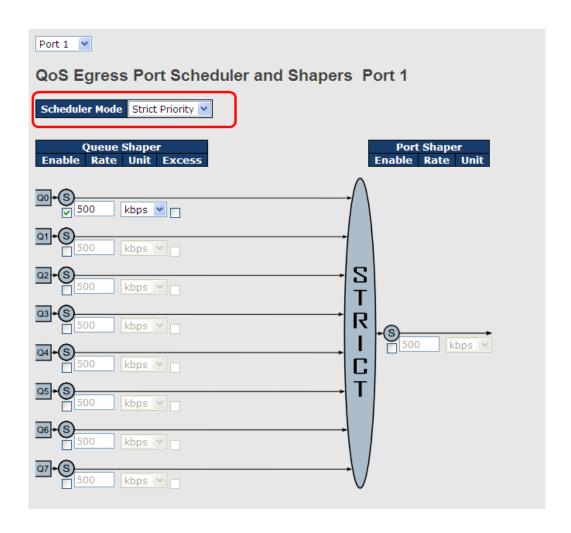
QoS Ingress Port Policers					
Port	Enabled	Rate	Unit	Flow Control	
*		500	<> V		
1		500	kbps 💌		
2		500	kbps 💌		
3		500	kbps 💌		
4		500	kbps 💌		
5		500	kbps 💌		
6		500	kbps 💌		

Label	Description				
Port	The port number for which the configuration below applies				
Enable	Check to enable the policer for individual switch ports				
	Configures the rate of each policer. The default value is 500 .				
Data	This value is restricted to 100 to 1000000 when the Unit is				
Rate	kbps or fps, and is restricted to 1 to 3300 when the Unit is				
	Mbps or kfps.				
Unti	Configures the unit of measurement for each policer rate as				
Onti	kbps, Mbps, fps, or kfps. The default value is kbps.				
Flow Control	If Flow Control is enabled and the port is in Flow Control				
Flow Collifor	mode, then pause frames are sent instead of being				

discarded.	
------------	--

6.6.6 Queue Policing

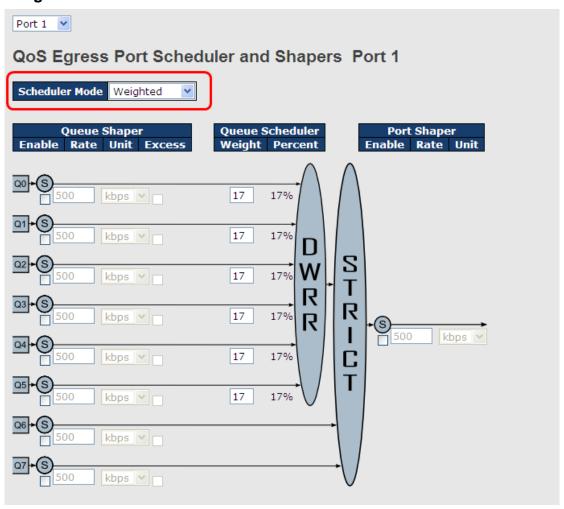
This page allows you to configure Queue Policer settings for all switch ports.


QoS Ingress Queue Policers										
Port		Queu		Queue 1	Queue 2	_		_		Queue 7
	Ε	Rate	Unit	Enable	Enable	Enable	Enable	Enable	Enable	Enable
*	$\overline{\mathbf{v}}$	500	<> Y							
1	V	500	kbps 💌							
2	V	500	kbps 💌							
3	V	500	kbps 💌							
4	<u>~</u>	500	kbps 💌							
5	v	500	kbps 💌							

Label	Description		
Port	The port number for which the configuration below applies.		
Enable(E)	Check to enable queue policer for individual switch ports		
	Configures the rate of each queue policer. The default value is 500 .		
	This value is restricted to 100 to 1000000 when the Unit is kbps ,		
Rate	and is restricted to 1 to 3300 when the Unit is Mbps .		
	This field is only shown if at least one of the queue policers is		
	enabled.		
	Configures the unit of measurement for each queue policer rate as		
11	kbps or Mbps. The default value is kbps .		
Unit	This field is only shown if at least one of the queue policers is		
	enabled.		

5.6.7 QoS Egress Port Scheduler and Shapers

This page allows you to configure Scheduler and Shapers for a specific port.


Strict Priority

Label	Description				
Scheduler Mode	Controls whether the scheduler mode is Strict Priority or				
Scheduler Wode	Weighted on this switch port				
Queue Shaper	Charlete anable gueve abover for individual quitab parts				
Enable	Check to enable queue shaper for individual switch ports				
	Configures the rate of each queue shaper. The default value is				
Queue Shaper Rate	500. This value is restricted to 100 to 1000000 whn the Unit is				
	kbps", and it is restricted to 1 to 3300 when the Unit is Mbps.				
	Configures the rate for each queue shaper. The default value is				
Queues Shaper Unit	500. This value is restricted to 100 to 1000000 when the Unit is				
	kbps, and it is restricted to 1 to 3300 when the Unit is Mbps.				
Queue Shaper	Allows the guerra to use exceed bendwidth				
Excess	Allows the queue to use excess bandwidth				
Port Shaper Enable	Check to enable port shaper for individual switch ports				
Don't Chaman Data	Configures the rate of each port shaper. The default value is 500				
Port Shaper Rate	This value is restricted to 100 to 1000000 when the Unit is kbps ,				

	and it is restricted to 1 to 3300 when the Unit is Mbps .
Dort Change Unit	Configures the unit of measurement for each port shaper rate as
Port Shaper Unit	kbps or Mbps. The default value is kbps.

Weighted

Label	Description				
Cohodular Mada	Controls whether the scheduler mode is Strict Priority or				
Scheduler Mode	Weighted on this switch port				
Queue Shaper					
Enable	Check to enable queue shaper for individual switch ports				
	Configures the rate of each queue shaper. The default value is				
Queue Shaper Rate	500. This value is restricted to 100 to 1000000 when the Unit is				
	kbps, and it is restricted to 1 to 3300 when the Unit is Mbps.				
Quayas Shapar Unit	Configures the rate of each queue shaper. The default value is				
Queues Shaper Unit	500 . This value is restricted to 100 to 1000000 when the Unit " is				

	kbps, and it is restricted to 1 to 3300 when the Unit is Mbps.			
Queue Shaper Excess	Allows the queue to use excess bandwidth			
Queue Scheduler Weight	Configures the weight of each queue. The default value is 17 . This value is restricted to 1 to 100. This parameter is only shown if			
	Scheduler Mode is set to Weighted.			
Queue Scheduler Shows the weight of the queue in percentage. This parameter				
Percent	only shown if Scheduler Mode is set to Weighted .			
Port Shaper Enable Check to enable port shaper for individual switch ports				
	Configures the rate of each port shaper. The default value is 500 .			
Port Shaper Rate	This value is restricted to 100 to 1000000 when the Unit is kbps ,			
	and it is restricted to 1 to 3300 when the Unit is Mbps .			
Port Shanar Unit	Configures the unit of measurement for each port shaper rate as			
Port Shaper Unit	kbps or Mbps. The default value is kbps.			

5.6.8 Port Scheduler

This page provides an overview of QoS Egress Port Schedulers for all switch ports.

QoS Egress Port Schedulers							
Port	Mode			We	ight		
POIL	Mode	Q0	Q1	Q2	Q3	Q4	Q5
1	Strict Priority	-	-	-	-	-	-
2	Strict Priority	-	-	-	-	-	-
3	Strict Priority	-	-	-	-	-	-
4	Strict Priority	-	-	-	-	-	-
5	Strict Priority	-	-	-	-	-	-
6	Strict Priority	-	-	-	-	-	-

Label	Description		
	The switch port number to which the following settings will be		
Port	applied.		
	Click on the port number to configure the schedulers		
Mode	Shows the scheduling mode for this port		
Qn	Shows the weight for this queue and port		

5.6.9 Port Shaping

This page provides an overview of QoS Egress Port Shapers for all switch ports.

QoS Egress Port Shapers


Port	Shapers								
	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Port
1	disabled								
2	disabled								
3	disabled								
4	disabled								
5	disabled								
6	disabled								

Label	Description		
Port	The switch port number to which the following settings will be applied. Click on the port number to configure the shapers		
Mode	Shows disabled or actual queue shaper rate - e.g. "800 Mbps"		
Qn	Shows disabled or actual port shaper rate - e.g. "800 Mbps"		

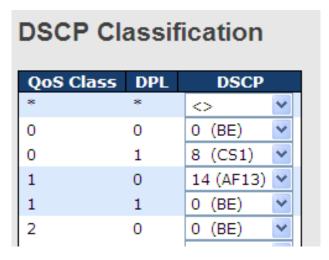
5.6.10 DSCP-Based QoS

This page allows you to configure basic QoS DSCP-based QoS Ingress Classification settings for all switches.

DSCP-Based QoS Ingress Classification

Label	Description			
DSCP	Maximum number of supported DSCP values is 64			
	Check to trust a specific DSCP value. Only frames with trusted			
Truct	DSCP values are mapped to a specific QoS class and drop			
Trust	precedence level. Frames with untrusted DSCP values are			
	treated as a non-IP frame.			
QoS Class	QoS class value can be any number from 0-7.			
DPL	Drop Precedence Level (0-1)			

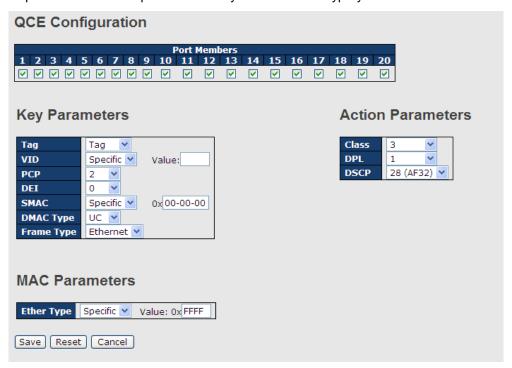
5.6.11 DSCP Translation


This page allows you to configure basic QoS DSCP translation settings for all switches. DSCP translation can be done in **Ingress** or **Egress**.

DSCP Translation						
DSCP	Ingre	Egress				
	Translate	Classify	y Remap DPO		Remap DP1	
*	<> Y		\Diamond	~	<>	~
0 (BE)	0 (BE)		0 (BE)	~	0 (BE)	*
1	1 ~		1	~	1	~
2	2		2	~	2	~
3	3		3	~	3	~
4	4		4	~	4	~
5	5		5	~	5	~
6	6		6	~	6	~
7	7		7	~	7	~
8 (CS1)	8 (CS1) ×		8 (CS1)	~	8 (CS1)	~
9	9 🔻		9	~	9	~

Label	Description		
DSCD	Maximum number of supported DSCP values is 64 and valid		
DSCP	DSCP value ranges from 0 to 63.		
	Ingress DSCP can be first translated to new DSCP before		
	using the DSCP for QoS class and DPL map.		
Ingress	There are two configuration parameters for DSCP Translation -		
Ingress	1. Translate: DSCP can be translated to any of (0-63) DSCP		
	values.		
	2. Classify: check to enable ingress classification		
	Configurable engress parameters include;		
	Remap DP0: controls the remapping for frames with DP level		
	0. You can select the DSCP value from a selected menu to		
Egress	which you want to remap. DSCP value ranges from 0 to 63.		
	Remap DP1: controls the remapping for frames with DP level		
	1. You can select the DSCP value from a selected menu to		
	which you want to remap. DSCP value ranges from 0 to 63.		

5.6.12 DSCP Classification


This page allows you to configure the mapping of QoS class and Drop Precedence Level to DSCP value.

Label	Description
QoS Class	Actual QoS class
DPL	Actual Drop Precedence Level
DSCP	Select the classified DSCP value (0-63)

5.6.13 QoS Control List

This page allows you to edit or insert a single QoS control entry at a time. A QCE consists of several parameters. These parameters vary with the frame type you select.

Label	Description
Port Members	Check to include the port in the QCL entry. By default, all
	ports are included.
Key Parameters	Key configurations include:
	Tag: value of tag, can be Any, Untag or Tag.
	VID: valid value of VLAN ID, can be any value from 1 to 4095
	Any: user can enter either a specific value or a range of
	VIDs.
	PCP : Priority Code Point, can be specific numbers (0, 1, 2, 3,
	4, 5, 6, 7), a range (0-1, 2-3, 4-5, 6-7, 0-3, 4-7) or Any
	DEI : Drop Eligible Indicator, can be any of values between 0
	and 1 or Any
	SMAC: Source MAC Address, can be 24 MS bits (OUI) or
	Any
	DMAC Type: Destination MAC type, can be unicast (UC),
	multicast (MC), broadcast (BC) or Any
	Frame Type can be the following values:
	Any
	Ethernet
	LLC
	SNAP
	IPv4
	IPv6
	Note: all frame types are explained below.
Any	Allow all types of frames
Ethernet	Valid Ethernet values can range from 0x600 to 0xFFFF or
	Any' but excluding 0x800(IPv4) and 0x86DD(IPv6). The
	default value is Any .
LLC	SSAP Address: valid SSAP (Source Service Access Point)
	values can range from 0x00 to 0xFF or Any. The default
	value is Any .
	DSAP Address: valid DSAP (Destination Service Access
	Point) values can range from 0x00 to 0xFF or Any. The
	default value is Any .
	Control Valid Control: valid values can range from 0x00 to
	0xFF or Any . The default value is Any .
SNAP	PID: valid PID (a.k.a ethernet type) values can range from

	0x00 to 0xFFFF or Any. The default value is Any.
IPv4	Protocol IP Protocol Number: (0-255, TCP or UDP) or Any
	Source IP: specific Source IP address in value/mask format
	or Any . IP and mask are in the format of x.y.z.w where x, y, z,
	and w are decimal numbers between 0 and 255. When the
	mask is converted to a 32-bit binary string and read from left
	to right, all bits following the first zero must also be zero.
	DSCP (Differentiated Code Point): can be a specific value, a
	range, or Any. DSCP values are in the range 0-63 including
	BE, CS1-CS7, EF or AF11-AF43.
	IP Fragment: Ipv4 frame fragmented options include 'yes',
	'no', and 'any'.
	Sport Source TCP/UDP Port: (0-65535) or Any, specific
	value or port range applicable for IP protocol UDP/TCP
	Dport Destination TCP/UDP Port: (0-65535) or Any, specific
	value or port range applicable for IP protocol UDP/TCP
IPv6	Protocol IP protocol number: (0-255, TCP or UDP) or Any
	Source IP IPv6 source address: (a.b.c.d) or Any, 32 LS bits
	DSCP (Differentiated Code Point): can be a specific value, a
	range, or Any. DSCP values are in the range 0-63 including
	BE, CS1-CS7, EF or AF11-AF43.
	Sport Source TCP/UDP port: (0-65535) or Any, specific
	value or port range applicable for IP protocol UDP/TCP
	Dport Destination TCP/UDP port: (0-65535) or Any, specific
	value or port range applicable for IP protocol UDP/TCP
Action Parameters	Class QoS class: (0-7) or Default
	Valid Drop Precedence Level value can be (0-1) or Default .
	Valid DSCP value can be (0-63, BE, CS1-CS7, EF or
	AF11-AF43) or Default .
	Default means that the default classified value is not
	modified by this QCE.

5.6.14 QoS Counters

This page provides the statistics of individual queues for all switch ports.

G	Queuing Counters																
A	Auto-refresh Refresh Clear																
	Dowl	Qt)	Q	1	Q	2	Q	3	Q	4	Q	5	Q	6	(Q 7
ľ	Port	Rx	Tx	Rx	Tx	Rx	Tx	Rx	Tx	Rx	Tx	Rx	Tx	Rx	Tx	Rx	Tx
Г	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7	586	0	0	0	0	0	0	0	0	0	0	0	0	0	0	493
	8	1307	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2326
	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Label	Description
Port	The switch port number to which the following settings will be applied.
Qn	There are 8 QoS queues per port. Q0 is the lowest priority
Rx / Tx	The number of received and transmitted packets per queue

5.6.15 **QCL Status**

This page shows the QCL status by different QCL users. Each row describes the QCE that is defined. It is a conflict if a specific QCE is not applied to the hardware due to hardware limitations. The maximum number of QCEs is 256 on each switch.

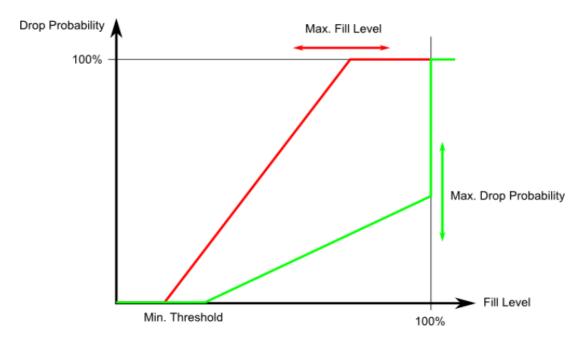
Label	Description					
User	Indicates the QCL user					
QCE#	Indicates the index of QCE					
	Indicates the type of frame to look for incoming frames. Possible					
	frame types are:					
From a Tyma	Any: the QCE will match all frame type.					
Frame Type	Ethernet: Only Ethernet frames (with Ether Type 0x600-0xFFFF) are					
	allowed.					
	LLC: Only (LLC) frames are allowed.					

SNAP: Only (SNAP) frames are allowed.			
IPv4: the QCE will match only IPV4 frames.			
IPv6: the QCE will match only IPV6 frames.			
Indicates the list of ports configured with the QCE.			
Indicates the classification action taken on ingress frame if			
parameters configured are matched with the frame's content.			
There are three action fields: Class, DPL, and DSCP.			
Class: Classified QoS; if a frame matches the QCE, it will be put in			
the queue.			
DPL : Drop Precedence Level; if a frame matches the QCE, then DP			
level will set to a value displayed under DPL column.			
DSCP : if a frame matches the QCE, then DSCP will be classified with			
the value displayed under DSCP column.			
Displays the conflict status of QCL entries. As hardware resources			
are shared by multiple applications, resources required to add a QCE			
may not be available. In that case, it shows conflict status as Yes,			
otherwise it is always No . Please note that conflict can be resolved			
by releasing the hardware resources required to add the QCL entry			
by pressing Resolve Conflict button.			

5.6.16 WRED

This page allows you to configure the Random Early Detection (RED) settings.

Through different RED configuration for the queues (QoS classes) it is possible to obtain Weighted Random Early Detection (WRED) operation between queues.


The settings are global for all ports in the switch.

Weighted Random Early Detection Configuration

Group	Queue	DPL	Enable	Min	Max	Max Unit
1	0	1		0	50	Drop Probability ▼
1	0	2		0	50	Drop Probability ▼
1	0	3		0	50	Drop Probability ▼
1	1	1		0	50	Drop Probability ▼
1	1	2		0	50	Drop Probability ▼
1	1	3		0	50	Drop Probability ▼
1	2	1		0	50	Drop Probability ▼
1	2	2		0	50	Drop Probability ▼
1	2	3		0	50	Drop Probability ▼
1	3	1		0	50	Drop Probability ▼

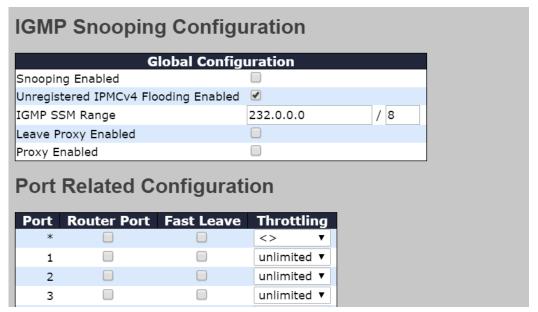
Label	Description
Group	The WRED group number for which the configuration below applies.
Oueve	The queue number (QoS class) for which the configuration below
Queue	applies.
DPL	The Drop Precedence Level for which the configuration below
DPL	applies.
Enable	Controls whether RED is enabled for this entry.
	Controls the lower RED fill level threshold. If the queue filling level is
Min	below this threshold, the drop probability is zero. This value is
	restricted to 0-100%.
	Controls the upper RED drop probability or fill level threshold for
Max	frames marked with Drop Precedence Level > 0 (yellow frames). This
	value is restricted to 1-100%.
	Selects the unit for Max. Possible values are:
	Drop Probability: Max controls the drop probability just below 100%
Max Unit	fill level.
	Fill Level: Max controls the fill level where drop probability reaches
	100%.

RED Drop Probability Function

Min is the fill level where the queue randomly start dropping frames marked with Drop Precedence Level > 0 (yellow frames).

If Max Unit is 'Drop Probability' (the green line), Max controls the drop probability when the fill level is just below 100%.

If Max Unit is 'Fill Level' (the red line), Max controls the fill level where drop probability reaches 100%. This configuration makes it possible to reserve a portion of the queue exclusively for frames marked with Drop Precedence Level 0 (green frames). The reserved portion is calculated as (100 - Max) %.


Frames marked with Drop Precedence Level 0 (green frames) are never dropped.

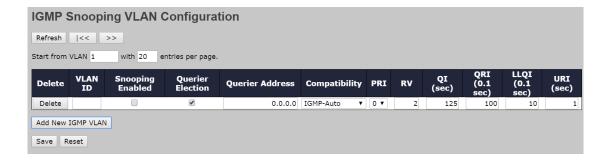
The drop probability for frames increases linearly from zero (at Min average queue filling level) to Max Drop Probability or Fill Level.

6.7 Multicast

5.7.1 IGMP Snooping

This page provides IGMP Snooping related configurations.

Label	Description
Snooping Enabled	Check to enable global IGMP snooping
I love gioteve d	Enable unregistered IPMCv4 traffic flooding.
Unregistered	The flooding control takes effect only when IGMP Snooping is enabled.
IPMCv4Flooding enabled	When IGMP Snooping is disabled, unregistered IPMCv4 traffic flooding is
enabled	always active in spite of this setting.
	SSM (Source-Specific Multicast) Range allows the SSM-aware hosts and
ICMP SSM Pango	routers run the SSM service model for the groups in the address range.
IGMP SSM Range	Assign valid IPv4 multicast address as prefix with a prefix length (from 4 to
	32) for the range.
Leaver Proxy	Enable IGMP Leave Proxy. This feature can be used to avoid forwarding
Enabled	unnecessary leave messages to the router side.
Broyy Enghlo	Enable IGMP Proxy. This feature can be used to avoid forwarding
Proxy Enable	unnecessary join and leave messages to the router side.
	Specifies which ports act as router ports. A router port is a port on the
	Ethernet switch that leads towards the Layer 3 multicast device or
Router Port	IGMP querier.
	If an aggregation member port is selected as a router port, the whole
	aggregation will act as a router port.
Fast Leave	Check to enable fast leave on the port


Throttling	Enable to limit the number of multicast groups to which a switch port can
	belong.

VLAN Configurations of IGMP Snooping

Each page shows up to 99 entries from the VLAN table, with a default value of 20, selected by the **Entries Per Page** input field. When first visited, the web page will show the first 20 entries from the beginning of the VLAN Table. The first displayed will be the one with the lowest VLAN ID found in the VLAN Table.

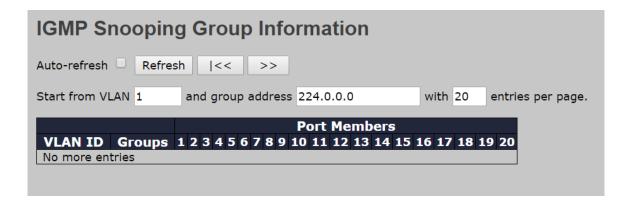
The **VLAN** input field allows the user to select the starting point in the VLAN Table. Clicking the **Refresh** button will update the displayed table starting from that or the next closest VLAN Table match.

The >> will use the last entry of the currently displayed entry as a basis for the next lookup. When the end is reached, the text **No more entries** is shown in the displayed table. Use the |<< button to start over.

Label	Description
Delete	Check to delete the entry. The designated entry will be deleted during
Delete	the next save.
VLAN ID	The VLAN ID of the entry
IGMP Snooping	Check to enable IGMP snooping for individual VLAN. Up to 32
Enable	VLANs can be selected.
Querier Election	Enable to join IGMP Querier election in the VLAN. Disable to act as
Querier Election	an IGMP Non-Querier.
	Define the IPv4 address as source address used in IP header for
	IGMP Querier election.
Querier Address	When the Querier address is not set, system uses IPv4 management
Querier Address	address of the IP interface associated with this VLAN.
	When the IPv4 management address is not set, system uses the first
	available IPv4 management address.

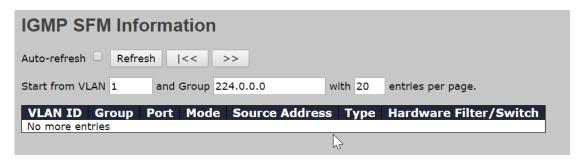
	Compatibility is maintained by hosts and routers taking appropriate
Compatibility	actions depending on the versions of IGMP operating on hosts and
	routers within a network.
Companionity	The allowed selection is IGMP-Auto, Forced IGMPv1,Forced
	IGMPv2, Forced IGMPv3, default compatibility value is IGMP-Auto.
	Priority of Interface.
	It indicates the IGMP control frame priority level generated by the
	system. These values can be used to prioritize different classes of
PRI	traffic.
	The allowed range is 0 (best effort) to 7 (highest), default interface
	priority value is 0.
	Robustness Variable.
	The Robustness Variable allows tuning for the expected packet loss
RV	on a network.
	The allowed range is 1 to 255 , default robustness variable value is 2.
	Query Interval.
	The Query Interval is the interval between General Queries sent by
QI	the Querier.
	The allowed range is 1 to 31744 seconds, default query interval is
	125 seconds.
	Query Response Interval.
	The Maximum Response Delay used to calculate the Maximum
QRI	Response Code inserted into the periodic General Queries.
	The allowed range is 0 to 31744 in tenths of seconds, default query
	response interval is 100 in tenths of seconds (10 seconds).
	Last Member Query Interval.
	The Last Member Query Time is the time value represented by the
LLQI(LMQI for	Last Member Query Interval, multiplied by the Last Member Query
IGMP)	Count.
	The allowed range is 0 to 31744 in tenths of seconds, default last
	member query interval is 10 in tenths of seconds (1 second).
	Unsolicited Report Interval. The Unsolicited Report Interval is the
	time between repetitions of a host's initial report of membership in a
URI	group.
	The allowed range is 0 to 31744 seconds, default unsolicited report

IGMP Snooping Status


This page provides IGMP snooping status.

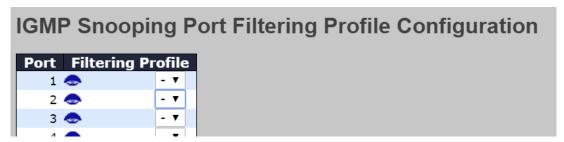
Label	Description
VLAN ID	The VLAN ID of the entry
Querier Version	Active Querier version
Host Version	Active Host version
Querier Status	Shows the Querier status as ACTIVE or IDLE
Querier Receive	The number of transmitted Querier
V1 Reports Receive	The number of received V1 reports
V2 Reports Receive	The number of received V2 reports
V3 Reports Receive	The number of received V3 reports
V2 Leave Receive	The number of received V2 leave packets
Refresh	Click to refresh the page immediately
Clear	Clear all statistics counters
Auto-refresh	Check to enable an automatic refresh of the page at regular
	intervals
Port	Switch port number
Status	Indicates whether a specific port is a router port or not

Groups Information of IGMP Snooping


Entries in the **IGMP Group Table** are shown on this page. The **IGMP Group Table** is sorted first by VLAN ID, and then by group.

Label	Description	
VLAN ID	The VLAN ID of the group	
Groups	The group address of the group displayed	
Port Members	Ports under this group	

IPv4 SFM Information


Entries in the <u>IGMP</u> SFM Information Table are shown on this page. The IGMP SFM (Source-Filtered Multicast) Information Table also contains the SSM (Source-Specific Multicast) information. This table is sorted first by <u>VLAN ID</u>, then by group, and then by Port. Different source addresses belong to the same group are treated as single entry.

Label	Description	
VLAN ID	The VLAN ID of the group	
Groups	The group address of the group displayed	
Port	Switch port number.	
Mode	Indicates the filtering mode maintained per (VLAN ID, port number,	
	Group Address) basis. It can be either Include or Exclude.	
	IP Address of the source.	
Source Address	Currently, the maximum number of IPv4 source address for filtering	
	(per group) is 8.	
	When there is no any source filtering address, the text "None" is	

	shown in the Source Address field.	
Туре	Indicates the Type. It can be either Allow or Deny.	
Hardware Filter /	Indicates whether data plane destined to the specific group address	
Switch	from the source IPv4 address could be handled by chip or not.	

Port Group Filtering

Label	Description	
Port	The logical port for the settings.	
	Select the IPMC Profile as the filtering condition for the specific port.	
Filtering Profile	Summary about the designated profile will be shown by clicking the	
	view button.	
Profile	You can inspect the rules of the designated profile by using the	
Management	following button:	
Button	. List the rules associated with the designated profile.	

6.8 Security

6.8.1 Device Binding

This page provides device binding configurations. Device binding is a powerful way to monitor devices and network security.

Label	Description	
	Indicates the device binding operation for each port. Possible modes	
	are:	
	: disable	
Mode	Scan: scans IP/MAC automatically, but no binding function	
	Binding: enables binding. Under this mode, any IP/MAC that does	
	not match the entry will not be allowed to access the network.	
	Shutdown: shuts down the port (No Link)	
Alive Check	Check to enable alive check. When enabled, switch will ping the	
Active	device continually.	
	Indicates alive check status. Possible statuses are:	
	: disable	
Alive Check	Got Reply: receive ping reply from device, meaning the device is still	
Status	alive	
	Lost Reply: not receiving ping reply from device, meaning the device	
	might have been dead.	
Stream Check	Check to enable stream check. When enabled, the switch will detect	
Active	the stream change (getting low) from the device.	
	Indicates stream check status. Possible statuses are:	
Stream Check	: disable	
Status	Normal: the stream is normal.	
	Low: the stream is getting low.	
DDoS Prevention	Check to enable DDOS prevention. When enabled, the switch will	
Acton	monitor the device against DDOS attacks.	
	Indicates DDOS prevention status. Possible statuses are:	
DDoS Prevention	: disable	
Status	Analyzing: analyzes packet throughput for initialization	
Status	Running: analysis completes and ready for next move	
	Attacked: DDOS attacks occur	
Device IP Address	Specifies IP address of the device	
Device MAC	Specifies MAC address of the device	
Address		

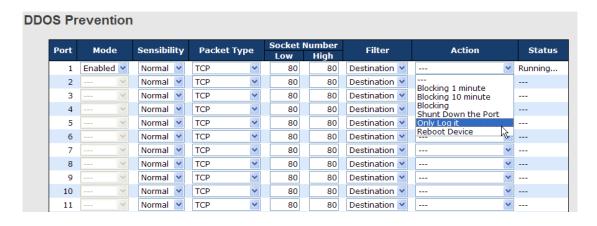
Advanced Configurations Alias IP Address


This page provides Alias IP Address configuration. Some devices might have more than one IP addresses. You could specify the other IP address here.

Alias IP Address		
	Port	Alias IP Address
	1	0.0.0.0
	2	0.0.0.0
	3	0.0.0.0
	4	0.0.0.0
	5	0.0.0.0
	6	0.0.0.0
	7	0.0.0.0

Label	Description
Alias IP Address	Specifies alias IP address. Keep 0.0.0.0 if the device does not have
	an alias IP address.

Alive Check


You can use ping commands to check port link status. If port link fails, you can set actions from the drop-down list.

Label	Description	
Link Change	Disables or enables the port	
Only log it	Simply sends logs to the log server	
Shunt Down the	Disables the next	
Port	Disables the port	
Reboot Device	Disables or enables PoE power	

DDoS Prevention

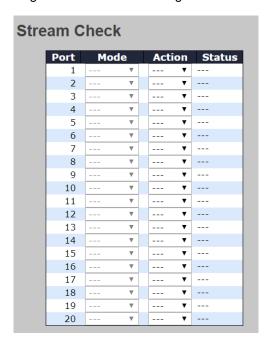
This page provides DDOS Prevention configurations. The switch can monitor ingress packets, and perform actions when DDOS attack occurred on this port. You can configure the setting to achieve maximum protection.

Label	Description	
Mode	Enables or disables DDOS prevention of the port	
	Indicates the level of DDOS detection. Possible levels are:	
	Low: low sensibility	
Sensibility	Normal: normal sensibility	
	Medium: medium sensibility	
	High: high sensibility	
	Indicates the types of DDoS attack packets to be monitored.	
	Possible types are:	
	RX Total: all ingress packets	
Booket Tune	RX Unicast: unicast ingress packets	
Packet Type	RX Multicast: multicast ingress packets	
	RX Broadcast: broadcast ingress packets	
	TCP: TCP ingress packets	
	UDP: UDP ingress packets	
	If packet type is UDP (or TCP), please specify the socket	
Socket Number	number here. The socket number can be a range, from low to	
Socket Number	high. If the socket number is only one, please fill the same	
	number in the low and high fields.	
Filter	If packet type is UDP (or TCP), please choose the socket	
riitei	direction (Destination/Source).	
	Indicates the action to take when DDOS attacks occur.	
	Possible actions are:	
Action	: no action	
Action	Blocking 1 minute: blocks the forwarding for 1 minute and log	
	the event	
	Blocking 10 minute: blocks the forwarding for 10 minutes and	

	-
	log the event
	Blocking: blocks and logs the event
	Shunt Down the Port: shuts down the port (No Link) and logs
	the event
	Only Log it: simply logs the event
	Reboot Device: if PoE is supported, the device can be
	rebooted. The event will be logged.
	Indicates the DDOS prevention status. Possible statuses are:
	: disables DDOS prevention
Status	Analyzing: analyzes packet throughput for initialization
	Running: analysis completes and ready for next move
	Attacked: DDOS attacks occur

Device Description

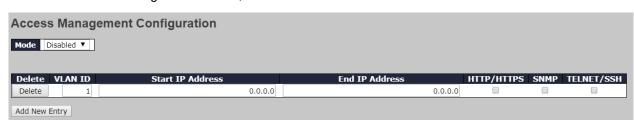
This page allows you to configure device description settings.


Dont	Device			
Port	Туре	Location Address	Description	
1	IP Camera			
2	IP Phone			
3	Access Point			
4	PC v			
5	PLC v			
6	Network Video Recorder 💌			
7	🔻			
8	٧			
9	🔻			
10	🔻			
11	🔻			
12	🗸			

Label	Description	
	Indicates device types. Possible types are: (no specification),	
Туре	IP Camera, IP Phone, Access Point, PC, PLC, and Network	
	Video Recorder	
Location Address	Indicates location information of the device. The information can	
Location Address	be used for Google Mapping.	

Description	Device descriptions
-------------	---------------------

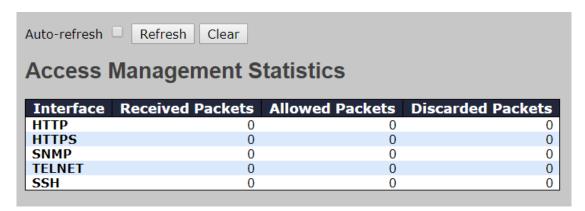
Stream Check


This page allows you to configure stream check settings.

Label	Description
Mode	Enables or disables stream monitoring of the port
	Indicates the action to take when the stream gets low. Possible
Action	actions are:
Action	: no action
	Log it: simply logs the event

6.8.2 Access Management Configuration

You can configure access management table on this page. If the application's type match any one of the access management entries, it will allow access to the switch.



Label	Description

Delete	Check to delete the entry. It will be deleted during the next save.	
VLAN ID	The VLAN ID for the access management entry.	
Start IP Address	The start IP address for the access management entry.	
End IP Address	The end IP address for the access management entry.	
HTTP/HTTPS	The host can access the switch from HTTP/HTTPS interface if the	
пте/птез	host IP address matches the IP address range provided in the entry.	
SNMP	The host can access the switch from SNMP interface if the host IP	
SINIVIP	address matches the IP address range provided in the entry.	
TELNET/SSH	The host can access the switch from TELNET/SSH interface if the	
IELNEI/SSN	host IP address matches the IP address range provided in the entry.	

Statistics


This page provides an overview of access management configurations.

6.8.3 IP Source Guard

IP source guard can prevent traffic attacks if a host tries to use the IP address of its neighbor. You can enable IP source guard when DHCP snooping is enabled on an untrusted interface. With this function enabled, the switch blocks all IP traffic received on the interface except for DHCP packets allowed by DHCP snooping.

Configuration

Label	Description
Mode	Enable or disable this function.
Max Dynamic	Charify the number of clients supported
Clients	Specify the number of clients supported.

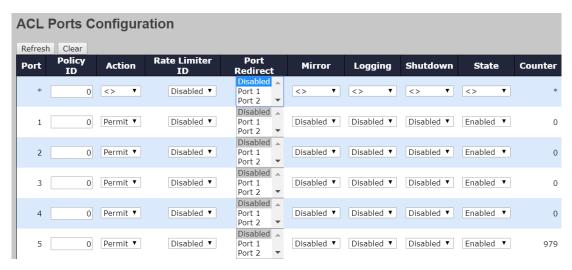
Static Table

Label	Description
Delete	Check to delete the entry. It will be deleted during the next save.
Port	The logical port for the settings.
VLAN ID	The vlan id for the settings.
IP Address	Allowed Source IP address.
MAC Address	Allowed Source MAC address.

Dynamic Table

This page shows entries in the Dynamic IP Source Guard table. The default value is 20.

The Start from port address, VLAN, MAC address, and IP address input fields allow you to select the starting point in the table.



Label	Description
Port	The logical port for the settings.
VLAN ID	The vlan id for the settings.
IP Address	Allowed source IP address.
MAC Address	Allowed source MAC address.

6.8.4 ACL

Ports

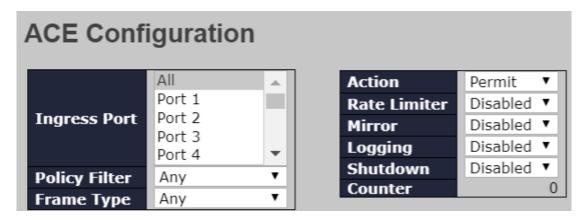
This page allows you to configure the ACL parameters (ACE) of each switch port. These parameters will affect frames received on a port unless the frame matches a specific ACE.

Label	Description
Port	The switch port number to which the following settings will be applied
Policy ID	Select to apply a policy to the port. The allowed values are 1 to 8.
Policy ID	The default value is 1.
Action	Select to Permit to permit or Deny to deny forwarding. The default
Action	value is Permit .

Rate Limiter ID	Select a rate limiter for the port. The allowed values are Disabled or		
	numbers from 1 to 15. The default value is Disabled .		
Port Redirect	Indicates the port redirect operation implemented by the ACE.		
	Frames matching the ACE are redirected to the listed port.		
	Select which port frames are copied to. The allowed values are		
Mirror	Disabled or a specific port number. The default value is Disabled.		
	Specifies the logging operation of the port. The allowed values are:		
	Enabled: frames received on the port are stored in the system log		
Logging	Disabled: frames received on the port are not logged		
	The default value is Disabled . Please note that system log memory		
	capacity and logging rate is limited.		
	Specifies the shutdown operation of this port. The allowed values		
	are:		
Shutdown	Enabled : if a frame is received on the port, the port will be disabled.		
	Disabled: port shut down is disabled.		
	The default value is Disabled .		
Counter	Counts the number of frames that match this ACE.		

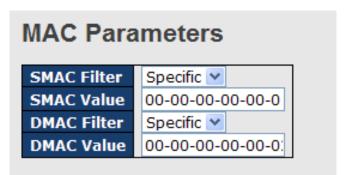
Rate Limiters

This page allows you to configure the rate limiter for the ACL of the switch.

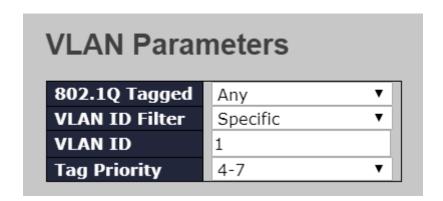

Rate Limiter ID		Rate	U	nit
>	k	10	<>	. 🔻
1	1	10	рр	5 ▼
2	2	10	pp	s ▼
3	3	10	рр	s ▼
2	4	10	pp	s ▼
	5	10	pp	s ▼
(5	10	pp	s ▼
7	7	10	pp	s ▼
{	3	10	pp	s ▼
g	9	10	pp	s ▼
10)	10	pp	s ▼
11	1	10	pp	s ▼
12	2	10	рр	s ▼
13	3	10	рр	s ▼
14	4	10	рр	s ▼
15	5	10	рр	s ▼
16	5	10	pp	s ▼

Label	Description
Rate Limiter ID	The rate limiter ID for the settings contained in the same row.
Rate	The rate unit is packet per second (pps), which can be configured as

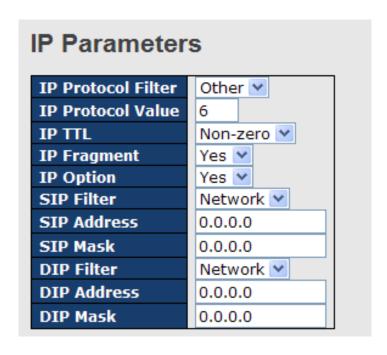
	1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1K, 2K, 4K, 8K, 16K, 32K, 64K,
	128K, 256K, 512K, or 1024K.
	The 1 kpps is actually 1002.1 pps.
Unit	Specify the unit for the rate.


ACL Control List

This page allows you to configure ACE (Access Control Entry). An ACE consists of several parameters. These parameters vary with the frame type you have selected. First select the ingress port for the ACE, and then the frame type. Different parameter options are displayed according to the frame type you have selected. A frame matching the ACE can be configured here.

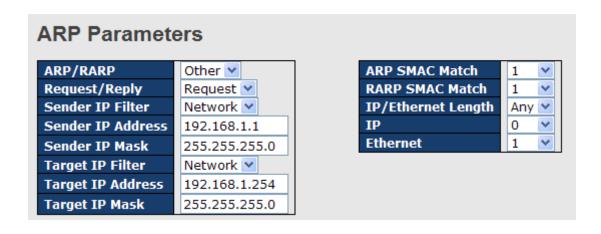

Label	Description
	Indicates the ingress port to which the ACE will apply.
	Any: the ACE applies to any port
Ingrass Part	Port n: the ACE applies to this port number, where n is the number of
Ingress Port	the switch port.
	Policy n: the ACE applies to this policy number, where n can range
	from 1 to 8.
	Indicates the frame type of the ACE. These frame types are mutually
	exclusive.
	Any: any frame can match the ACE.
	Ethernet Type: only Ethernet type frames can match the ACE. The
Frame Type	IEEE 802.3 descripts the value of length/types should be greater
	than or equal to 1536 decimal (equal to 0600 hexadecimal).
	ARP: only ARP frames can match the ACE. Notice the ARP frames
	will not match the ACE with Ethernet type.
	IPv4: only IPv4 frames can match the ACE. Notice the IPv4 frames

	will not match the ACE with Ethernet type.
Action	Specifies the action to take when a frame matches the ACE.
	Permit: takes action when the frame matches the ACE.
	Deny: drops the frame matching the ACE.
Deta Limiter	Specifies the rate limiter in number of base units. The allowed range
Rate Limiter	is 1 to 15. Disabled means the rate limiter operation is disabled.
	Frames matching the ACE are copied to the port number specified
Port Copy	here. The allowed range is the same as the switch port number
	range. Disabled means the port copy operation is disabled.
	Specifies the logging operation of the ACE. The allowed values are:
	Enabled: frames matching the ACE are stored in the system log.
Logging	Disabled: frames matching the ACE are not logged.
	Please note that system log memory capacity and logging rate is
	limited.
	Specifies the shutdown operation of the ACE. The allowed values
	are:
Shutdown	Enabled: if a frame matches the ACE, the ingress port will be
	disabled.
	Disabled: port shutdown is disabled for the ACE.
Counter	Indicates the number of times the ACE matched by a frame.



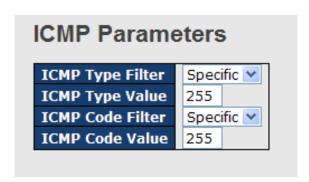
Label	Description
SMAC Filter	(Only displayed when the frame type is Ethernet Type or ARP.)
	Specifies the source MAC filter for the ACE.
	Any: no SMAC filter is specified (SMAC filter status is "don't-care").
	Specific: if you want to filter a specific source MAC address with the
	ACE, choose this value. A field for entering an SMAC value appears.
SMAC Value	When Specific is selected for the SMAC filter, you can enter a
	specific source MAC address. The legal format is

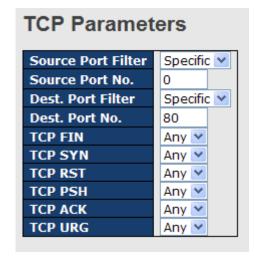
	"xx-xx-xx-xx-xx". Frames matching the ACE will use this SMAC
	value.
	Specifies the destination MAC filter for this ACE
	Any: no DMAC filter is specified (DMAC filter status is "don't-care").
	MC: frame must be multicast.
D14.0 5"	BC: frame must be broadcast.
DMAC Filter	UC: frame must be unicast.
	Specific: If you want to filter a specific destination MAC address with
	the ACE, choose this value. A field for entering a DMAC value
	appears.
DMAC Value	When Specific is selected for the DMAC filter, you can enter a
	specific destination MAC address. The legal format is
	"xx-xx-xx-xx-xx". Frames matching the ACE will use this DMAC
	value.

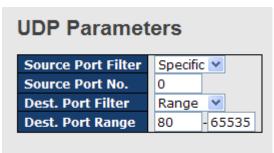


Label	Description
VLAN ID Filter	Specifies the VLAN ID filter for the ACE
	Any: no VLAN ID filter is specified (VLAN ID filter status is
	"don't-care").
	Specific: if you want to filter a specific VLAN ID with the ACE,
	choose this value. A field for entering a VLAN ID number appears.
VLAN ID	When Specific is selected for the VLAN ID filter, you can enter a
	specific VLAN ID number. The allowed range is 1 to 4095. Frames
	matching the ACE will use this VLAN ID value.
Tag Priority	Specifies the tag priority for the ACE. A frame matching the ACE will
	use this tag priority. The allowed number range is 0 to 7. Any means
	that no tag priority is specified (tag priority is "don't-care").

Label	Description
	Specifies the IP protocol filter for the ACE
	Any: no IP protocol filter is specified ("don't-care").
	Specific : if you want to filter a specific IP protocol filter with the ACE,
	choose this value. A field for entering an IP protocol filter appears.
	ICMP: selects ICMP to filter IPv4 ICMP protocol frames. Extra fields
	for defining ICMP parameters will appear. For more details of these
IP Protocol Filter	fields, please refer to the help file.
	UDP : selects UDP to filter IPv4 UDP protocol frames. Extra fields for
	defining UDP parameters will appear. For more details of these fields,
	please refer to the help file.
	TCP: selects TCP to filter IPv4 TCP protocol frames. Extra fields for
	defining TCP parameters will appear. For more details of these fields,
	please refer to the help file.
IP Protocol Value	Specific allows you to enter a specific value. The allowed range is 0
	to 255. Frames matching the ACE will use this IP protocol value.
	Specifies the time-to-live settings for the ACE
	Zero: IPv4 frames with a time-to-live value greater than zero must
ID TTI	not be able to match this entry.
IP TTL	Non-zero: IPv4 frames with a time-to-live field greater than zero
	must be able to match this entry.
	Any: any value is allowed ("don't-care").


IP Fragment	Specifies the fragment offset settings for the ACE. This includes
	settings of More Fragments (MF) bit and Fragment Offset (FRAG
	OFFSET) for an IPv4 frame.
	No : IPv4 frames whose MF bit is set or the FRAG OFFSET field is
	greater than zero must not be able to match this entry.
	Yes: IPv4 frames whose MF bit is set or the FRAG OFFSET field is
	greater than zero must be able to match this entry.
	Any: any value is allowed ("don't-care").
	Specifies the options flag settings for the ACE
	No : IPv4 frames whose options flag is set must not be able to match
ID Ontion	this entry.
IP Option	Yes: IPv4 frames whose options flag is set must be able to match this
	entry.
	Any: any value is allowed ("don't-care").
	Specifies the source IP filter for this ACE
	Any: no source IP filter is specified (Source IP filter is "don't-care").
	Host : source IP filter is set to Host . Specify the source IP address in
SIP Filter	the SIP Address field that appears.
	Network: source IP filter is set to Network. Specify the source IP
	address and source IP mask in the SIP Address and SIP Mask fields
	that appear.
	When Host or Network is selected for the source IP filter, you can
SIP Address	enter a specific SIP address in dotted decimal notation.
	When Network is selected for the source IP filter, you can enter a
SIP Mask	specific SIP mask in dotted decimal notation.
	Specifies the destination IP filter for the ACE
	Any: no destination IP filter is specified (destination IP filter is
	"don't-care").
	Host : destination IP filter is set to Host . Specify the destination IP
DIP Filter	address in the DIP Address field that appears.
	Network: destination IP filter is set to Network. Specify the
	destination IP address and destination IP mask in the DIP Address
	and DIP Mask fields that appear.
	When Host or Network is selected for the destination IP filter, you
DIP Address	can enter a specific DIP address in dotted decimal notation.
	When Network is selected for the destination IP filter, you can enter
DIP Mask	a specific DIP mask in dotted decimal notation.
	S. Specimo D. Maskin action dominal notation

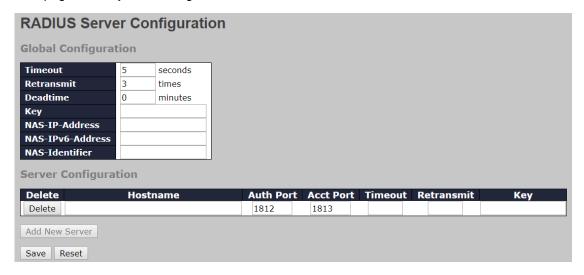

Label	Description
	Specifies the available ARP/RARP opcode (OP) flag for the
	ACE
ADD/DADD	Any: no ARP/RARP OP flag is specified (OP is "don't-care").
ARP/RARP	ARP: frame must have ARP/RARP opcode set to ARP
	RARP: frame must have ARP/RARP opcode set to RARP.
	Other: frame has unknown ARP/RARP Opcode flag.
	Specifies the available ARP/RARP opcode (OP) flag for the
	ACE
Dogueet/Deply	Any: no ARP/RARP OP flag is specified (OP is "don't-care").
Request/Reply	Request: frame must have ARP Request or RARP Request
	OP flag set.
	Reply: frame must have ARP Reply or RARP Reply OP flag.
	Specifies the sender IP filter for the ACE
	Any: no sender IP filter is specified (sender IP filter is
	"don't-care").
Sender IP Filter	Host: sender IP filter is set to Host. Specify the sender IP
Sender in Filter	address in the SIP Address field that appears.
	Network: sender IP filter is set to Network. Specify the sender
	IP address and sender IP mask in the SIP Address and SIP
	Mask fields that appear.
	When Host or Network is selected for the sender IP filter, you
Sender IP Address	can enter a specific sender IP address in dotted decimal
	notation.
Sender IP Mask	When Network is selected for the sender IP filter, you can
Schuel It Wask	enter a specific sender IP mask in dotted decimal notation.
Target IP Filter	Specifies the target IP filter for the specific ACE


	Any no torget ID filter is enceified /terget ID filter is
	Any: no target IP filter is specified (target IP filter is "don't-care").
	Host: target IP filter is set to Host. Specify the target IP
	address in the Target IP Address field that appears.
	Network: target IP filter is set to Network. Specify the target IP
	address and target IP mask in the Target IP Address and
	Target IP Mask fields that appear.
	When Host or Network is selected for the target IP filter, you
Target IP Address	can enter a specific target IP address in dotted decimal
	notation.
Target IP Mask	When Network is selected for the target IP filter, you can enter
Target II IIIaan	a specific target IP mask in dotted decimal notation.
	Specifies whether frames will meet the action according to
	their sender hardware address field (SHA) settings.
ARP SMAC Match	0: ARP frames where SHA is not equal to the SMAC address
	1: ARP frames where SHA is equal to the SMAC address
	Any: any value is allowed ("don't-care").
	Specifies whether frames will meet the action according to
	their target hardware address field (THA) settings.
RARP SMAC Match	0: RARP frames where THA is not equal to the SMAC address
	1: RARP frames where THA is equal to the SMAC address
	Any: any value is allowed ("don't-care")
	Specifies whether frames will meet the action according to
	their ARP/RARP hardware address length (HLN) and protocol
	address length (PLN) settings.
	0: ARP/RARP frames where the HLN is equal to Ethernet
	(0x06) and the (PLN) is equal to IPv4 (0x04) must not match
IP/Ethernet Length	this entry.
	1: ARP/RARP frames where the HLN is equal to Ethernet
	(0x06) and the (PLN) is equal to IPv4 (0x04) must match this
	entry.
	Any: any value is allowed ("don't-care").
	Specifies whether frames will meet the action according to
	their ARP/RARP hardware address space (HRD) settings.
IP	0 : ARP/RARP frames where the HLD is equal to Ethernet (1)
	must not match this entry.
	1: ARP/RARP frames where the HLD is equal to Ethernet (1)

	must match this entry.
	Any: any value is allowed ("don't-care").
	Specifies whether frames will meet the action according to
	their ARP/RARP protocol address space (PRO) settings.
	0: ARP/RARP frames where the PRO is equal to IP (0x800)
Ethernet	must not match this entry.
	1: ARP/RARP frames where the PRO is equal to IP (0x800)
	must match this entry.
	Any: any value is allowed ("don't-care").

Label	Description		
	Specifies the ICMP filter for the ACE		
	Any: no ICMP filter is specified (ICMP filter status is		
ICMP Type Filter	"don't-care").		
ICMIP Type Filter	Specific: if you want to filter a specific ICMP filter with the		
	ACE, you can enter a specific ICMP value. A field for entering		
	an ICMP value appears.		
	When Specific is selected for the ICMP filter, you can enter a		
ICMP Type Value	specific ICMP value. The allowed range is 0 to 255. A frame		
	matching the ACE will use this ICMP value.		
	Specifies the ICMP code filter for the ACE		
	Any: no ICMP code filter is specified (ICMP code filter status is		
ICMP Code Filter	"don't-care").		
ICMP Code Filler	Specific: if you want to filter a specific ICMP code filter with		
	the ACE, you can enter a specific ICMP code value. A field for		
	entering an ICMP code value appears.		
	When Specific is selected for the ICMP code filter, you can		
ICMP Code Value	enter a specific ICMP code value. The allowed range is 0 to		
	255. A frame matching the ACE will use this ICMP code value.		

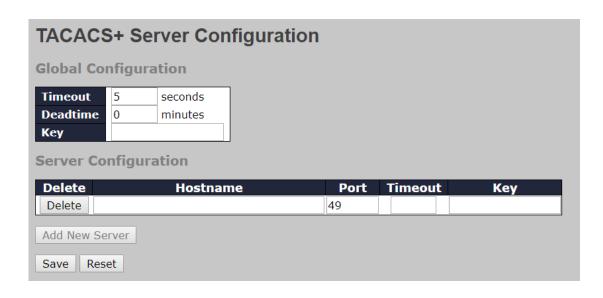
Label	Description		
	Specifies the TCP/UDP source filter for the ACE		
	Any: no TCP/UDP source filter is specified (TCP/UDP source filter		
	status is "don't-care").		
TCD/UDD Course	Specific : if you want to filter a specific TCP/UDP source filter with the		
TCP/UDP Source Filter	ACE, you can enter a specific TCP/UDP source value. A field for		
riiter	entering a TCP/UDP source value appears.		
	Range: if you want to filter a specific TCP/UDP source range filter		
	with the ACE, you can enter a specific TCP/UDP source range. A		
	field for entering a TCP/UDP source value appears.		
	When Specific is selected for the TCP/UDP source filter, you can		
TCP/UDP Source	enter a specific TCP/UDP source value. The allowed range is 0 to		
No.	65535. A frame matching the ACE will use this TCP/UDP source		
	value.		
	When Range is selected for the TCP/UDP source filter, you can enter		
TCP/UDP Source	a specific TCP/UDP source range value. The allowed range is 0 to		
Range	65535. A frame matching the ACE will use this TCP/UDP source		
	value.		
	Specifies the TCP/UDP destination filter for the ACE		
	Any: no TCP/UDP destination filter is specified (TCP/UDP		
TCP/UDP	destination filter status is "don't-care").		
Destination Filter	Specific: if you want to filter a specific TCP/UDP destination filter		
Destination i liter	with the ACE, you can enter a specific TCP/UDP destination value. A		
	field for entering a TCP/UDP destination value appears.		
	Range: if you want to filter a specific range TCP/UDP destination		


	filter with the ACE, you can enter a specific TCP/UDP destination
	range. A field for entering a TCP/UDP destination value appears.
	When Specific is selected for the TCP/UDP destination filter, you
TCP/UDP	can enter a specific TCP/UDP destination value. The allowed range
Destination	
Number	is 0 to 65535. A frame matching the ACE will use this TCP/UDP
	destination value.
TOP/UPP	When Range is selected for the TCP/UDP destination filter, you can
TCP/UDP	enter a specific TCP/UDP destination range value. The allowed
Destination Range	range is 0 to 65535. A frame matching the ACE will use this
	TCP/UDP destination value.
	Specifies the TCP FIN ("no more data from sender") value for the
	ACE.
	0 : TCP frames where the FIN field is set must not be able to match
TCP FIN	this entry.
	1: TCP frames where the FIN field is set must be able to match this
	entry.
	Any: any value is allowed ("don't-care").
	Specifies the TCP SYN ("synchronize sequence numbers") value for
	the ACE
	0 : TCP frames where the SYN field is set must not be able to match
TCP SYN	this entry.
	1: TCP frames where the SYN field is set must be able to match this
	entry.
	Any: any value is allowed ("don't-care").
	Specifies the TCP PSH ("push function") value for the ACE
	0 : TCP frames where the PSH field is set must not be able to match
TCP PSH	this entry.
TOFFSII	1: TCP frames where the PSH field is set must be able to match this
	entry.
	Any: any value is allowed ("don't-care").
	Specifies the TCP ACK ("acknowledgment field significant") value for
	the ACE
	0 : TCP frames where the ACK field is set must not be able to match
TCP ACK	this entry.
	1: TCP frames where the ACK field is set must be able to match this
	entry.
	Any: any value is allowed ("don't-care").
	1

	Specifies the TCP URG ("urgent pointer field significant") value for
	the ACE
0: TCP frames where the URG field is set must not be a	
TCP URG	this entry.
	1: TCP frames where the URG field is set must be able to match this
	entry.
	Any: any value is allowed ("don't-care").

6.8.5 AAA

Common Server Configurations


This page allows you to configure authentication servers.

Label	Description		
	The timeout, which can be set to a number between 3 and 3600		
	seconds, is the maximum time to wait for a reply from a server.		
	If the server does not reply within this time frame, we will		
	consider it to be dead and continue with the next enabled server		
	(if any).		
Timeout	RADIUS servers are using the UDP protocol, which is unreliable		
	by design. In order to cope with lost frames, the timeout interval		
	is divided into 3 subintervals of equal length. If a reply is not		
	received within the subinterval, the request is transmitted again.		
	This algorithm causes the RADIUS server to be queried up to 3		
	times before it is considered to be dead.		
Detronomit	The number of times the switch tries to connect to a RADIUS		
Retransmit	server.		

r			
	The dead time, which can be set to a number between 0 and		
	3600 seconds, is the period during which the switch will not		
	send new requests to a server that has failed to respond to a		
Dead Time	previous request. This will stop the switch from continually trying		
Dead Time	to contact a server that it has already determined as dead.		
	Setting the dead time to a value greater than 0 (zero) will enable		
	this feature, but only if more than one server has been		
	configured.		
	Indicates the identifying IP Address of the NAS which is		
NAS-IP-Address	requesting authentication of the user, and SHOULD be unique		
	to the NAS within the scope of the RADIUS server.		
	Network Access Server identifier (NAS-ID) for the interface. The		
	NAS-ID is sent to the RADIUS server by the controller (as a		
NAS-ID	RADIUS client) using the authentication request, which is used		
	to classify users to different groups. You can enter up to 32		
	alphanumeric characters.		
Delete	Click to delete an entry from the table.		
	Specifies the host name of the RADIUS server. The		
Hostname	maximum supported length for the AAA RADIUS hostname is		
	40 characters.		
	The authentication port which specifies the UDP port used to		
Auth Port	connect the RADIUS server for authentication. The default is		
	1812.		
	The UDP port to use on the RADIUS accounting server. If the		
Acct Port	port is set to 0 (zero), the default port (1813) is used on the		
	RADIUS accounting server.		
Var	The shared secret between the switch and the RADIUS		
Key	server.		
Timeout	The time to wait for the RADIUS server to respond.		
B.4	The number of times the switch tries to connect to a RADIUS		
Retransmit	server.		
l .			

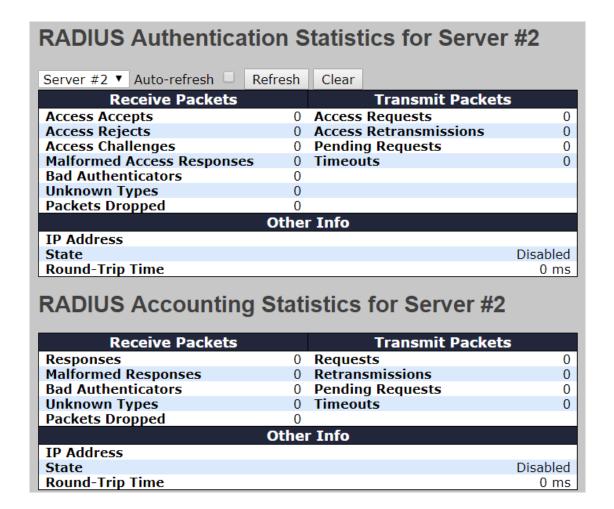
6.8.6 TACACS+

Label	Description		
	The timeout, which can be set to a number between 3 and 3600		
	seconds, is the maximum time to wait for a reply from a server.		
	If the server does not reply within this time frame, we will		
	consider it to be dead and continue with the next enabled server		
	(if any).		
Timeout	TACACS+ servers are using the UDP protocol, which is		
	unreliable by design. In order to cope with lost frames, the		
	timeout interval is divided into 3 subintervals of equal length. If a		
	reply is not received within the subinterval, the request is		
	transmitted again. This algorithm causes the RADIUS server to		
	be queried up to 3 times before it is considered to be dead.		
	The dead time, which can be set to a number between 0 and		
	3600 seconds, is the period during which the switch will not		
	send new requests to a server that has failed to respond to a		
Dead Time	previous request. This will stop the switch from continually trying		
Dead Time	to contact a server that it has already determined as dead.		
	Setting the dead time to a value greater than 0 (zero) will enable		
	this feature, but only if more than one server has been		
	configured.		
Kov	The shared secret between the switch and the TACACS+		
Key	server.		
	Specifies the host name of the TACACS+ server. The		
Hostname	maximum supported length for the AAA RADIUS hostname is		
	40 characters.		

Timeout	The time to wait for the TACACS+ server to respond.			
Kov	The shared secret between the switch and the TACACS+			
Key	server.			

6.8.7 RADIUS

Authentication and Accounting Server Configurations


This page provides an overview of the status of the RADIUS servers configurable on the authentication configuration page.

RADIUS Server Status Overview					
Auto-ref	resh Refres	h			
# 1	IP Address	Authentication Port	Authentication Status	Accounting Port	Accounting Status
1			Disabled		Disabled
2			Disabled		Disabled
3			Disabled		Disabled
4			Disabled		Disabled
5			Disabled		Disabled

Label	Description		
#	The RADIUS server number. Click to navigate to detailed statistics of		
#	the server		
IP Address	The IP address and UDP port number (in <ip address="">:<udp port=""></udp></ip>		
IF Address	notation) of the server		
	The current status of the server. This field has one of the following		
	values:		
	Disabled: the server is disabled.		
	Not Ready: the server is enabled, but IP communication is not yet up		
	and running.		
	Ready: the server is enabled, IP communications are built, and the		
Status	RADIUS module is ready to accept access attempts.		
	Dead (X seconds left): access attempts are made to this server, but it		
	does not reply within the configured timeout. The server has		
	temporarily been disabled, but will be re-enabled when the dead-time		
	expires. The number of seconds left before this occurs is displayed in		
	parentheses. This state is only reachable when more than one server		
	is enabled.		

RADIUS Details

This page shows the access statistics of the authentication and accounting servers. Use the server drop-down list to switch between the backend servers to show related details.

6.8.8 NAS (802.1x)

This page allows you to configure the IEEE 802.1X and MAC-based authentication system and port settings.

The IEEE 802.1X standard defines a port-based access control procedure that prevents unauthorized access to a network by requiring users to first submit credentials for authentication. One or more central servers (the backend servers) determine whether the user is allowed access to the network. These backend (RADIUS) servers are configured on the authentication configuration page.

MAC-based authentication allows for authentication of more than one user on the same port, and does not require the users to have special 802.1X software installed on their system. The switch uses the users' MAC addresses to authenticate against the backend server. As intruders can create counterfeit MAC addresses, MAC-based authentication is less secure than 802.1X authentication.

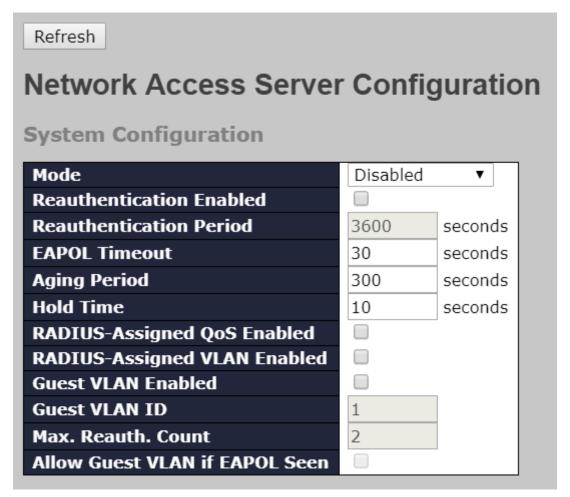
Overview of 802.1X (Port-Based) Authentication

In an 802.1X network environment, the user is called the supplicant, the switch is the authenticator, and the RADIUS server is the authentication server. The switch acts as the man-in-the-middle, forwarding requests and responses between the supplicant and the authentication server. Frames sent between the supplicant and the switch are special 802.1X frames, known as EAPOL (EAP Over LANs) frames which encapsulate EAP PDUs (RFC3748). Frames sent between the switch and the RADIUS server are RADIUS packets. RADIUS packets also encapsulate EAP PDUs together with other attributes like the switch's IP address, name, and the supplicant's port number on the switch. EAP is very flexible as it allows for different authentication methods, like MD5-Challenge, PEAP, and TLS. The important thing is that the authenticator (the switch) does not need to know which authentication method the supplicant and the authentication server are using, or how many information exchange frames are needed for a particular method. The switch simply encapsulates the EAP part of the frame into the relevant type (EAPOL or RADIUS) and forwards it.

When authentication is complete, the RADIUS server sends a special packet containing a success or failure indication. Besides forwarding the result to the supplicant, the switch uses it to open up or block traffic on the switch port connected to the supplicant.

Note: in an environment where two backend servers are enabled, the server timeout is configured to X seconds (using the authentication configuration page), and the first server in the list is currently down (but not considered dead), if the supplicant retransmits EAPOL Start frames at a rate faster than X seconds, it will never be authenticated because the switch will cancel on-going backend authentication server requests whenever it receives a new EAPOL Start frame from the supplicant. Since the server has not failed (because the X seconds have not expired), the same server will be contacted when the next backend authentication server request from the switch. This scenario will loop forever. Therefore, the server timeout should be smaller than the supplicant's EAPOL Start frame retransmission rate.

Overview of MAC-Based Authentication


Unlike 802.1X, MAC-based authentication is not a standard, but merely a best-practices method adopted by the industry. In MAC-based authentication, users are called clients, and the switch acts as the supplicant on behalf of clients. The initial frame (any kind of frame) sent by a client is snooped by the switch, which in turn uses the client's MAC address as both username and password in the subsequent EAP exchange with the RADIUS server. The 6-byte MAC address is converted to a string in the following form "xx-xx-xx-xx-xx-xx-xx", that is, a dash (-) is used as separator between the lower-cased hexadecimal digits. The switch only supports the MD5-Challenge authentication method, so the RADIUS server must be

configured accordingly.

When authentication is complete, the RADIUS server sends a success or failure indication, which in turn causes the switch to open up or block traffic for that particular client, using static entries into the MAC Table. Only then will frames from the client be forwarded on the switch. There are no EAPOL frames involved in this authentication, and therefore, MAC-based authentication has nothing to do with the 802.1X standard.

The advantage of MAC-based authentication over 802.1X is that several clients can be connected to the same port (e.g. through a 3rd party switch or a hub) and still require individual authentication, and that the clients do npt need special supplicant software to authenticate. The disadvantage is that MAC addresses can be spoofed by malicious users, equipment whose MAC address is a valid RADIUS user can be used by anyone, and only the MD5-Challenge method is supported.

802.1X and MAC-Based authentication configurations consist of two sections: system- and port-wide.

Port C	Configuration					
Port	Admin State	RADIUS- Assigned QoS Enabled	RADIUS- Assigned VLAN Enabled	Guest VLAN Enabled	Port State	Restart
*	Force Authorized ▼					
1	<> Force Authorized				Globally Disabled	Reauthenticate Reinitialize
2	Force Unauthorized Port-based 802.1X				Globally Disabled	Reauthenticate Reinitialize
3	Single 802.1X Multi 802.1X				Globally Disabled	Reauthenticate Reinitialize
4	MAC-based Auth.				Globally Disabled	Reauthenticate Reinitialize
5	Force Authorized ▼				Globally Disabled	Reauthenticate Reinitialize

Label	Description		
	Indicates if 802.1X and MAC-based authentication is globally		
Mode	enabled or disabled on the switch. If globally disabled, all ports		
	are allowed to forward frames.		
	If checked, clients are reauthenticated after the interval specified		
Reauthentication	by the Reauthentication Period. Reauthentication for		
	802.1X-enabled ports can be used to detect if a new device is		
Enabled	plugged into a switch port.		
	For MAC-based ports, reauthentication is only useful if the		

	RADIUS server configuration has changed. It does not involve			
	communication between the switch and the client, and therefore			
	does not imply that a client is still present on a port (see Age			
	Period below).			
	Determines the period, in seconds, after which a connected client			
Reauthentication	must be re-authenticated. This is only active if the			
Period	Reauthentication Enabled checkbox is checked. Valid range of			
	the value is 1 to 3600 seconds.			
	Determines the time for retransmission of Request Identity			
	EAPOL frames.			
EAPOL Timeout	Valid range of the value is 1 to 65535 seconds. This has no effect			
	for MAC-based ports.			
	This setting applies to the following modes, i.e. modes using the			
	Port Security functionality to secure MAC addresses:			
	MAC-Based Auth.:			
	When the NAS module uses the Port Security module to secure			
	MAC addresses, the Port Security module needs to check for			
	activity on the MAC address in question at regular intervals and			
Age Period	free resources if no activity is seen within a given period of time.			
	This parameter controls exactly this period and can be set to a			
	number between 10 and 1000000 seconds.			
	For ports in MAC-based Auth. mode, reauthentication does not			
	cause direct communications between the switch and the client,			
	so this will not detect whether the client is still attached or not, and			
	the only way to free any resources is to age the entry.			
	This setting applies to the following modes, i.e. modes using the			
	Port Security functionality to secure MAC addresses:			
	MAC-Based Auth.:			
	If a client is denied access - either because the RADIUS server			
	denies the client access or because the RADIUS server request			
Hold Time	times out (according to the timeout specified on the			
Hold Time	"Configuration→Security→AAA" page) - the client is put on			
	hold in Unauthorized state. The hold timer does not count during			
	an on-going authentication.			
	The switch will ignore new frames coming from the client during			
	the hold time.			
	The hold time can be set to a number between 10 and 1000000			

	seconds.	
Port	The port number for which the configuration below applies	
	If NAS is globally enabled, this selection controls the port's	
	authentication mode. The following modes are available:	
	Force Authorized	
	In this mode, the switch will send one EAPOL Success frame	
	when the port link is up, and any client on the port will be allowed	
	network access without authentication.	
	Force Unauthorized	
	In this mode, the switch will send one EAPOL Failure frame when	
	the port link is up, and any client on the port will be disallowed	
	network access.	
	Port-based 802.1X	
	In an 802.1X network environment, the user is called the	
	supplicant, the switch is the authenticator, and the RADIUS server	
	is the authentication server. The authenticator acts as the	
	man-in-the-middle, forwarding requests and responses between	
	the supplicant and the authentication server. Frames se	
Admin State	between the supplicant and the switch are special 802.1X frames,	
	known as EAPOL (EAP Over LANs) frames which encapsulate	
	EAP PDUs (RFC3748). Frames sent between the switch and the	
	RADIUS server is RADIUS packets. RADIUS packets also	
	encapsulate EAP PDUs together with other attributes like the	
	switch's IP address, name, and the supplicant's port number on	
	the switch. EAP is very flexible as it allows for different	
	authentication methods, like MD5-Challenge, PEAP, and TLS.	
	The important thing is that the authenticator (the switch) does not	
	need to know which authentication method the supplicant and the	
	authentication server are using, or how many information	
	exchange frames are needed for a particular method. The switch	
	simply encapsulates the EAP part of the frame into the relevant	
	type (EAPOL or RADIUS) and forwards it.	
	When authentication is complete, the RADIUS server sends a	
	special packet containing a success or failure indication. Besides	
	forwarding the result to the supplicant, the switch uses it to open	
	up or block traffic on the switch port connected to the supplicant.	

Note: in an environment where two backend servers are enabled, the server timeout is configured to X seconds (using the authentication configuration page), and the first server in the list is currently down (but not considered dead), if the supplicant retransmits EAPOL Start frames at a rate faster than X seconds, it will never be authenticated because the switch will cancel on-going backend authentication server requests whenever it receives a new EAPOL Start frame from the supplicant. Since the server has not failed (because the X seconds have not expired), the same server will be contacted when the next backend authentication server request from the switch This scenario will loop forever. Therefore, the server timeout should be smaller than the supplicant's EAPOL Start frame retransmission rate.

a. Single 802.1X

In port-based 802.1X authentication, once a supplicant is successfully authenticated on a port, the whole port is opened for network traffic. This allows other clients connected to the port (for instance through a hub) to piggy-back on the successfully authenticated client and get network access even though they are not authenticated individually. To overcome this security breach, use the Single 802.1X variant.

Single 802.1X is not yet an IEEE standard, but features many of the same characteristics as port-based 802.1X. In Single 802.1X, at most one supplicant can get authenticated on the port at a time. Normal EAPOL frames are used in the communications between the supplicant and the switch. If more than one supplicant are connected to a port, the one that comes first when the port's link is connected will be the first one considered. If that supplicant does not provide valid credentials within a certain amount of time, the chance will be given to another supplicant. Once a supplicant is successfully authenticated, only that supplicant will be allowed access. This is the most secure of all the supported modes. In this mode, the Port Security module is used to secure a supplicant's MAC address once successfully authenticated.

b. Multi 802.1X

In port-based 802.1X authentication, once a supplicant is successfully authenticated on a port, the whole port is opened for

network traffic. This allows other clients connected to the port (for instance through a hub) to piggy-back on the successfully authenticated client and get network access even though they are not authenticated individually. To overcome this security breach, use the Multi 802.1X variant.

Multi 802.1X is not yet an IEEE standard, but features many of the same characteristics as port-based 802.1X. In Multi 802.1X, one or more supplicants can be authenticated on the same port at the same time. Each supplicant is authenticated individually and secured in the MAC table using the Port Security module.

In Multi 802.1X it is not possible to use the multicast BPDU MAC address as the destination MAC address for EAPOL frames sent from the switch to the supplicant, since that would cause all supplicants attached to the port to reply to requests sent from the switch. Instead, the switch uses the supplicant's MAC address, which is obtained from the first EAPOL Start or EAPOL Response Identity frame sent by the supplicant. An exception to this is when no supplicants are attached. In this case, the switch sends EAPOL Request Identity frames using the BPDU multicast MAC address as destination - to wake up any supplicants that might be on the port.

The maximum number of supplicants that can be attached to a port can be limited using the Port Security Limit Control functionality.

MAC-based Auth.

Unlike port-based 802.1X, MAC-based authentication is not a standard, but merely a best-practices method adopted by the industry. In MAC-based authentication, users are called clients, and the switch acts as the supplicant on behalf of clients. The initial frame (any kind of frame) sent by a client is snooped by the switch, which in turn uses the client's MAC address as both username and password in the subsequent EAP exchange with the RADIUS server. The 6-byte MAC address is converted to a string in the following form "xx-xx-xx-xx-xx", that is, a dash (-) is used as separator between the lower-cased hexadecimal digits. The switch only supports the MD5-Challenge authentication method, so the RADIUS server must be configured accordingly.

When authentication is complete, the RADIUS server sends a success or failure indication, which in turn causes the switch to open up or block traffic for that particular client, using the Port Security module. Only then will frames from the client be forwarded on the switch. There are no EAPOL frames involved in this authentication, and therefore, MAC-based authentication has nothing to do with the 802.1X standard. The advantage of MAC-based authentication over port-based 802.1X is that several clients can be connected to the same port (e.g. through a 3rd party switch or a hub) and still require individual authentication, and that the clients don't need special The advantage of supplicant software to authenticate. MAC-based authentication over 802.1X-based authentication is that the clients do not need special supplicant software to authenticate. The disadvantage is that MAC addresses can be spoofed by malicious users - equipment whose MAC address is a valid RADIUS user can be used by anyone. Also, only the MD5-Challenge method is supported. The maximum number of clients that can be attached to a port can be limited using the Port Security Limit Control functionality. The current state of the port. It can undertake one of the following values: Globally Disabled: NAS is globally disabled. Link Down: NAS is globally enabled, but there is no link on the port. **Authorized**: the port is in Force Authorized or a single-supplicant **Port State** mode and the supplicant is authorized. Unauthorized: the port is in Force Unauthorized or a single-supplicant mode and the supplicant is not successfully authorized by the RADIUS server. X Auth/Y Unauth: the port is in a multi-supplicant mode. Currently X clients are authorized and Y are unauthorized. Two buttons are available for each row. The buttons are only enabled when authentication is globally enabled and the port's Admin State is in an EAPOL-based or MAC-based mode. Restart Clicking these buttons will not cause settings changed on the page to take effect.

Reauthenticate: schedules a reauthentication whenever the
quiet-period of the port runs out (EAPOL-based authentication).
For MAC-based authentication, reauthentication will be attempted
immediately.
The button only has effect on successfully authenticated clients
on the port and will not cause the clients to be temporarily
unauthorized.
Reinitialize: forces a reinitialization of the clients on the port and
hence a reauthentication immediately. The clients will transfer to
the unauthorized state while the reauthentication is in progress.

Switch

This page provides an overview of the current NAS port states.

Netv	Network Access Server Switch Status						
Auto-re	fresh 🗆	Refresh					
Port	Admin	State	Port State	Last Source	Last ID	QoS Class	Port VLAN ID
1	Force Au	thorized	Globally Disabled			-	
2	Force Au	thorized	Globally Disabled			-	
3	Force Au	thorized	Globally Disabled			-	
4	Force Au	thorized	Globally Disabled			-	
5	Force Au	thorized	Globally Disabled			-	

Label	Description			
Port	The switch port number. Click to navigate to detailed 802.1X			
Port	statistics of each port.			
Admin State	The port's current administrative state. Refer to NAS Admin			
Admin State	State for more details regarding each value.			
Port State	The current state of the port. Refer to NAS Port State for more			
Port State	details regarding each value.			
	The source MAC address carried in the most recently received			
Last Source	EAPOL frame for EAPOL-based authentication, and the most			
Last Source	recently received frame from a new client for MAC-based			
	authentication.			
	The user name (supplicant identity) carried in the most recently			
	received Response Identity EAPOL frame for EAPOL-based			
Last ID	authentication, and the source MAC address from the most			
	recently received frame from a new client for MAC-based			
	authentication.			
QoS Class	Shows the level of QoS.			

This page provides detailed IEEE 802.1X statistics for a specific switch port using port-based authentication. For MAC-based ports, only selected backend server (RADIUS Authentication Server) statistics is showed. Use the port drop-down list to select which port details to be displayed.

Label	Description	Description					
Admin State	The port's current administrative state. Refer to NAS Admin State						
	for more details regarding each value.						
Port State	The current state	e of the port. Refer t	to NAS Port State for more				
	details regarding each value.						
			e available for the following				
	administrative sta		o available for the following				
	• Force Autho	rized					
	 Force Unaut 	horized					
	• 802.1X						
		EAPOL Counter					
	Direction Name	IEEE Name	Description				
	Rx Total	dot1xAuthEapolFramesRx	The number of valid EAPOL frames of any type that have been received by the switch.				
EAPOL Counters	Rx Response ID	dot1xAuthEapolRespIdFramesRx	The number of valid EAP Resp/ID frames that have been received by the switch.				
	Rx Responses	dot1xAuthEapolRespFramesRx	The number of valid EAPOL response frames (other than Resp/ID frames) that have been received by the switch.				
	Rx Start	dot1xAuthEapolStartFramesRx	The number of EAPOL Start frames that have been received by the switch.				
	Rx Logoff	dot1xAuthEapolLogoffFramesRx	The number of valid EAPOL logoff frames that have been received by the switch.				
	Rx Invalid Type	dot1xAuthInvalidEapolFramesRx	The number of EAPOL frames that have been received by the switch in which the frame type is not recognized.				
	Rx Invalid Lengt	h dot1xAuthEapLengthErrorFramesF	The number of EAPOL frames that have Rx been received by the switch in which the Packet Body Length field is invalid.				
	Tx Total	dot1xAuthEapolFramesTx	The number of EAPOL frames of any type that have been transmitted by the switch.				
	Tx Request ID	dot1xAuthEapolReqIdFramesTx	The number of EAP initial request frames that have been transmitted by the switch.				
	Tx Requests	dot1xAuthEapolReqFramesTx	The number of valid EAP Request frames (other than initial request frames) that have been transmitted by the switch.				
	T I	(DADIIIO) (. (
Backend Server	inese backend	(KADIUS) frame co	unters are available for the				
Counters	following administrative states:						
Juniora	• 802.1X						

	• MAC-based A		
		Backend Server Counters	
	Direction Name Rx Access Challenges	IEEE Name s dot1xAuthBackendAccessChallenges	Description Port-based: Counts the number of times that the switch receives the first request from the backend server following the first response from the supplicant. Indicates that the backend server has communication with the switch. MAC-based: Counts all Access Challenges received from the backend server for this port (left-most table).
	Rx Other Requests	dot1xAuthBackendOtherRequestsToSupplicant	Port-based: Counts the number of times that the switch sends an EAP Request packet following the first to the supplicant. Indicates that the backend server chose an EAP-method. MAC-based: Not applicable.
	Rx Auth. Successes	dot1xAuthBackendAuthSuccesses	Port- and MAC-based: Counts the number of times that the switch receives a success indication. Indicates that the supplicant/client has successfully authenticated to the backend server.
	Rx Auth. Failures	dot1xAuthBackendAuthFails	Port- and MAC-based: Counts the number of times that the switch receives a failure message. This indicates that the supplicant/client has not authenticated to the backend server.
	Tx Responses	dot1xAuthBackendResponses	Port-based: Counts the number of times that the switch attempts to send a supplicant's first response packet to the backend server. Indicates the switch attempted communication with the backend server. Possible retransmissions are not counted. MAC-based: Counts all the backend server packets sent from the switch towards the backend server for a given port (leftmost table) or client (right-most table). Possible retransmissions are not counted.
	authenticate. This	t the last supplicant/cli s information is availal	·
	administrative stat	.es:	
	• 802.1X • MAC-based A	uth.	
Last		Last Supplicant/Client Info	
Supplicant/Client	MAC	E Name	Description
Info	Address dotixAuthLast		nich the last frame from the last
	Version dot1xAuthLasti	supplicant/client w 802.1X-based: The protocol versic EapolFrameVersion recently received E MAC-based: Not applicable.	on number carried in the most
	Identity -	802.1X-based: The user name (su	ipplicant identity) carried in the ived Response Identity EAPOL

6.8.9 ARP Inspecition

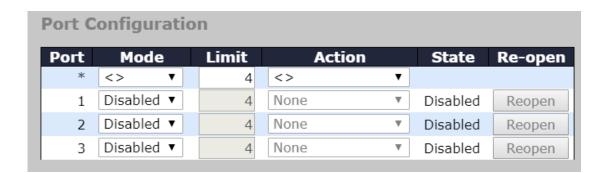
This page allows you to configure the Random Early Detection (RED) settings.

Through different RED configuration for the queues (QoS classes) it is possible to obtain Weighted Random Early Detection (WRED) operation between queues.

The settings are global for all ports in the switch.

Weighted Random Early Detection Configuration

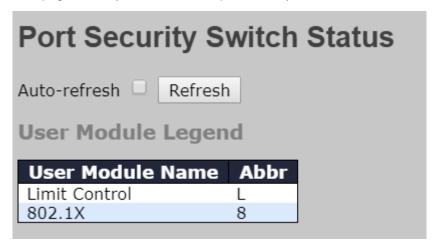
Group	Queue	DPL	Enable	Min	Max	Max Unit
1	0	1		0	50	Drop Probability ▼
1	0	2		0	50	Drop Probability ▼
1	0	3		0	50	Drop Probability ▼
1	1	1		0	50	Drop Probability ▼
1	1	2		0	50	Drop Probability ▼
1	1	3		0	50	Drop Probability ▼
1	2	1		0	50	Drop Probability ▼


Label	Description
Crown	The WRED group number for which the configuration below
Group	applies.
Oueue	The queue number (QoS class) for which the configuration below
Queue	applies.
DPL	The Drop Precedence Level for which the configuration below
DPL	applies.
Enable	Controls whether RED is enabled for this entry.
	Controls the lower RED fill level threshold. If the queue filling level
Min	is below this threshold, the drop probability is zero. This value is
	restricted to 0-100%.
	Controls the upper RED drop probability or fill level threshold for
Max	frames marked with Drop Precedence Level > 0 (yellow frames).
	This value is restricted to 1-100%.
	Selects the unit for Max. Possible values are:
	Drop Probability: Max controls the drop probability just below
Max Unit	100% fill level.
	Fill Level: Max controls the fill level where drop probability
	reaches 100%.

6.8.10 Port Security Limit Control

This page allows you to configure limit control for port security system- or port-wise. It will limit the number of users on a given port. If the specified number is exceeded, an action is taken..

Label	Description
	Indicates if Limit Control is globally enabled or disabled on the
Mode	switch. If globally disabled, other modules may still use the
Wode	underlying functionality, but limit checks and corresponding
	actions are disabled.
Aging Enghlad	If checked, secured MAC addresses are subject to aging as
Aging Enabled	discussed under Aging Period.
Aging Boried	You can specify the aging period in seconds. The Aging Period
Aging Period	can be set to a number between 10 and 10,000,000 seconds.



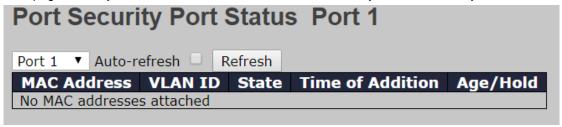
Label	Description
	Controls whether Limit Control is enabled on this port. Both this
	and the Global Mode must be set to Enabled for Limit Control to
Mode	be in effect. Notice that other modules may still use the underlying
	port security features without enabling Limit Control on a given
	port.
Limit	The maximum number of MAC addresses that can be secured on
LIIIII	this port. The maximum allowed value is 1024. If the limit is

	exceeded, the corresponding action is taken.
	1 2
	If the limit number is reached, the switch will take one of the
	following actions:
	None : Do not allow more than Limit MAC addresses on the port,
	but take no further action.
	Trap: If Limit + 1 MAC addresses is seen on the port, send
	an SNMP (Simple Network Management Protocol) trap. If Aging is
	disabled, only one SNMP trap will be sent, but with Aging enabled,
Action	new SNMP traps will be sent every time the limit gets exceeded.
71011011	Shutdown: If Limit + 1 MAC addresses is seen on the port, shut
	down the port. This implies that all secured MAC addresses will be
	removed from the port, and no new address will be learned. Even
	if the link is physically disconnected and reconnected on the port
	(by disconnecting the cable), the port will remain shut down.
	Trap & Shutdown: If Limit + 1 MAC addresses is seen on the port,
	both the "Trap" and the "Shutdown" actions described above will
	be taken.
	This column shows the current state of the port as seen from the
	Limit Control's point of view. The state takes one of four values:
	Disabled: Limit Control is either globally disabled or disabled on
	the port.
	Ready: The limit is not yet reached. This can be shown for all
State	actions.
	Limit Reached: Indicates that the limit is reached on this port.
	This state can only be shown if Action is set to None or Trap.
	Shutdown: Indicates that the port is shut down by the Limit
	Control module. This state can only be shown if Action is set to
	Shutdown or Trap & Shutdown.
	If a port is shut down by this module, you may reopen it by clicking
	this button, which will only be enabled if this is the case.
Re-open	Note that clicking the Re-open button causes the page to be
	refreshed, so non-committed changes will be lost.
	Torrounda, 30 Horr committee offeriges will be lost.

Switch

This page allows you to review the port security status.

Label	Description
User Module Name	The full name of a module that may request Port Security services.
Abbr	A one-letter abbreviation of the user module. This is used in the Users column in the port status table.

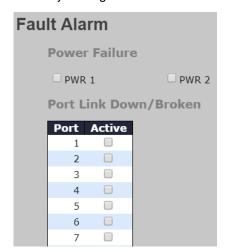

Port Status				
Port Users		State	MAC Count	
Port	Users	State	Current	Limit
1		Disabled	-	-
2		Disabled	-	-
3		Disabled	-	-
4		Disabled	-	-
5		Disabled	-	-

Label	Description
	Each of the user modules has a column that shows whether that
	module has enabled Port Security or not. A '-' means that the
Users	corresponding user module is not enabled, whereas a letter
	indicates that the user module abbreviated by that letter (see
	Abbr) has enabled port security.
	Shows the current state of the port which includes the following
State	values:
	Disabled: No user modules are currently using the Port Security

	service.
	Ready: The Port Security service is in use by at least one user
	module, and is awaiting frames from unknown MAC addresses to
	arrive.
	Limit Reached: The Port Security service is enabled by at least
	the Limit Control user module, and that module has indicated that
	the limit is reached and no more MAC addresses should be taken
	in.
	Shutdown: The Port Security service is enabled by at least the
	Limit Control user module, and that module has indicated that the
	limit is exceeded. No MAC addresses can be learned on the port
	until it is administratively re-opened on the Limit Control
	configuration Web-page.
	The two columns indicate the number of currently learned MAC
	addresses (forwarding as well as blocked) and the maximum
	number of MAC addresses that can be learned on the port,
MAC Count	respectively. If no user modules are enabled on the port, the
	Current column will show a dash (-). If the Limit Control user
	module is not enabled on the port, the Limit column will show a
	dash (-).

Port

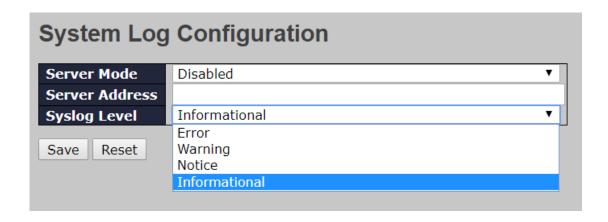
This page allows you to review the MAC addresses secured by the Port Security module.


Label	Description
	The MAC address that is seen on this port. If no MAC addresses
MAC Address	are learned, a single row stating No MAC addresses attached is
	displayed.
VLAN ID	The VLAN ID that is seen on this port.
	Indicates whether the corresponding MAC address is blocked or
State	forwarding. If blocked, it will not be allowed to transmit or receive
	traffic.

Time of Addition	Shows the date and time when this MAC address was first seen
Time of Addition	on the port.
	If at least one user module has decided to block this MAC
	address, it will stay in the blocked state until the hold time
	(measured in seconds) expires. If all user modules have decided
	to allow this MAC address to forward, and aging is enabled, the
	Port Security module will periodically check that this MAC
Age/Hold	address still forwards traffic.
	If the age period (measured in seconds) expires and no frames
	have been seen, the MAC address will be removed from the MAC
	table. Otherwise a new age period will begin.
	If aging is disabled or a user module has decided to hold the MAC
	address indefinitely, a dash (-) will be shown.

6.9 Warning

6.9.1 Fault Alarm


When any selected fault event happens, the Fault LED on the switch panel will light up and the electric relay will signal at the same time.

6.9.2 System Warning SYSLOG Setting

The SYSLOG is a protocol that transmits event notifications across networks.

Label	Description		
Server Mode	Indicates existing server mode. When the mode operation is enabled,		
	the syslog message will be sent to syslog server. The syslog protocol		
	is based on UDP communications and received on UDP port 514 and		
	the syslog server will not send acknowledgments back to the sender		
	since UDP is a connectionless protocol and it does not provide		
	acknowledgments. The syslog packet will always be sent even if the		
	syslog server does not exist. Possible modes are:		
	Enabled: enable server mode		
	Disabled: disable server mode		
Server Address	Indicates the IPv4 host address of syslog server. If the switch provides		
	DNS functions, it also can be a host name.		
Syslog Level	Select the severity level for the syslog messages to be logged. The list		
	contains:		
	Error: Log error messages.		
	Warning: Log warning messages.		
	Notice: Log messages that represent significant condition but not		
	errors.		
	Informational: Log informational messages.		

Event Selection

SYSLOG and SMTP are two warning methods supported by the system. Check the corresponding box to enable the system event warning method you want. Please note that the checkbox cannot be checked when SYSLOG or SMTP is disabled.


	System Events	S	YSLOG		
System					
Power 9	Status				
SNMP A	uthentication Failure	e [
Redund	ant Ring Topology C	change 🏻			
Port	SYSLOG		Port	SYSLOG	_
Port 1	SYSLOG Disabled	7	Port 2	SYSLOG Disabled	•
					7
1	Disabled	•	2	Disabled	-
1 3	Disabled	*	2	Disabled	▼
1 3 5	Disabled	7	2 4 6	Disabled	7

Label	Description		
System Cold Start	Sends out alerts when the system is restarted		
Power Status	Sends out alerts when power is up or down		
SNMP Authentication Failure	Sends out alert when SNMP authentication fails		
Redundant-Ring Topology	Sends out alerts when Redundant-Ring topology		
Change	changes		
Port Event SYSLOG	■ Disable■ Link Up■ Link Down■ Link Up & Link Down		
Apply	Click to activate the configurations		
Help	Shows help file		

6.10 Monitor and Diag

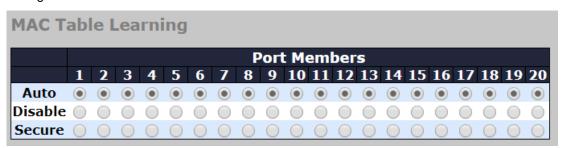
6.10.1 MAC Table

The MAC address table can be configured on this page. You can set timeouts for entries in the dynamic MAC table and configure the static MAC table here.

Aging Configuration

By default, dynamic entries are removed from the MAC after 300 seconds. This removal is called aging.

You can configure aging time by entering a value in the box below in seconds; for example, **Age Time** seconds.


The allowed range is 10 to 1000000 seconds.

You can disable the automatic aging of dynamic entries by checking **Disable Automatic Aging**.

MAC Table Learning

If the learning mode for a given port is grayed out, it means another module is in control of the mode, and thus the user cannot change the configurations. An example of such a module is MAC-Based authentication under 802.1X.

You can configure the port to dynamically learn the MAC address based upon the following settings:

Label	Description		
Auto	Learning is done automatically as soon as a frame with unknown		
Auto	SMAC is received.		
Disable	No learning is done.		
	Only static MAC entries are learned, all other frames are dropped.		
	Note: make sure the link used for managing the switch is added to		
Secure	the static Mac table before changing to secure learning mode,		
Secure	otherwise the management link will be lost and can only be		
	restored by using another non-secure port or by connecting to the		
	switch via the serial interface.		

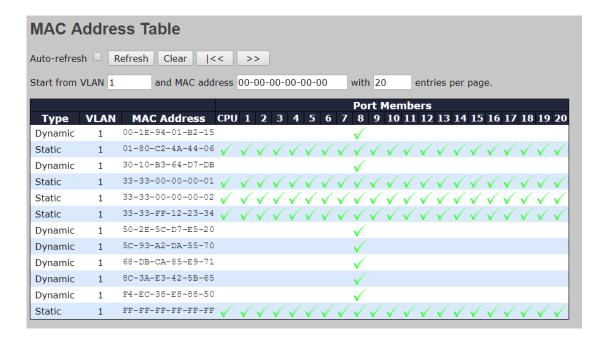
Static MAC Table Configurations

The static entries in the MAC table are shown in this table. The static MAC table can contain up to 64 entries. The entries are for the whole stack, not for individual switches. The MAC table is sorted first by VLAN ID and then by MAC address.

										F	Por	t M	lem	bei	rs							
Delete	VLAN ID	MAC Address	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Delete	1	00-00-00-00-00																				

Label	Description
Delete	Check to delete an entry. It will be deleted during the next save.
VLAN ID	The VLAN ID for the entry
MAC Address	The MAC address for the entry
Port Members	Checkmarks indicate which ports are members of the entry.
Port Members	Check or uncheck to modify the entry.
Adding Now Statio	Click to add a new entry to the static MAC table. You can specify
Adding New Static	the VLAN ID, MAC address, and port members for the new entry.
Entry	Click Save to save the changes.

MAC Table

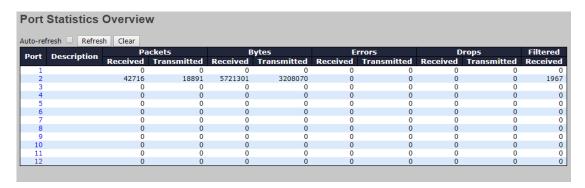

Each page shows up to 999 entries from the MAC table, with a default value of 20, selected by the **Entries Per Page** input field. When first visited, the web page will show the first 20 entries from the beginning of the MAC Table. The first displayed will be the one with the lowest VLAN ID and the lowest MAC address found in the MAC Table.

Each page shows up to 999 entries from the MAC table, with a default value of 20, selected by

the **Entries Per Page** input field. When first visited, the web page will show the first 20 entries from the beginning of the MAC Table. The first displayed will be the one with the lowest VLAN ID and the lowest MAC address found in the MAC Table.

The **Start from MAC address** and **VLAN** fields allow the user to select the starting point in the MAC table. Clicking the **Refresh** button will update the displayed table starting from that or the closest next MAC table match. In addition, the two input fields will – upon clicking **Refresh** - assume the value of the first displayed entry, allows for continuous refresh with the same start address.

The >> will use the last entry of the currently displayed VLAN/MAC address pairs as a basis for the next lookup. When it reaches the end, the text "**no more entries**" is shown in the displayed table. Use the **|<<** button to start over.

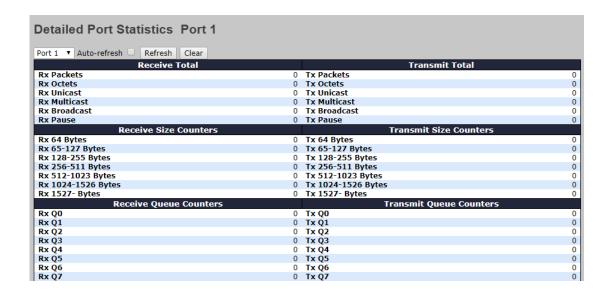


Label	Description
Type Indicates whether the entry is a static or dynamic entry	
MAC Address	The MAC address of the entry
VLAN	The VLAN ID of the entry
Port Members	The ports that are members of the entry.

6.10.2 Port Statistics

Traffic Overview

This page provides an overview of general traffic statistics for all switch ports.


Label	Description			
Dowt	The switch port number to which the following settings will be			
Port	applied.			
Packets	The number of received and transmitted packets per port			
Bytes	The number of received and transmitted bytes per port			
Erroro	The number of frames received in error and the number of			
Errors	incomplete transmissions per port			
Drops The number of frames discarded due to ingress or egress congesti				
Filtered	The number of received frames filtered by the forwarding process			
Auto-refresh	Check to enable an automatic refresh of the page at regular intervals.			
Refresh	Updates the counter entries, starting from the current entry ID.			
Clear	Flushes all counters entries			

Detailed Statistics

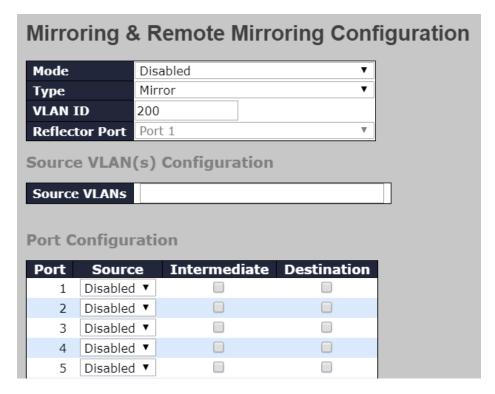
This page provides detailed traffic statistics for a specific switch port. Use the port drop-down list to decide the details of which switch port to be displayed.

The displayed counters include the total number for receive and transmit, the size for receive and transmit, and the errors for receive and transmit.

Detailed Statistics - Total Receive & Transmit

Label	Description
Rx and Tx Packets	The number of received and transmitted (good and bad) packets
Rx and Tx Octets	The number of received and transmitted (good and bad) bytes,
RX and TX Octets	including FCS, except framing bits
Rx and Tx Unicast	The number of received and transmitted (good and bad) unicast
RX and TX Unicast	packets
Rx and Tx	The number of received and transmitted (good and bad) multicast
Multicast	packets
Rx and Tx	The number of received and transmitted (good and bad) broadcast
Broadcast	packets
Rx and Tx Pause	The number of MAC Control frames received or transmitted on this
RX allu TX Pause	port that have an opcode indicating a PAUSE operation
Rx Drops	The number of frames dropped due to insufficient receive buffer or
KX Drops	egress congestion
Rx	The number of frames received with CRC or alignment errors
CRC/Alignment	
Rx Undersize	The number of short ¹ frames received with a valid CRC
Rx Oversize	The number of long ² frames received with a valid CRC
Rx Fragments	The number of short ¹ frames received with an invalid CRC
Rx Jabber	The number of long ² frames received with an invalid CRC
Rx Filtered	The number of received frames filtered by the forwarding process
Tx Drops	The number of frames dropped due to output buffer congestion
Tx Late / Exc.Coll.	The number of frames dropped due to excessive or late collisions

- 1. Short frames are frames smaller than 64 bytes.
- 2. Long frames are frames longer than the maximum frame length configured for this port.

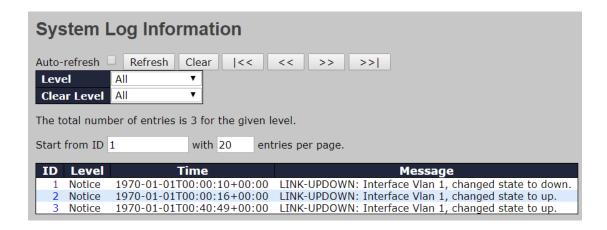

6.10.3 Port Monitoring

You can configure port mirroring on this page. To solve network problems, selected traffic can be copied, or mirrored, to a mirror port where a frame analyzer can be attached to analyze the frame flow. The traffic to be copied to the mirror port is selected as follows:

All frames received on a given port (also known as ingress or source mirroring).

All frames transmitted on a given port (also known as egress or destination mirroring).

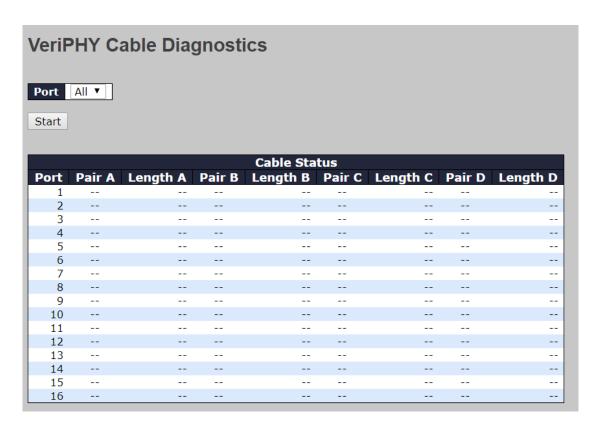
Port to mirror is also known as the mirror port. Frames from ports that have either source (rx) or destination (tx) mirroring enabled are mirrored to this port. Disabled option disables mirroring.



Label	Description
Mode	Enable or disable this function.
	Mirror: the switch is running on mirror mode. The source port(s) and
	destination port are located on this switch.
Time	Source: the switch is a source node for monitor flow. The source
Type	port(s) and intermediate port(s) are located on this switch.
	Intermediate: the switch is a forwarding node for monitor flow and the
	switch is an option node. The object is to forward traffic from source

	switch to destination switch. The intermediate ports are located on
	this switch.
	Destination: the switch is an end node for monitor flow. The
	destination port(s) and intermediate port(s) are located on this
	switch.
VI ANID	The VLAN ID points out where the monitor packet will copy to. The
VLAN ID	default VLAN ID is 200.
Reflector Port	Select a reflector port. This port carries all the mirrored traffic at
Reflector Port	source switch.
	The switch can support VLAN-based mirroring. If you want to monitor
Source VLANs	some VLANs on the switch, you can set the selected VLANs on this
	field.
Port	The logical port for the settings contained in the same row. The CPU
Port	also can be selected.
	Selects mirror mode.
	Disabled: Neither frames transmitted nor frames received are
	mirrored.
	Both: Frames received and frames transmitted are mirrored on the
Source	Intermediate/Destination port.
	Rx only: Frames received on this port are mirrored on the
	Intermediate/Destination port. Frames transmitted are not mirrored.
	Tx only: Frames transmitted on this port are mirrored on the
	Intermediate/Destination port. Frames received are not mirrored.
	Select intermediate port. This checkbox is designed for Remote
Intermediate	Mirroring. The intermediate port is a switched port to connect to other
intermediate	switch. All packets that are going through intermediate port will be
	tagged when the mirror function is enabled.
	Select destination port. This checkbox is designed for mirror or
Destination	Remote Mirroring. The destination port is a switched port that you
	receive a copy of traffic from the source port.

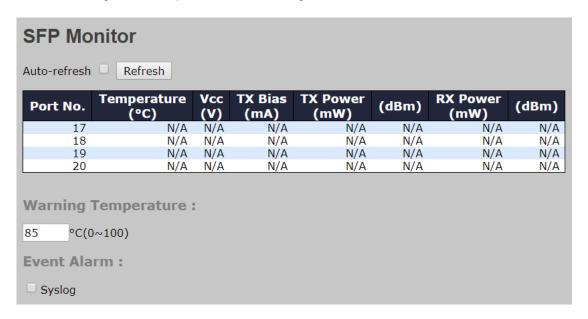
6.10.4 System Log Information


This page provides switch system log information.

Label	Description				
ID	The ID (>= 1) of the system log entry				
	The level of the system log entry. The following level types are				
	supported:				
	Notice: Log messages that represent significant condition but not				
Level	errors.				
Level	Informational: Log informational messages.				
	Warning: Log warning messages.				
	Error: Log error messages.				
	All: Log all messages.				
Time	The time of the system log entry				
Message	The MAC address of the switch				
Auto-refresh	Check this box to enable an automatic refresh of the page at regular				
Auto-refresh	intervals.				
Refresh	Updates system log entries, starting from the current entry ID				
Clear	Flushes all system log entries				
 <<	Updates system log entries, starting from the first available entry ID				
	Updates system log entries, ending at the last entry currently				
<<	displayed				
	Updates system log entries, starting from the last entry currently				
>>	displayed.				
>>	Updates system log entries, ending at the last available entry ID.				

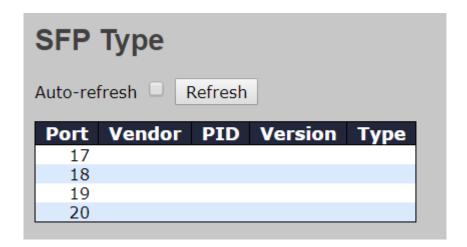
6.10.5 Cable Diagnostics

This page allows you to perform VeriPHY cable diagnostics.


Press **Start** to run the diagnostics. This will take approximately 5 seconds. If all ports are selected, this can take approximately 15 seconds. When completed, the page refreshes automatically, and you can view the cable diagnostics results in the cable status table. Note that VeriPHY diagnostics is only accurate for cables 7 - 140 meters long.

10 and 100 Mbps ports will be disconnected while running VeriPHY diagnostics. Therefore, running VeriPHY on a 10 or 100 Mbps management port will cause the switch to stop responding until VeriPHY is complete.

Label Description		
Port The port for which VeriPHY Cable Diagnostics is requested		
Cable Status Port: port number		
	Pair: the status of the cable pair	
	Length: the length (in meters) of the cable pair	


6.10.6 SFP Monitor

SFP modules with DDM (Digital Diagnostic Monitoring) function can measure the temperature of the apparatus, helping you monitor the status of connection and detect errors immediately. You can manage and set up event alarms through DDM Web interface.

6.10.7 SFP Type

This page shows the details of the SFP port. For each port, the summary displays the SFP type, the vendor name and serial number.

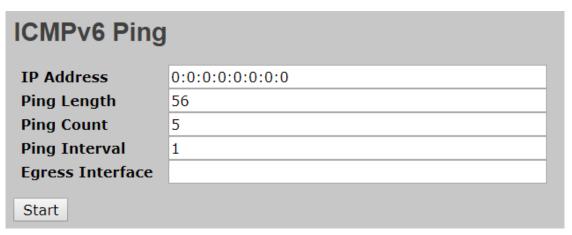
6.10.8 Ping

This page allows you to issue ICMP PING packets to troubleshoot IP connectivity issues.

ICMP Ping						
IP Address	0.0.0.0					
Ping Length	56					
Ping Count	5					
Ping Interval	1					
Start						

After you press **Start**, five ICMP packets will be transmitted, and the sequence number and roundtrip time will be displayed upon reception of a reply. The page refreshes automatically until responses to all packets are received, or until a timeout occurs.

PING6 server ::10.10.132.20


64 bytes from ::10.10.132.20: icmp_seq=0, time=0ms 64 bytes from ::10.10.132.20: icmp_seq=1, time=0ms 64 bytes from ::10.10.132.20: icmp_seq=2, time=0ms 64 bytes from ::10.10.132.20: icmp_seq=3, time=0ms 64 bytes from ::10.10.132.20: icmp_seq=4, time=0ms

Sent 5 packets, received 5 OK, 0 bad

You can configure the following properties of the issued ICMP packets:

Label	Description
IP Address	The destination IP Address
Ping Size	The payload size of the ICMP packet. Values range from 8 to
	1400 bytes.

IPv6 Ping

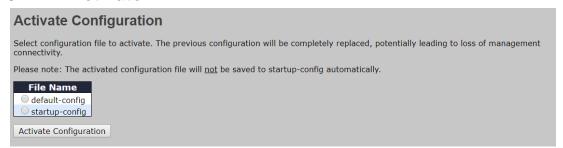
PING6 server ::192.168.10.1

sendto

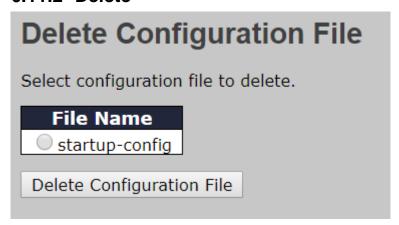
sendto

sendto

sendto


sendto

Sent 5 packets, received 0 OK, 0 bad


6.11 Configuration

This setting allows you to activate or delete configuration files. Simply select the files to be activated or deleted and press the button.

6.11.1 Activate

6.11.2 Delete

6.12 Save

You can save current configurations as a startup configuration file.

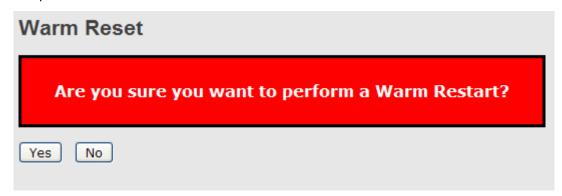
Save Running Configuration to startup-config Please note: The generation of the configuration file may be time consuming, depending on the amount of non-default configuration. Save Configuration

6.13Troubleshooting

6.13.1 Factory Defaults

You can reset the configuration of the stack switch on this page. Only the IP configuration is retained.

Factory Defaults



Label	Description
Yes	Click to reset the configuration to factory defaults
No	Click to return to the Port State page without resetting

6.13.2 System Reboot

You can reset the stack switch on this page. After reset, the system will boot normally as if you have powered on the devices.

Label	Description
Yes	Click to reboot device
No	Click to return to the Port State page without rebooting

Technical Specifications

ORing Switch Model	IGS-9822DGP+
Physical Ports	
10/100/1000Base-T(X) with Ports in	_
RJ45 Auto MDI/MDIX	8
100/1G/2.5GBase-X with SFP port	2
1G/10GBase-X with SFP port	2
Technology	
	IEEE 802.3 for 10Base-T
Ethernet Standards	IEEE 802.3u for 100Base-TX and 100Base-FX IEEE 802.3ab for 1000Base-T IEEE 802.3z for 1000Base-X IEEE 802.3x for Flow control IEEE 802.3ad for LACP (Link Aggregation Control Protocol) IEEE 802.1p for COS (Class of Service) IEEE 802.1Q for VLAN Tagging IEEE 802.1D for STP (Spanning Tree Protocol) IEEE 802.1w for RSTP (Rapid Spanning Tree Protocol) IEEE 802.1s for MSTP (Multiple Spanning Tree Protocol)
	IEEE 802.1x for Authentication
	IEEE 802.1AB for LLDP (Link Layer Discovery Protocol)
MAC Table	32k
Priority Queues	8
Processing	Store-and-Forward
Packet Buffer	32Mbits
Switch Properties	Switching latency: 7 us Switching bandwidth: 66Gbps Throughput (packet per second): 49.1Mpps@64Bytes packet Max. Number of Available VLANs: 4096 VLAN ID Range: VID 0 to 4095 IGMP multicast groups: 64 for each VLAN Port rate limiting: User Define
Jumbo frame	Up to 10K Bytes
Security Features	Device Binding security feature Enable/disable ports, MAC based port security Port based network access control (802.1x) VLAN (802.1Q) to segregate and secure network traffic RADIUS/TACACS+ centralized password management SNMPv3 encrypted authentication and access security HTTPS / SSH / SSL enhance network security DOS/DDOS auto prevention
Software Features	Redundant Ring (O-Ring) with recovery time less than 30ms Quality of Service (802.1p) for real-time traffic VLAN (802.1Q) with VLAN tagging IGMP Snooping IP-based bandwidth management Application-based QoS management Port configuration, status, statistics, monitoring, security DHCP Server/Client/Relay SMTP Client Modbus TCP NTP server/client UPnP
QoS	TOS/Diffserv supported CoS Application based QoS IP based bandwidth management
Network Redundancy	O-Ring O-Chain

	MRP*NOTE
	STP/RSTP/MSTP (IEEE 802.1 d/w/s)
RS-232 Serial Console Port	RS-232 in RJ45 connector with console cable. 115200bps, 8, N, 1
LED indicators	
Power Indicator (PWR)	Green: Power LED x 3
Ring Master Indicator (R.M.)	Green: Indicates that the system is operating in O-Ring Master mode
O-Ring Indicator (Ring)	Green: Indicates that the system operating in O-Ring mode
	Green Blinking : Indicates that the Ring is broken.
Fault Indicator (Fault)	Amber : Indicate unexpected event occurred
10/100/1000Base-T(X) RJ45 Port	Green for port Link/Act(Upper)
Indicator	Dual color LED for speed: Green for 1000Mbps, Amber for 100Mbps, off-light for 10Mbps(Lower)
1G/2.5GBase-X SFP Port Indicator	Green LED for Link/Act
1G/10Gbase-X SFP Port Indicator	Green LED for Link/Act
Fault contact	
Relay	Relay output to carry capacity of 1A at 24VDC
Reset Function	
Reset Button	< 5 sec: System reboot, > 5 sec: Factory default
Power	
Redundant Input power	Dual DC inputs 12~48VDC on 6-pin terminal block
Power consumption (Typ.)	19 Watts
Overload current protection	Present
Reverse Polarity Protection	Present
Physical Characteristic	
Enclosure	IP-30
Dimension (W x D x H)	74.3 (W) x 125 (D) x 153.6 (H) mm (2.93 x 4.92 x 6.05 inches)
Weight (g)	1078 g
Environmental	
Storage Temperature	-40 to 85°C (-40 to 185°F)
Operating Temperature	-20 to 60°C (-14 to140°F) at 2.5G/10G SFP
operating reimperature	-40 to 75°C (-40 to 167°F) at full Gigabit
Operating Humidity	5% to 95% Non-condensing
Regulatory approvals	
EMC	CE EMC (EN 55024, EN 55032), FCC Part 15 B
EMI	EN 55032, CISPR32, EN 61000-3-2, EN 61000-3-3, FCC Part 15 B class A
EMS	EN 55024 (IEC/EN 61000-4-2 (ESD), IEC/EN 61000-4-3 (RS),IEC/EN 61000-4-4 (EFT), IEC/EN 61000-4-5 (Surge), IEC/EN 61000-4-6 (CS), IEC/EN 61000-4-8(PFMF), IEC/EN 61000-4-11 (DIP))
Shock	IEC60068-2-27
Free Fall	IEC60068-2-31
Vibration	IEC60068-2-6
Safety	EN60950-1
мтвғ	585191 hrs
Warranty	5 years